메뉴 건너뛰기




Volumn 22, Issue 4, 2015, Pages 312-318

NAD+-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1

Author keywords

[No Author keywords available]

Indexed keywords

HISTONE H3; HISTONE H3K4; HISTONE METHYLTRANSFERASE MIXED LINEAGE LEUKEMIA 1 PROTEIN; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; PROTEIN; SIRTUIN 1; UNCLASSIFIED DRUG; CHROMATIN; HISTONE; MIXED LINEAGE LEUKEMIA PROTEIN; SIRT1 PROTEIN, MOUSE;

EID: 84926378764     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2990     Document Type: Article
Times cited : (92)

References (56)
  • 1
    • 84864309100 scopus 로고    scopus 로고
    • Clocks, metabolism, and the epigenome
    • Feng, D. & Lazar, M.A. Clocks, metabolism, and the epigenome. Mol. Cell 47, 158-167 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 158-167
    • Feng, D.1    Lazar, M.A.2
  • 2
    • 84930629281 scopus 로고    scopus 로고
    • Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription
    • 5 November
    • Aguilar-Arnal, L. & Sassone-Corsi, P. Chromatin landscape and circadian dynamics: spatial and temporal organization of clock transcription. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.1411264111 (5 November 2014).
    • (2014) Proc. Natl. Acad. Sci. USA
    • Aguilar-Arnal, L.1    Sassone-Corsi, P.2
  • 3
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354 (2012).
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1
  • 4
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger, J.A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374 (2006).
    • (2006) Nat. Genet. , vol.38 , pp. 369-374
    • Ripperger, J.A.1    Schibler, U.2
  • 5
    • 78649886477 scopus 로고    scopus 로고
    • The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
    • Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414-1421 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1414-1421
    • Katada, S.1    Sassone-Corsi, P.2
  • 6
    • 84886812954 scopus 로고    scopus 로고
    • The nexus of chromatin regulation and intermediary metabolism
    • Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489-498 (2013).
    • (2013) Nature , vol.502 , pp. 489-498
    • Gut, P.1    Verdin, E.2
  • 7
    • 84907441244 scopus 로고    scopus 로고
    • Sirtuins and the circadian clock: Bridging chromatin and metabolism
    • Masri, S. & Sassone-Corsi, P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal. 7, re6 (2014).
    • (2014) Sci. Signal. , vol.7 , pp. re6
    • Masri, S.1    Sassone-Corsi, P.2
  • 8
    • 84856090681 scopus 로고    scopus 로고
    • Connecting threads: Epigenetics and metabolism
    • Katada, S., Imhof, A. & Sassone-Corsi, P. Connecting threads: epigenetics and metabolism. Cell 148, 24-28 (2012).
    • (2012) Cell , vol.148 , pp. 24-28
    • Katada, S.1    Imhof, A.2    Sassone-Corsi, P.3
  • 9
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu, C. & Thompson, C.B. Metabolic regulation of epigenetics. Cell Metab. 16, 9-17 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 10
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 12
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey, K.M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651-654 (2009).
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1
  • 13
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328 (2008).
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 14
    • 84879391795 scopus 로고    scopus 로고
    • SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
    • Chang, H.C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448-1460 (2013).
    • (2013) Cell , vol.153 , pp. 1448-1460
    • Chang, H.C.1    Guarente, L.2
  • 15
    • 84905389924 scopus 로고    scopus 로고
    • Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
    • Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659-672 (2014).
    • (2014) Cell , vol.158 , pp. 659-672
    • Masri, S.1
  • 16
    • 84874484700 scopus 로고    scopus 로고
    • Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
    • Bellet, M.M. et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc. Natl. Acad. Sci. USA 110, 3333-3338 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 3333-3338
    • Bellet, M.M.1
  • 17
    • 84893442805 scopus 로고    scopus 로고
    • Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
    • Gomes, A.P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638 (2013).
    • (2013) Cell , vol.155 , pp. 1624-1638
    • Gomes, A.P.1
  • 18
    • 84904751060 scopus 로고    scopus 로고
    • NAD+ and sirtuins in aging and disease
    • Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464-471 (2014).
    • (2014) Trends Cell Biol. , vol.24 , pp. 464-471
    • Imai, S.1    Guarente, L.2
  • 19
    • 84880517634 scopus 로고    scopus 로고
    • The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
    • Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441 (2013).
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1
  • 20
    • 34249299791 scopus 로고    scopus 로고
    • The complex language of chromatin regulation during transcription
    • Berger, S.L. The complex language of chromatin regulation during transcription. Nature 447, 407-412 (2007).
