-
1
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012; 47: 158-167.
-
(2012)
Mol Cell
, vol.47
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
3
-
-
0037711399
-
The circadian clock: Pacemaker and tumour suppressor
-
Fu L, Lee CC. The circadian clock: Pacemaker and tumour suppressor. Nat Rev Cancer 2003; 3: 350-361.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 350-361
-
-
Fu, L.1
Lee, C.C.2
-
4
-
-
70450239457
-
Metabolism and cancer: The circadian clock connection
-
Sahar S, Sassone-Corsi P. Metabolism and cancer: The circadian clock connection. Nat Rev Cancer 2009; 9: 886-896.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 886-896
-
-
Sahar, S.1
Sassone-Corsi, P.2
-
5
-
-
0035904335
-
Rotating night shifts and risk of breast cancer in women participating in the Nurses' Health Study
-
Schernhammer ES, Laden F, Speizer FE, et al. Rotating night shifts and risk of breast cancer in women participating in the Nurses' Health Study. J Natl Cancer Inst 2001; 93: 1563-1568.
-
(2001)
J Natl Cancer Inst
, vol.93
, pp. 1563-1568
-
-
Schernhammer, E.S.1
Laden, F.2
Speizer, F.E.3
-
6
-
-
0036567347
-
Host circadian clock as a control point in tumor progression
-
Filipski E, King VM, Li X, et al. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 2002; 94: 690-697.
-
(2002)
J Natl Cancer Inst
, vol.94
, pp. 690-697
-
-
Filipski, E.1
King, V.M.2
Li, X.3
-
7
-
-
77958574512
-
Plasticity and specificity of the circadian epigenome
-
Masri S, Sassone-Corsi P. Plasticity and specificity of the circadian epigenome. Nat Neurosci 2010; 13: 1324-1329.
-
(2010)
Nat Neurosci
, vol.13
, pp. 1324-1329
-
-
Masri, S.1
Sassone-Corsi, P.2
-
9
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N, Yoo SH, Huang HC, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338: 349-354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.H.2
Huang, H.C.3
-
10
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G, Cesbron F, Rougemont J, et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 2011; 9: E1000595.
-
(2011)
PLoS Biol
, vol.9
, pp. e1000595
-
-
Rey, G.1
Cesbron, F.2
Rougemont, J.3
-
11
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 2006; 38: 369-374.
-
(2006)
Nat Genet
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
12
-
-
84883406023
-
HClock gene expression in human colorectal carcinoma
-
Wang L, Chen B, Wang Y, et al. hClock gene expression in human colorectal carcinoma. Mol Med Rep 2013; 8: 1017-1022.
-
(2013)
Mol Med Rep
, vol.8
, pp. 1017-1022
-
-
Wang, L.1
Chen, B.2
Wang, Y.3
-
13
-
-
84880700802
-
Circadian gene Clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive miR-124
-
Li A, Lin X, Tan X, et al. Circadian gene Clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive miR-124. FEBS Lett 2013; 587: 2455-2460.
-
(2013)
FEBS Lett
, vol.587
, pp. 2455-2460
-
-
Li, A.1
Lin, X.2
Tan, X.3
-
14
-
-
84900454369
-
Induction of the CLOCK gene by E2-ERalpha signaling promotes the proliferation of breast cancer cells
-
Xiao L, Chang AK, Zang MX, et al. Induction of the CLOCK gene by E2-ERalpha signaling promotes the proliferation of breast cancer cells. PLoS One 2014; 9: E95878.
-
(2014)
PLoS One
, vol.9
, pp. e95878
-
-
Xiao, L.1
Chang, A.K.2
Zang, M.X.3
-
15
-
-
84885598880
-
CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor-Alpha
-
Li S, Wang M, Ao X, et al. CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor-Alpha. Oncogene 2013; 32: 4883-4891.
