-
1
-
-
84862675384
-
Central and peripheral circadian clocks in mammals
-
Mohawk, J.A., Green, C.B. & Takahashi, J.S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445-462 (2012).
-
(2012)
Annu. Rev. Neurosci.
, vol.35
, pp. 445-462
-
-
Mohawk, J.A.1
Green, C.B.2
Takahashi, J.S.3
-
2
-
-
52149109334
-
The genetics of mammalian circadian order and disorder: Implications for physiology and disease
-
Takahashi, J.S., Hong, H.K., Ko, C.H. & McDearmon, E.L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775 (2008).
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 764-775
-
-
Takahashi, J.S.1
Hong, H.K.2
Ko, C.H.3
McDearmon, E.L.4
-
3
-
-
77951889295
-
The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
-
Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549 (2010).
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
4
-
-
0141509017
-
Peripheral circadian oscillators in mammals: Time and food
-
Schibler, U., Ripperger, J. & Brown, S.A. Peripheral circadian oscillators in mammals: time and food. J. Biol. Rhythms 18, 250-260 (2003).
-
(2003)
J. Biol. Rhythms
, vol.18
, pp. 250-260
-
-
Schibler, U.1
Ripperger, J.2
Brown, S.A.3
-
5
-
-
0034724728
-
Resetting central and peripheral circadian oscillators in transgenic rats
-
Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682-685 (2000).
-
(2000)
Science
, vol.288
, pp. 682-685
-
-
Yamazaki, S.1
-
6
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937 (1998).
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
Damiola, F.2
Schibler, U.3
-
7
-
-
54449085416
-
Physiological signifcance of a peripheral tissue circadian clock
-
Lamia, K.A., Storch, K.F. & Weitz, C.J. Physiological signifcance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105, 15172-15177 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
8
-
-
33747662966
-
The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids
-
Durgan, D.J. et al. The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J. Biol. Chem. 281, 24254-24269 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 24254-24269
-
-
Durgan, D.J.1
-
9
-
-
84862777353
-
Circadian rhythms govern cardiac repolarization and arrhythmogenesis
-
Jeyaraj, D. et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96-99 (2012).
-
(2012)
Nature
, vol.483
, pp. 96-99
-
-
Jeyaraj, D.1
-
10
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627-631 (2010).
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
11
-
-
79953323827
-
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
-
Sadacca, L.A., Lamia, K.A., deLemos, A.S., Blum, B. & Weitz, C.J. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54, 120-124 (2011).
-
(2011)
Diabetologia
, vol.54
, pp. 120-124
-
-
Sadacca, L.A.1
Lamia, K.A.2
Delemos, A.S.3
Blum, B.4
Weitz, C.J.5
-
12
-
-
0032555144
-
Resonating circadian clocks enhance ftness in cyanobacteria
-
Ouyang, Y., Andersson, C.R., Kondo, T., Golden, S.S. & Johnson, C.H. Resonating circadian clocks enhance ftness in cyanobacteria. Proc. Natl. Acad. Sci. USA 95, 8660-8664 (1998).
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 8660-8664
-
-
Ouyang, Y.1
Andersson, C.R.2
Kondo, T.3
Golden, S.S.4
Johnson, C.H.5
-
13
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
Brown, S.A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696 (2005).
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.A.1
-
14
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
Padmanabhan, K., Robles, M.S., Westerling, T. & Weitz, C.J. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337, 599-602 (2012).
-
(2012)
Science
, vol.337
, pp. 599-602
-
-
Padmanabhan, K.1
Robles, M.S.2
Westerling, T.3
Weitz, C.J.4
-
15
-
-
0033597904
-
MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
-
Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205 (1999).
-
(1999)
Cell
, vol.98
, pp. 193-205
-
-
Kume, K.1
-
16
-
-
0032214514
-
Mammalian circadian autoregulatory loop: A timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription
-
Sangoram, A.M. et al. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21, 1101-1113 (1998).
-
(1998)
Neuron
, vol.21
, pp. 1101-1113
-
-
Sangoram, A.M.1
-
17
-
-
0041029974
-
Light-independent role of CRY1 and CRY2 in the mammalian circadian clock
-
Griffn, E.A. Jr., Staknis, D. & Weitz, C.J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768-771 (1999).
-
(1999)
Science
, vol.286
, pp. 768-771
-
-
Griffn, Jr.E.A.1
Staknis, D.2
Weitz, C.J.3
-
18
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression
-
Siepka, S.M. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011-1023 (2007).
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
-
19
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho, S.I. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897-900 (2007).
