-
1
-
-
84892976423
-
Molecular architecture of the mammalian circadian clock
-
Partch, C.L., Green, C.B. &Takahashi, J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90-99 (2014).
-
(2014)
Trends Cell Biol
, vol.24
, pp. 90-99
-
-
Partch, C.L.1
Green, C.B.2
Takahashi, J.S.3
-
2
-
-
77951889295
-
The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
-
Dibner, C., Schibler, U. &Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549 (2010).
-
(2010)
Annu. Rev. Physiol
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
3
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307-320 (2002).
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
4
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch, K.F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83 (2002).
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
-
5
-
-
0037006807
-
Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
-
Duffield, G.E. et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551-557 (2002).
-
(2002)
Curr. Biol
, vol.12
, pp. 551-557
-
-
Duffield, G.E.1
-
6
-
-
33747662966
-
The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids
-
Durgan, D.J. et al. The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J. Biol. Chem. 281, 24254-24269 (2006).
-
(2006)
J. Biol. Chem
, vol.281
, pp. 24254-24269
-
-
Durgan, D.J.1
-
7
-
-
34547939468
-
Intrinsic circadian clock of the mammalian retina: Importance for retinal processing of visual information
-
Storch, K.F. et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130, 730-741 (2007).
-
(2007)
Cell
, vol.130
, pp. 730-741
-
-
Storch, K.F.1
-
8
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia, K.A., Storch, K.F. &Weitz, C.J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105, 15172-15177 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
9
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627-631 (2010).
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
10
-
-
79953323827
-
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
-
Sadacca, L.A., Lamia, K.A., deLemos, A.S., Blum, B. &Weitz, C.J. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54, 120-124 (2011).
-
(2011)
Diabetologia
, vol.54
, pp. 120-124
-
-
Sadacca, L.A.1
Lamia, K.A.2
DeLemos, A.S.3
Blum, B.4
Weitz, C.J.5
-
11
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569 (1998).
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
-
12
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
Brown, S.A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696 (2005).
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.A.1
-
13
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
Padmanabhan, K., Robles, M.S., Westerling, T. &Weitz, C.J. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337, 599-602 (2012).
-
(2012)
Science
, vol.337
, pp. 599-602
-
-
Padmanabhan, K.1
Robles, M.S.2
Westerling, T.3
Weitz, C.J.4
-
14
-
-
84918841904
-
Specificity in circadian clock negative feedback from targeted reconstitution of the NuRD corepressor
-
Kim, J.Y., Kwak, P.B. &Weitz, C.J. Specificity in circadian clock negative feedback from targeted reconstitution of the NuRD corepressor. Mol. Cell 56, 738-748 (2014).
-
(2014)
Mol. Cell
, vol.56
, pp. 738-748
-
-
Kim, J.Y.1
Kwak, P.B.2
Weitz, C.J.3
-
15
-
-
0032214514
-
Mammalian circadian autoregulatory loop: A timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription
-
Sangoram, A.M. et al. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21, 1101-1113 (1998).
-
(1998)
Neuron
, vol.21
, pp. 1101-1113
-
-
Sangoram, A.M.1
-
16
-
-
0033597904
-
MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
-
Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205 (1999).
-
(1999)
Cell
, vol.98
, pp. 193-205
-
-
Kume, K.1
-
17
-
-
0041029974
-
Light-independent role of CRY1 and CRY2 in the mammalian circadian clock
-
Griffin, E.A. Jr., Staknis, D. &Weitz, C.J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768-771 (1999).
-
(1999)
Science
, vol.286
, pp. 768-771
-
-
Griffin Jr, . E.A.1
Staknis, D.2
Weitz, C.J.3
-
18
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and Period gene expression
-
Siepka, S.M. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and Period gene expression. Cell 129, 1011-1023 (2007).
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
-
19
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian Period
-
Godinho, S.I. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian Period. Science 316, 897-900 (2007).