-
(2013)
Oncogene
, vol.32
, pp. 4883-4891
-
-
Li, S.1
Wang, M.2
Ao, X.3
-
16
-
-
77956200571
-
Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice
-
Lee S, Donehower LA, Herron AJ, et al. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One 2010; 5: E10995.
-
(2010)
PLoS One
, vol.5
, pp. e10995
-
-
Lee, S.1
Donehower, L.A.2
Herron, A.J.3
-
17
-
-
0037020198
-
The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo
-
Fu L, Pelicano H, Liu J, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002; 111: 41-50.
-
(2002)
Cell
, vol.111
, pp. 41-50
-
-
Fu, L.1
Pelicano, H.2
Liu, J.3
-
18
-
-
84907729836
-
Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer
-
Zhao H, Zeng ZL, Yang J, et al. Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int J Clin Exp Pathol 2014; 7: 619-630.
-
(2014)
Int J Clin Exp Pathol
, vol.7
, pp. 619-630
-
-
Zhao, H.1
Zeng, Z.L.2
Yang, J.3
-
19
-
-
84881436099
-
Posttranscriptional regulation of PER1 underlies the oncogenic function of IREalpha
-
Pluquet O, Dejeans N, Bouchecareilh M, et al. Posttranscriptional regulation of PER1 underlies the oncogenic function of IREalpha. Cancer Res 2013; 73: 4732-4743.
-
(2013)
Cancer Res
, vol.73
, pp. 4732-4743
-
-
Pluquet, O.1
Dejeans, N.2
Bouchecareilh, M.3
-
20
-
-
84880667008
-
Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy
-
Hwang-Verslues WW, Chang PH, Jeng YM, et al. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy. Proc Natl Acad Sci USA 2013; 110: 12331-12336.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 12331-12336
-
-
Hwang-Verslues, W.W.1
Chang, P.H.2
Jeng, Y.M.3
-
21
-
-
0344232726
-
Light regulates the cell cycle in zebrafish
-
Dekens MP, Santoriello C, Vallone D, et al. Light regulates the cell cycle in zebrafish. Curr Biol 2003; 13: 2051-2057.
-
(2003)
Curr Biol
, vol.13
, pp. 2051-2057
-
-
Dekens, M.P.1
Santoriello, C.2
Vallone, D.3
-
22
-
-
41949123764
-
The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation
-
Grechez-Cassiau A, Rayet B, Guillaumond F, et al. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 2008; 283: 4535-4542.
-
(2008)
J Biol Chem
, vol.283
, pp. 4535-4542
-
-
Grechez-Cassiau, A.1
Rayet, B.2
Guillaumond, F.3
-
23
-
-
84876859512
-
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing
-
Laranjeiro R, Tamai TK, Peyric E, et al. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing. Proc Natl Acad Sci USA 2013; 110: 6835-6840.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 6835-6840
-
-
Laranjeiro, R.1
Tamai, T.K.2
Peyric, E.3
-
24
-
-
0141889955
-
Control mechanism of the circadian clock for timing of cell division in vivo
-
Matsuo T, Yamaguchi S, Mitsui S, et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003; 302: 255-259.
-
(2003)
Science
, vol.302
, pp. 255-259
-
-
Matsuo, T.1
Yamaguchi, S.2
Mitsui, S.3
-
25
-
-
84878726282
-
Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling
-
Plikus MV, Vollmers C, de la Cruz D, et al. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc Natl Acad Sci USA 2013; 110: E2106-E2115.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. E2106-E2115
-
-
Plikus, M.V.1
Vollmers, C.2
De La Cruz, D.3
-
26
-
-
84904012704
-
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
-
Feillet C, Krusche P, Tamanini F, et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci USA 2014; 111: 9828-9833.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 9828-9833
-
-
Feillet, C.1
Krusche, P.2
Tamanini, F.3
-
28
-
-
84887627313
-
The circadian clock and cell cycle: Interconnected biological circuits
-
Masri S, Cervantes M, Sassone-Corsi P. The circadian clock and cell cycle: Interconnected biological circuits. Curr Opin Cell Biol 2013; 25: 730-734.