    • (2007) Nature , vol.447 , pp. 407-412
    • Berger, S.L.1
  • 21
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • Cheng, H.L. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 100, 10794-10799 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 10794-10799
    • Cheng, H.L.1
  • 22
    • 18744373853 scopus 로고    scopus 로고
    • MLL targets SET domain methyltransferase activity to Hox gene promoters
    • Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107-1117 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1107-1117
    • Milne, T.A.1
  • 23
    • 0028869112 scopus 로고
    • Altered Hox expression and segmental identity in Mll-mutant mice
    • Yu, B.D., Hess, J.L., Horning, S.E., Brown, G.A. & Korsmeyer, S.J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505-508 (1995).
    • (1995) Nature , vol.378 , pp. 505-508
    • Yu, B.D.1    Hess, J.L.2    Horning, S.E.3    Brown, G.A.4    Korsmeyer, S.J.5
  • 24
    • 71949107301 scopus 로고    scopus 로고
    • Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II
    • Wang, P. et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29, 6074-6085 (2009).
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 6074-6085
    • Wang, P.1
  • 25
    • 0035966317 scopus 로고    scopus 로고
    • Posttranslational mechanisms regulate the mammalian circadian clock
    • Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S. & Reppert, S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).
    • (2001) Cell , vol.107 , pp. 855-867
    • Lee, C.1    Etchegaray, J.P.2    Cagampang, F.R.3    Loudon, A.S.4    Reppert, S.M.5
  • 26
    • 64049083872 scopus 로고    scopus 로고
    • CK2α phosphorylates BMAL1 to regulate the mammalian clock
    • Tamaru, T. et al. CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nat. Struct. Mol. Biol. 16, 446-448 (2009).
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 446-448
    • Tamaru, T.1
  • 27
    • 77953913196 scopus 로고    scopus 로고
    • Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis
    • Milne, T.A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853-863 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 853-863
    • Milne, T.A.1
  • 28
    • 0038492426 scopus 로고    scopus 로고
    • MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein
    • Xia, Z.B., Anderson, M., Diaz, M.O. & Zeleznik-Le, N.J. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc. Natl. Acad. Sci. USA 100, 8342-8347 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 8342-8347
    • Xia, Z.B.1    Anderson, M.2    Diaz, M.O.3    Zeleznik-Le, N.J.4
  • 29
    • 0035102477 scopus 로고    scopus 로고
    • MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein
    • Ernst, P., Wang, J., Huang, M., Goodman, R.H. & Korsmeyer, S.J. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol. Cell. Biol. 21, 2249-2258 (2001).
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 2249-2258
    • Ernst, P.1    Wang, J.2    Huang, M.3    Goodman, R.H.4    Korsmeyer, S.J.5
  • 30
    • 0037044756 scopus 로고    scopus 로고
    • Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP): The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain
    • Goto, N.K., Zor, T., Martinez-Yamout, M., Dyson, H.J. & Wright, P.E. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP): the mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J. Biol. Chem. 277, 43168-43174 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 43168-43174
    • Goto, N.K.1    Zor, T.2    Martinez-Yamout, M.3    Dyson, H.J.4    Wright, P.E.5
  • 31
    • 20444397430 scopus 로고    scopus 로고
    • Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
    • Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873-885 (2005).
    • (2005) Cell , vol.121 , pp. 873-885
    • Dou, Y.1
  • 32
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • Liszt, G., Ford, E., Kurtev, M. & Guarente, L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313-21320 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 33
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 34
    • 34247271282 scopus 로고    scopus 로고
    • SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
    • Scher, M.B., Vaquero, A. & Reinberg, D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21, 920-928 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 920-928
    • Scher, M.B.1    Vaquero, A.2    Reinberg, D.3
  • 35
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 (2009).
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1
  • 36
    • 15444377466 scopus 로고    scopus 로고
    • SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
    • Bouras, T. et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 280, 10264-10276 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 10264-10276
    • Bouras, T.1
  • 37
    • 84864020743 scopus 로고    scopus 로고
    • SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60
    • Peng, L. et al. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol. Cell. Biol. 32, 2823-2836 (2012).
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2823-2836
    • Peng, L.1
  • 38
    • 36248954501 scopus 로고    scopus 로고
    • SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation
    • Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440-444 (2007).
    • (2007) Nature , vol.450 , pp. 440-444
    • Vaquero, A.1
  • 39
    • 84885433507 scopus 로고    scopus 로고
    • Cycles in spatial and temporal chromosomal organization driven by the circadian clock
    • Aguilar-Arnal, L. et al. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat. Struct. Mol. Biol. 20, 1206-1213 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1206-1213
    • Aguilar-Arnal, L.1
  • 40
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006).
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 41
    • 84891677378 scopus 로고    scopus 로고
    • CLOCK:BMAL1 is a pioneer-like transcription factor
    • Menet, J.S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8-13 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 8-13
    • Menet, J.S.1    Pescatore, S.2    Rosbash, M.3
  • 42
    • 84874763341 scopus 로고    scopus 로고
    • H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation
    • Lauberth, S.M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021-1036 (2013).
    • (2013) Cell , vol.152 , pp. 1021-1036
    • Lauberth, S.M.1
  • 43
    • 33846019277 scopus 로고    scopus 로고
    • Methylation of lysine 4 on histone H3: Intricacy of writing and reading a single epigenetic mark
    • Ruthenburg, A.J., Allis, C.D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15-30 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 15-30
    • Ruthenburg, A.J.1    Allis, C.D.2    Wysocka, J.3
  • 44
    • 84905392053 scopus 로고    scopus 로고
    • H3K4me3 breadth is linked to cell identity and transcriptional consistency
    • Benayoun, B.A. et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673-688 (2014).
    • (2014) Cell , vol.158 , pp. 673-688
    • Benayoun, B.A.1
  • 45
    • 33745532801 scopus 로고    scopus 로고
    • Increased cell-to-cell variation in gene expression in ageing mouse heart
    • Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011-1014 (2006).
    • (2006) Nature , vol.441 , pp. 1011-1014
    • Bahar, R.1
  • 46
    • 0036851242 scopus 로고    scopus 로고
    • Genome dynamics in aging mice
    • Dollé, M.E. & Vijg, J. Genome dynamics in aging mice. Genome Res. 12, 1732-1738 (2002).
    • (2002) Genome Res. , vol.12 , pp. 1732-1738
    • Dollé, M.E.1    Vijg, J.2
  • 47
    • 56749156405 scopus 로고    scopus 로고
    • SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging
    • Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907-918 (2008).
    • (2008) Cell , vol.135 , pp. 907-918
    • Oberdoerffer, P.1
  • 48
    • 84866455679 scopus 로고    scopus 로고
    • Deviation of innate circadian period from 24 h reduces longevity in mice
    • Libert, S., Bonkowski, M.S., Pointer, K., Pletcher, S.D. & Guarente, L. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 11, 794-800 (2012).
    • (2012) Aging Cell , vol.11 , pp. 794-800
    • Libert, S.1    Bonkowski, M.S.2    Pointer, K.3    Pletcher, S.D.4    Guarente, L.5
  • 49
    • 77952552718 scopus 로고    scopus 로고
    • Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain
    • Wyse, C.A. & Coogan, A.N. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 1337, 21-31 (2010).
    • (2010) Brain Res. , vol.1337 , pp. 21-31
    • Wyse, C.A.1    Coogan, A.N.2
  • 50
  • 52
    • 0029665857 scopus 로고    scopus 로고
    • A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A
    • Yang, X.J., Ogryzko, V.V., Nishikawa, J., Howard, B.H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319-324 (1996).
    • (1996) Nature , vol.382 , pp. 319-324
    • Yang, X.J.1    Ogryzko, V.V.2    Nishikawa, J.3    Howard, B.H.4    Nakatani, Y.5
  • 53
    • 84856198547 scopus 로고    scopus 로고
    • Regulation of an RNA granule during spermatogenesis: Acetylation of MVH in the chromatoid body of germ cells
    • Nagamori, I., Cruickshank, V.A. & Sassone-Corsi, P. Regulation of an RNA granule during spermatogenesis: acetylation of MVH in the chromatoid body of germ cells. J. Cell Sci. 124, 4346-4355 (2011).
    • (2011) J. Cell Sci. , vol.124 , pp. 4346-4355
    • Nagamori, I.1    Cruickshank, V.A.2    Sassone-Corsi, P.3
  • 54
    • 0034730493 scopus 로고    scopus 로고
    • Resetting of circadian time in peripheral tissues by glucocorticoid signaling
    • Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344-2347 (2000).
    • (2000) Science , vol.289 , pp. 2344-2347
    • Balsalobre, A.1
  • 55
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetylation of BMAL1 controls circadian function
    • Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090 (2007).
    • (2007) Nature , vol.450 , pp. 1086-1090
    • Hirayama, J.1
  • 56
    • 44949139930 scopus 로고    scopus 로고
    • In vitro histone methyltransferase assay
    • pdb prot
    • Fingerman, I.M., Du, H.N. & Briggs, S.D. In vitro histone methyltransferase assay. CSH Protoc. 2008, pdb prot4939 (2008).
    • (2008) CSH Protoc. , vol.2008 , pp. 4939
    • Fingerman, I.M.1    Du, H.N.2    Briggs, S.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.