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.I.1
-
20
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328 (2008).
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
21
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900-904 (2007).
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
22
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt, L.A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62-68 (2012).
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
-
23
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
-
Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123-127 (2012).
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
24
-
-
79952261359
-
Genome-wide and phase-specifc DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey, G. et al. Genome-wide and phase-specifc DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).
-
(2011)
PLoS Biol.
, vol.9
-
-
Rey, G.1
-
25
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354 (2012).
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
26
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong, H.A., Robles, M.S., Knutti, D. & Weitz, C.J. A molecular mechanism for circadian clock negative feedback. Science 332, 1436-1439 (2011).
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
Robles, M.S.2
Knutti, D.3
Weitz, C.J.4
-
27
-
-
79952534189
-
Regulation of chromatin by histone modifcations
-
Bannister, A.J. & Kouzarides, T. Regulation of chromatin by histone modifcations. Cell Res. 21, 381-395 (2011).
-
(2011)
Cell Res.
, vol.21
, pp. 381-395
-
-
Bannister, A.J.1
Kouzarides, T.2
-
28
-
-
0036211013
-
Histone acetylation: A switch between repressive and permissive chromatin
-
Eberharter, A. & Becker, P.B. Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep. 3, 224-229 (2002).
-
(2002)
EMBO Rep.
, vol.3
, pp. 224-229
-
-
Eberharter, A.1
Becker, P.B.2
-
29
-
-
0035797384
-
Rb targets histone H3 methylation and HP1 to promoters
-
Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561-565 (2001).
-
(2001)
Nature
, vol.412
, pp. 561-565
-
-
Nielsen, S.J.1
-
30
-
-
0034760817
-
Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila
-
Czermin, B. et al. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2, 915-919 (2001).
-
(2001)
EMBO Rep.
, vol.2
, pp. 915-919
-
-
Czermin, B.1
-
31
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger, J.A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374 (2006).
-
(2006)
Nat. Genet.
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
32
-
-
79952704960
-
The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription
-
Kwon, S.H. & Workman, J.L. The changing faces of HP1: from heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 33, 280-289 (2011).
-
(2011)
Bioessays
, vol.33
, pp. 280-289
-
-
Kwon, S.H.1
Workman, J.L.2
-
33
-
-
28844495048
-
Heterochromatin protein 1: A pervasive controlling infuence
-
Hiragami, K. & Festenstein, R. Heterochromatin protein 1: a pervasive controlling infuence. Cell. Mol. Life Sci. 62, 2711-2726 (2005).
-
(2005)
Cell. Mol. Life Sci.
, vol.62
, pp. 2711-2726
-
-
Hiragami, K.1
Festenstein, R.2
-
34
-
-
79955460159
-
H3K9 methyltransferase G9a and the related molecule GLP
-
Shinkai, Y. & Tachibana, M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25, 781-788 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 781-788
-
-
Shinkai, Y.1
Tachibana, M.2
-
35
-
-
75649127967
-
Identifcation of RACK1 and protein kinase Cα as integral components of the mammalian circadian clock
-
Robles, M.S., Boyault, C., Knutti, D., Padmanabhan, K. & Weitz, C.J. Identifcation of RACK1 and protein kinase Cα as integral components of the mammalian circadian clock. Science 327, 463-466 (2010).
-
(2010)
Science
, vol.327
, pp. 463-466
-
-
Robles, M.S.1
Boyault, C.2
Knutti, D.3
Padmanabhan, K.4
Weitz, C.J.5
-
36
-
-
33847382431
-
CIPC is a mammalian circadian clock protein without invertebrate homologues
-
Zhao, W.N. et al. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat. Cell Biol. 9, 268-275 (2007).
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 268-275
-
-
Zhao, W.N.1
-
37
-
-
9144268924
-
Partitioning and plasticity of repressive histone methylation states in mammalian chromatin
-
Peters, A.H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577-1589 (2003).
-
(2003)
Mol. Cell
, vol.12
, pp. 1577-1589
-
-
Peters, A.H.1
-
38
-
-
0034632829
-
Regulation of chromatin structure by site-specifc histone H3 methyltransferases
-
Rea, S. et al. Regulation of chromatin structure by site-specifc histone H3 methyltransferases. Nature 406, 593-599 (2000).
-
(2000)
Nature
, vol.406
, pp. 593-599
-
-
Rea, S.1
-
39
-
-
0037079677
-
Functional and physical interaction between the histone methyl transferase Suv39h1 and histone deacetylases
-
Vaute, O., Nicolas, E., Vandel, L. & Trouche, D. Functional and physical interaction between the histone methyl transferase Suv39h1 and histone deacetylases. Nucleic Acids Res. 30, 475-481 (2002).