-
(2013)
Curr Opin Cell Biol
, vol.25
, pp. 730-734
-
-
Masri, S.1
Cervantes, M.2
Sassone-Corsi, P.3
-
29
-
-
34247515224
-
Riding tandem: Circadian clocks and the cell cycle
-
Hunt T, Sassone-Corsi P. Riding tandem: Circadian clocks and the cell cycle. Cell 2007; 129: 461-464.
-
(2007)
Cell
, vol.129
, pp. 461-464
-
-
Hunt, T.1
Sassone-Corsi, P.2
-
31
-
-
84888436613
-
The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit
-
Bouchard-Cannon P, Mendoza-Viveros L, Yuen A, et al. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep 2013; 5: 961-973.
-
(2013)
Cell Rep
, vol.5
, pp. 961-973
-
-
Bouchard-Cannon, P.1
Mendoza-Viveros, L.2
Yuen, A.3
-
32
-
-
84876966547
-
The circadian clock gates the intestinal stem cell regenerative state
-
Karpowicz P, Zhang Y, Hogenesch JB, et al. The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 2013; 3: 996-1004.
-
(2013)
Cell Rep
, vol.3
, pp. 996-1004
-
-
Karpowicz, P.1
Zhang, Y.2
Hogenesch, J.B.3
-
33
-
-
84897980275
-
Functional genomics identify Birc5/survivin as a candidate gene involved in the chronotoxicity of cyclindependent kinase inhibitors
-
Siffroi-Fernandez S, Dulong S, Li XM, et al. Functional genomics identify Birc5/survivin as a candidate gene involved in the chronotoxicity of cyclindependent kinase inhibitors. Cell Cycle 2014; 13: 984-991.
-
(2014)
Cell Cycle
, vol.13
, pp. 984-991
-
-
Siffroi-Fernandez, S.1
Dulong, S.2
Li, X.M.3
-
34
-
-
0028980494
-
P53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts
-
Agarwal ML, Agarwal A, Taylor WR, et al. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 1995; 92: 8493-8497.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 8493-8497
-
-
Agarwal, M.L.1
Agarwal, A.2
Taylor, W.R.3
-
35
-
-
84884697860
-
P53 regulates Period2 expression and the circadian clock
-
Miki T, Matsumoto T, Zhao Z, et al. p53 regulates Period2 expression and the circadian clock. Nat Commun 2013; 4: 2444.
-
(2013)
Nat Commun
, vol.4
, pp. 2444
-
-
Miki, T.1
Matsumoto, T.2
Zhao, Z.3
-
36
-
-
0033214080
-
Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27
-
Bouchard C, Thieke K, Maier A, et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 1999; 18: 5321-5333.
-
(1999)
EMBO J
, vol.18
, pp. 5321-5333
-
-
Bouchard, C.1
Thieke, K.2
Maier, A.3
-
37
-
-
0033214995
-
Cyclins D1 and D2 mediate mycinduced proliferation via sequestration of p27(Kip1) and p21(Cip1
-
Perez-Roger I, Kim SH, Griffiths B, et al. Cyclins D1 and D2 mediate mycinduced proliferation via sequestration of p27(Kip1) and p21(Cip1). EMBO J 1999; 18: 5310-5320.
-
(1999)
EMBO J
, vol.18
, pp. 5310-5320
-
-
Perez-Roger, I.1
Kim, S.H.2
Griffiths, B.3
-
38
-
-
84901594242
-
Ras-mediated deregulation of the circadian clock in cancer
-
Relogio A, Thomas P, Medina-Perez P, et al. Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet 2014; 10: E1004338.
-
(2014)
PLoS Genet
, vol.10
, pp. e1004338
-
-
Relogio, A.1
Thomas, P.2
Medina-Perez, P.3
-
39
-
-
77953995002
-
Covalent histone modifications - miswritten, misinterpreted and mis-erased in human cancers
-
Chi P, Allis CD, Wang GG. Covalent histone modifications - miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10: 457-469.