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.I.1
-
20
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900-904 (2007).
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
21
-
-
84885038253
-
A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery
-
Lande-Diner, L., Boyault, C., Kim, J.Y. &Weitz, C.J. A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc. Natl. Acad. Sci. USA 110, 16021-16026 (2013).
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 16021-16026
-
-
Lande-Diner, L.1
Boyault, C.2
Kim, J.Y.3
Weitz, C.J.4
-
22
-
-
33847382431
-
CIPC is a mammalian circadian clock protein without invertebrate homologues
-
Zhao, W.N. et al. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat. Cell Biol. 9, 268-275 (2007).
-
(2007)
Nat. Cell Biol
, vol.9
, pp. 268-275
-
-
Zhao, W.N.1
-
23
-
-
75649127967
-
Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock
-
Robles, M.S., Boyault, C., Knutti, D., Padmanabhan, K. &Weitz, C.J. Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 327, 463-466 (2010).
-
(2010)
Science
, vol.327
, pp. 463-466
-
-
Robles, M.S.1
Boyault, C.2
Knutti, D.3
Padmanabhan, K.4
Weitz, C.J.5
-
24
-
-
84900400446
-
Machine learning helps identify CHRONO as a circadian clock component
-
Anafi, R.C. et al. Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol. 12, e1001840 (2014).
-
(2014)
PLoS Biol
, vol.12
, pp. e1001840
-
-
Anafi, R.C.1
-
25
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt, L.A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62-68 (2012).
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
-
26
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
-
Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123-127 (2012).
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
27
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).
-
(2011)
PLoS Biol
, vol.9
, pp. e1000595
-
-
Rey, G.1
-
28
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354 (2012).
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
29
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong, H.A., Robles, M.S., Knutti, D. &Weitz, C.J. A molecular mechanism for circadian clock negative feedback. Science 332, 1436-1439 (2011).
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
Robles, M.S.2
Knutti, D.3
Weitz, C.J.4
-
30
-
-
84893787747
-
Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
-
Duong, H.A. &Weitz, C.J. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat. Struct. Mol. Biol. 21, 126-132 (2014).
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 126-132
-
-
Duong, H.A.1
Weitz, C.J.2
-
31
-
-
72449210271
-
CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription
-
Hosoda, H. et al. CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol. Brain 2, 34 (2009).
-
(2009)
Mol. Brain
, vol.2
, pp. 34
-
-
Hosoda, H.1
-
32
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada, S. &Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414-1421 (2010).
-
(2010)
Nat. Struct. Mol. Biol
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
33
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333, 1881-1885 (2011).
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
DiTacchio, L.1
-
34
-
-
84872762027
-
A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics
-
Eberl, H.C., Spruijt, C.G., Kelstrup, C.D., Vermeulen, M. &Mann, M. A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol. Cell 49, 368-378 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 368-378
-
-
Eberl, H.C.1
Spruijt, C.G.2
Kelstrup, C.D.3
Vermeulen, M.4
Mann, M.5
-
35
-
-
33750509178
-
CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation
-
Higa, L.A. et al. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat. Cell Biol. 8, 1277-1283 (2006).
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 1277-1283
-
-
Higa, L.A.1
-
36
-
-
33744781568
-
Histone H3 and H4 ubiquitylation by the CUL4-DDB1-ROC1 ubiquitin ligase facilitates cellular response to DNA damage
-
Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB1-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22, 383-394 (2006).
-
(2006)
Mol. Cell
, vol.22
, pp. 383-394
-
-
Wang, H.1
-
37
-
-
80255131255
-
Damage-specific DNA binding protein 1 (DDB1): A protein with a wide range of functions
-
Iovine, B., Iannella, M.L. &Bevilacqua, M.A. Damage-specific DNA binding protein 1 (DDB1): a protein with a wide range of functions. Int. J. Biochem. Cell Biol. 43, 1664-1667 (2011).