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 475-481
-
-
Vaute, O.1
Nicolas, E.2
Vandel, L.3
Trouche, D.4
-
40
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray, J.P., Lee, C., Wade, P.A. & Reppert, S.M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177-182 (2003).
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
41
-
-
47049101810
-
Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifcations
-
Taylor, P. & Hardin, P.E. Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifcations. Mol. Cell. Biol. 28, 4642-4652 (2008).
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4642-4652
-
-
Taylor, P.1
Hardin, P.E.2
-
42
-
-
33847021355
-
Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH
-
Belden, W.J., Loros, J.J. & Dunlap, J.C. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. Cell 25, 587-600 (2007).
-
(2007)
Mol. Cell
, vol.25
, pp. 587-600
-
-
Belden, W.J.1
Loros, J.J.2
Dunlap, J.C.3
-
43
-
-
79951899282
-
HP1c casts light on dark matter
-
Kwon, S.H. & Workman, J.L. HP1c casts light on dark matter. Cell Cycle 10, 625-630 (2011).
-
(2011)
Cell Cycle
, vol.10
, pp. 625-630
-
-
Kwon, S.H.1
Workman, J.L.2
-
44
-
-
79952364016
-
Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons
-
Saint-André, V., Batsche, E., Rachez, C. & Muchardt, C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 18, 337-344 (2011).
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 337-344
-
-
Saint-André, V.1
Batsche, E.2
Rachez, C.3
Muchardt, C.4
-
45
-
-
23044431656
-
Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin
-
Vakoc, C.R., Mandat, S.A., Olenchock, B.A. & Blobel, G.A. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381-391 (2005).
-
(2005)
Mol. Cell
, vol.19
, pp. 381-391
-
-
Vakoc, C.R.1
Mandat, S.A.2
Olenchock, B.A.3
Blobel, G.A.4
-
46
-
-
33846506800
-
Suv39h1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency
-
du Chéné, I. et al. Suv39h1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J. 26, 424-435 (2007).
-
(2007)
EMBO J.
, vol.26
, pp. 424-435
-
-
Du Chéné, I.1
-
47
-
-
84871209312
-
Suppression and recovery of BRCA1-mediated transcription by HP1γ via modulation of promoter occupancy
-
Choi, J.D., Park, M.A. & Lee, J.S. Suppression and recovery of BRCA1-mediated transcription by HP1γ via modulation of promoter occupancy. Nucleic Acids Res. 40, 11321-11338 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 11321-11338
-
-
Choi, J.D.1
Park, M.A.2
Lee, J.S.3
-
48
-
-
34547939468
-
Intrinsic circadian clock of the mammalian retina: Importance for retinal processing of visual information
-
Storch, K.F. et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130, 730-741 (2007).
-
(2007)
Cell
, vol.130
, pp. 730-741
-
-
Storch, K.F.1
-
49
-
-
84860378380
-
Leucine-rich repeat and WD repeat-containing protein 1 is recruited to pericentric heterochromatin by trimethylated lysine 9 of histone H3 and maintains heterochromatin silencing
-
Chan, K.M. & Zhang, Z. Leucine-rich repeat and WD repeat-containing protein 1 is recruited to pericentric heterochromatin by trimethylated lysine 9 of histone H3 and maintains heterochromatin silencing. J. Biol. Chem. 287, 15024-15033 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 15024-15033
-
-
Chan, K.M.1
Zhang, Z.2
-
50
-
-
42449091476
-
Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28
-
Wolf, D. et al. Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28. J. Virol. 82, 4675-4679 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 4675-4679
-
-
Wolf, D.1
-
51
-
-
37849011300
-
Expression levels of estrogen receptor β are modulated by components of the molecular clock
-
Cai, W. et al. Expression levels of estrogen receptor β are modulated by components of the molecular clock. Mol. Cell. Biol. 28, 784-793 (2008).
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 784-793
-
-
Cai, W.1
-
52
-
-
33646395139
-
Rhythmic post-transcriptional regulation of the circadian clock protein mPER2 in mammalian cells: A real-time analysis
-
Nishii, K. et al. Rhythmic post-transcriptional regulation of the circadian clock protein mPER2 in mammalian cells: a real-time analysis. Neurosci. Lett. 401, 44-48 (2006).
-
(2006)
Neurosci. Lett.
, vol.401
, pp. 44-48
-
-
Nishii, K.1
-
53
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee, C. et al. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
|