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 457-469
-
-
Chi, P.1
Allis, C.D.2
Wang, G.G.3
-
40
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006; 125: 497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
41
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray JP, Lee C, Wade PA, et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003; 421: 177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
-
42
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007; 450: 1086-1090.
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
Sahar, S.2
Grimaldi, B.3
-
43
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
-
44
-
-
47549088250
-
The NAD-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134: 329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
-
45
-
-
84905389924
-
Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
-
Masri S, Rigor P, Cervantes M, et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 2014; 158: 659-672.
-
(2014)
Cell
, vol.158
, pp. 659-672
-
-
Masri, S.1
Rigor, P.2
Cervantes, M.3
-
46
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 2010; 17: 1414-1421.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
47
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray JP, Yang X, DeBruyne JP, et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 2006; 281: 21209-21215.
-
(2006)
J Biol Chem
, vol.281
, pp. 21209-21215
-
-
Etchegaray, J.P.1
Yang, X.2
DeBruyne, J.P.3
-
48
-
-
84893787747
-
Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
-
Duong HA, Weitz CJ. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol 2014; 21: 126-132.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 126-132
-
-
Duong, H.A.1
Weitz, C.J.2
-
49
-
-
84898011296
-
Sorting out functions of sirtuins in cancer
-
Roth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene 2014; 33: 1609-1620.
-
(2014)
Oncogene
, vol.33
, pp. 1609-1620
-
-
Roth, M.1
Chen, W.Y.2
-
50
-
-
84856384698
-
The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop
-
Menssen A, Hydbring P, Kapelle K, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci USA 2012; 109: E187-E196.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E187-E196
-
-
Menssen, A.1
Hydbring, P.2
Kapelle, K.3
-
51
-
-
84887428122
-
The roles of SIRT1 in cancer
-
Lin Z, Fang D. The roles of SIRT1 in cancer. Genes Cancer 2013; 4: 97-104.
-
(2013)
Genes Cancer
, vol.4
, pp. 97-104
-
-
Lin, Z.1
Fang, D.2
-
52
-
-
84916891627
-
SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells
-
Li L, Osdal T, Ho Y, et al. SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell 2014; 15: 431-446.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 431-446
-
-
Li, L.1
Osdal, T.2
Ho, Y.3
-
53
-
-
84870874690
-
The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
-
Sebastian C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151: 1185-1199.
-
(2012)
Cell
, vol.151
, pp. 1185-1199
-
-
Sebastian, C.1
Zwaans, B.M.2
Silberman, D.M.3
-
54
-
-
78249276172
-
Hdac3 is essential for the maintenance of chromatin structure and genome stability
-
Bhaskara S, Knutson SK, Jiang G, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010; 18: 436-447.
-
(2010)
Cancer Cell
, vol.18
, pp. 436-447
-
-
Bhaskara, S.1
Knutson, S.K.2
Jiang, G.3
-
55
-
-
57749195091
-
Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology
-
Alenghat T, Meyers K, Mullican SE, et al. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 2008; 456: 997-1000.
-
(2008)
Nature
, vol.456
, pp. 997-1000
-
-
Alenghat, T.1
Meyers, K.2
Mullican, S.E.3
-
56
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331: 1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
-
57
-
-
84872875650
-
Histone methyltransferase MLL3 contributes to genome-scale circadian transcription
-
Valekunja UK, Edgar RS, Oklejewicz M, et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci USA 2013; 110: 1554-1559.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 1554-1559
-
-
Valekunja, U.K.1
Edgar, R.S.2
Oklejewicz, M.3
-
58
-
-
35548934558
-
MLL translocations, histone modifications and leukaemia stem-cell development
-
Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823-833.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 823-833
-
-
Krivtsov, A.V.1
Armstrong, S.A.2
-
59
-
-
84892841527
-
Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia
-
Cao F, Townsend EC, Karatas H, et al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol Cell 2014; 53: 247-261.