-
(2011)
Int. J. Biochem. Cell Biol
, vol.43
, pp. 1664-1667
-
-
Iovine, B.1
Iannella, M.L.2
Bevilacqua, M.A.3
-
38
-
-
84875536458
-
Ramshackle (brwd3) promotes light-induced ubiquitylation of drosophila cryptochrome by ddb1-cul4-roc1 e3 ligase complex
-
Ozturk, N., VanVickle-Chavez, S.J., Akileswaran, L., Van Gelder, R.N. &Sancar, A. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc. Natl. Acad. Sci. USA 110, 4980-4985 (2013).
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 4980-4985
-
-
Ozturk, N.1
VanVickle-Chavez, S.J.2
Akileswaran, L.3
Van Gelder, R.N.4
Sancar, A.5
-
39
-
-
70349184395
-
A genome-wide RNAi screen for modifiers of the circadian clock in human cells
-
Zhang, E.E. et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139, 199-210 (2009).
-
(2009)
Cell
, vol.139
, pp. 199-210
-
-
Zhang, E.E.1
-
40
-
-
84875967429
-
Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions
-
Wallach, T. et al. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions. PLoS Genet. 9, e1003398 (2013).
-
(2013)
PLoS Genet
, vol.9
, pp. e1003398
-
-
Wallach, T.1
-
41
-
-
63049126277
-
A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock
-
Maier, B. et al. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23, 708-718 (2009).
-
(2009)
Genes Dev
, vol.23
, pp. 708-718
-
-
Maier, B.1
-
42
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger, J.A. &Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374 (2006).
-
(2006)
Nat. Genet
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
43
-
-
84861968321
-
RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation
-
Fuchs, G. et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol. Cell 46, 662-673 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 662-673
-
-
Fuchs, G.1
-
44
-
-
84867788817
-
Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer
-
Cao, J. &Yan, Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol. 2, 26 (2012).
-
(2012)
Front. Oncol
, vol.2
, pp. 26
-
-
Cao, J.1
Yan, Q.2
-
45
-
-
84859259227
-
Histone ubiquitylation and chromatin dynamics
-
Wright, D.E., Wang, C.Y. &Kao, C.E. Histone ubiquitylation and chromatin dynamics. Front. Biosci. (Landmark Ed.) 17, 1051-1078 (2012).
-
(2012)
Front. Biosci. (Landmark Ed.)
, vol.17
, pp. 1051-1078
-
-
Wright, D.E.1
Wang, C.Y.2
Kao, C.E.3
-
46
-
-
84904036680
-
Writing and reading H2B monoubiquitylation
-
Fuchs, G. &Oren, M. Writing and reading H2B monoubiquitylation. Biochim. Biophys. Acta 1839, 694-701 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1839
, pp. 694-701
-
-
Fuchs, G.1
Oren, M.2
-
47
-
-
75149113640
-
BRCA1/BARD1 E3 ubiquitin ligase can modify histones H2A and H2B in the nucleosome particle
-
Thakar, A., Parvin, J. &Zlatanova, J. BRCA1/BARD1 E3 ubiquitin ligase can modify histones H2A and H2B in the nucleosome particle. J. Biomol. Struct. Dyn. 27, 399-406 (2010).
-
(2010)
J. Biomol. Struct. Dyn
, vol.27
, pp. 399-406
-
-
Thakar, A.1
Parvin, J.2
Zlatanova, J.3
-
48
-
-
8844232663
-
The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression
-
Minsky, N. &Oren, M. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol. Cell 16, 631-639 (2004).
-
(2004)
Mol. Cell
, vol.16
, pp. 631-639
-
-
Minsky, N.1
Oren, M.2
-
49
-
-
40849106789
-
Histone ubiquitination: Triggering gene activity
-
Weake, V.M. &Workman, J.L. Histone ubiquitination: triggering gene activity. Mol. Cell 29, 653-663 (2008).