-
(2014)
Mol Cell
, vol.53
, pp. 247-261
-
-
Cao, F.1
Townsend, E.C.2
Karatas, H.3
-
60
-
-
84900420439
-
MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia
-
Chen C, Liu Y, Rappaport AR, et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 2014; 25: 652-665.
-
(2014)
Cancer Cell
, vol.25
, pp. 652-665
-
-
Chen, C.1
Liu, Y.2
Rappaport, A.R.3
-
61
-
-
77950546589
-
MiR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221
-
Kotani A, Ha D, Hsieh J, et al. miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 2009; 114: 4169-4178.
-
(2009)
Blood
, vol.114
, pp. 4169-4178
-
-
Kotani, A.1
Ha, D.2
Hsieh, J.3
-
62
-
-
84869835580
-
MiR-495 is a tumor-suppressor microRNA downregulated in MLL-rearranged leukemia
-
Jiang X, Huang H, Li Z, et al. MiR-495 is a tumor-suppressor microRNA downregulated in MLL-rearranged leukemia. Proc Natl Acad Sci USA 2012; 109: 19397-19402.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 19397-19402
-
-
Jiang, X.1
Huang, H.2
Li, Z.3
-
63
-
-
84879932160
-
MiR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia
-
Chen P, Price C, Li Z, et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci USA 2013; 110: 11511-11516.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 11511-11516
-
-
Chen, P.1
Price, C.2
Li, Z.3
-
64
-
-
84857367540
-
Regulation of circadian behavioral output via a MicroRNAJAK/STAT circuit
-
Luo W, Sehgal A. Regulation of circadian behavioral output via a MicroRNAJAK/STAT circuit. Cell 2012; 148: 765-779.
-
(2012)
Cell
, vol.148
, pp. 765-779
-
-
Luo, W.1
Sehgal, A.2
-
65
-
-
66149167562
-
Integration of microRNA miR-122 in hepatic circadian gene expression
-
Gatfield D, Le Martelot G, Vejnar CE, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 2009; 23: 1313-1326.
-
(2009)
Genes Dev
, vol.23
, pp. 1313-1326
-
-
Gatfield, D.1
Le Martelot, G.2
Vejnar, C.E.3
-
66
-
-
34249713720
-
MicroRNA modulation of circadianclock period and entrainment
-
Cheng HY, Papp JW, Varlamova O, et al. microRNA modulation of circadianclock period and entrainment. Neuron 2007; 54: 813-829.
-
(2007)
Neuron
, vol.54
, pp. 813-829
-
-
Cheng, H.Y.1
Papp, J.W.2
Varlamova, O.3
-
67
-
-
84896715662
-
Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting
-
Nam HJ, Boo K, Kim D, et al. Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting. Mol Cell 2014; 53: 791-805.
-
(2014)
Mol Cell
, vol.53
, pp. 791-805
-
-
Nam, H.J.1
Boo, K.2
Kim, D.3
-
68
-
-
84887021821
-
Pluripotent stem cell protein Sox2 confers sensitivity to LSD1 inhibition in cancer cells
-
Zhang X, Lu F, Wang J, et al. Pluripotent stem cell protein Sox2 confers sensitivity to LSD1 inhibition in cancer cells. Cell Rep 2013; 5: 445-457.
-
(2013)
Cell Rep
, vol.5
, pp. 445-457
-
-
Zhang, X.1
Lu, F.2
Wang, J.3
-
69
-
-
84883154469
-
LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer
-
Ding J, Zhang ZM, Xia Y, et al. LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer. Br J Cancer 2013; 109: 994-1003.
-
(2013)
Br J Cancer
, vol.109
, pp. 994-1003
-
-
Ding, J.1
Zhang, Z.M.2
Xia, Y.3
-
70
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio L, Le HD, Vollmers C, et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011; 333: 1881-1885.
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
DiTacchio, L.1
Le, H.D.2
Vollmers, C.3
-
71
-
-
84861868041
-
H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence
-
Chicas A, Kapoor A, Wang X, et al. H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence. Proc Natl Acad Sci USA 2012; 109: 8971-8976.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 8971-8976
-
-
Chicas, A.1
Kapoor, A.2
Wang, X.3
-
72
-
-
84896727522
-
Circadian behavior is lightreprogrammed by plastic DNA methylation
-
Azzi A, Dallmann R, Casserly A, et al. Circadian behavior is lightreprogrammed by plastic DNA methylation. Nat Neurosci 2014; 17: 377-382.
-
(2014)
Nat Neurosci
, vol.17
, pp. 377-382
-
-
Azzi, A.1
Dallmann, R.2
Casserly, A.3
-
73
-
-
79955925912
-
Perfect timing: Epigenetic regulation of the circadian clock
-
The first demonstration of dynamic light-induced DNA methylation in the SCN. 73
-
The first demonstration of dynamic light-induced DNA methylation in the SCN. 73. Ripperger JA, Merrow M. Perfect timing: Epigenetic regulation of the circadian clock. FEBS Lett 2011; 585: 1406-1411.
-
(2011)
FEBS Lett
, vol.585
, pp. 1406-1411
-
-
Ripperger, J.A.1
Merrow, M.2
-
74
-
-
84907527197
-
Regulated DNA methylation and the circadian clock: Implications in cancer
-
Joska TM, Zaman R, Belden WJ. Regulated DNA methylation and the circadian clock: Implications in cancer. Biology (Basel) 2014; 3: 560-577.
-
(2014)
Biology (Basel
, vol.3
, pp. 560-577
-
-
Joska, T.M.1
Zaman, R.2
Belden, W.J.3
-
76
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
77
-
-
84861701419
-
A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension
-
Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 2012; 38: 726-736.
-
(2012)
Cancer Treat Rev
, vol.38
, pp. 726-736
-
-
Cavuoto, P.1
Fenech, M.F.2
-
78
-
-
84875465199
-
Cancer metabolism: Fatty acid oxidation in the limelight
-
Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer 2013; 13: 227-232.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 227-232
-
-
Carracedo, A.1
Cantley, L.C.2
Pandolfi, P.P.3
-
79
-
-
67649875655
-
Measurement of internal body time by blood metabolomics
-
Minami Y, Kasukawa T, Kakazu Y, et al. Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci USA 2009; 106: 9890-9895.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 9890-9895
-
-
Minami, Y.1
Kasukawa, T.2
Kakazu, Y.3
-
80
-
-
84859459231
-
Coordination of the transcriptome and metabolome by the circadian clock
-
Eckel-Mahan KL, Patel VR, Mohney RP, et al. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 2012; 109: 5541-5546.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
Patel, V.R.2
Mohney, R.P.3
-
82
-
-
84891273703
-
A circadian clock transcription model for the personalization of cancer chronotherapy
-
Li XM, Mohammad-Djafari A, Dumitru M, et al. A circadian clock transcription model for the personalization of cancer chronotherapy. Cancer Res 2013; 73: 7176-7188.
-
(2013)
Cancer Res
, vol.73
, pp. 7176-7188
-
-
Li, X.M.1
Mohammad-Djafari, A.2
Dumitru, M.3
-
83
-
-
84896727511
-
Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer
-
Zeng ZL, Luo HY, Yang J, et al. Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer. Clin Cancer Res 2014; 20: 1042-1052.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 1042-1052
-
-
Zeng, Z.L.1
Luo, H.Y.2
Yang, J.3
-
84
-
-
84892915652
-
Circadian regulation of mTOR by the ubiquitin pathway in renal cell carcinoma
-
Okazaki H, Matsunaga N, Fujioka T, et al. Circadian regulation of mTOR by the ubiquitin pathway in renal cell carcinoma. Cancer Res 2014; 74: 543-551.
-
(2014)
Cancer Res
, vol.74
, pp. 543-551
-
-
Okazaki, H.1
Matsunaga, N.2
Fujioka, T.3
|