-
(2008)
Mol. Cell
, vol.29
, pp. 653-663
-
-
Weake, V.M.1
Workman, J.L.2
-
50
-
-
84881612908
-
Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription
-
Shema-Yaacoby, E. et al. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep. 4, 601-608 (2013).
-
(2013)
Cell Rep
, vol.4
, pp. 601-608
-
-
Shema-Yaacoby, E.1
-
51
-
-
84887899338
-
Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly
-
Han, J. et al. Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 155, 817-829 (2013).
-
(2013)
Cell
, vol.155
, pp. 817-829
-
-
Han, J.1
-
52
-
-
84897075811
-
ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling
-
Seo, K.I. et al. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26, 695-711 (2014).
-
(2014)
Plant Cell
, vol.26
, pp. 695-711
-
-
Seo, K.I.1
-
53
-
-
84864626950
-
Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis
-
Bourbousse, C. et al. Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet. 8, e1002825 (2012).
-
(2012)
PLoS Genet
, vol.8
, pp. e1002825
-
-
Bourbousse, C.1
-
54
-
-
84867625594
-
Volcano plots in analyzing differential expressions with mRNA microarrays
-
Li, W. Volcano plots in analyzing differential expressions with mRNA microarrays. J. Bioinform. Comput. Biol. 10, 1231003 (2012).
-
(2012)
J. Bioinform. Comput. Biol
, vol.10
, pp. 1231003
-
-
Li, W.1
-
55
-
-
78651271733
-
Integrative genomics viewer
-
Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26 (2011).
-
(2011)
Nat. Biotechnol
, vol.29
, pp. 24-26
-
-
Robinson, J.T.1
-
56
-
-
0021100690
-
Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei
-
Dignam, J.D., Lebovitz, R.M. &Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475-1489 (1983).
-
(1983)
Nucleic Acids Res
, vol.11
, pp. 1475-1489
-
-
Dignam, J.D.1
Lebovitz, R.M.2
Roeder, R.G.3
-
58
-
-
77950369832
-
A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth
-
Butter, F., Kappei, D., Buchholz, F., Vermeulen, M. &Mann, M. A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth. EMBO Rep. 11, 305-311 (2010).
-
(2010)
EMBO Rep
, vol.11
, pp. 305-311
-
-
Butter, F.1
Kappei, D.2
Buchholz, F.3
Vermeulen, M.4
Mann, M.5
-
59
-
-
57449099865
-
MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
-
Cox, J. &Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372 (2008).
-
(2008)
Nat. Biotechnol
, vol.26
, pp. 1367-1372
-
-
Cox, J.1
Mann, M.2
-
60
-
-
79953701087
-
Andromeda: A peptide search engine integrated into the MaxQuant environment
-
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794-1805 (2011).
-
(2011)
J. Proteome Res
, vol.10
, pp. 1794-1805
-
-
Cox, J.1
-
61
-
-
62349130698
-
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
-
Langmead, B., Trapnell, C., Pop, M. &Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
-
(2009)
Genome Biol
, vol.10
, pp. R25
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
62
-
-
77951770756
-
BEDtools: A flexible suite of utilities comparingt genomic features
-
Quinlan, A.R. &Hall, I.M. BEDtools: a flexible suite of utilities comparingt genomic features. Bioinformatics 26, 841-842 (2010).
-
(2010)
Bioinformatics
, vol.26
, pp. 841-842
-
-
Quinlan, A.R.1
Hall, I.M.2
-
63
-
-
33646395139
-
Rhythmic post-transcriptional regulation of the circadian clock protein mPER2 in mammalian cells: A real-time analysis
-
Nishii, K. et al. Rhythmic post-transcriptional regulation of the circadian clock protein mPER2 in mammalian cells: a real-time analysis. Neurosci. Lett. 401, 44-48 (2006).
-
(2006)
Neurosci. Lett
, vol.401
, pp. 44-48
-
-
Nishii, K.1
-
64
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee, C. et al. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
|