-
1
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng, D. & Lazar, M.A. Clocks, metabolism, and the epigenome. Mol. Cell 47, 158-167 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
2
-
-
84930629281
-
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription
-
5 November
-
Aguilar-Arnal, L. & Sassone-Corsi, P. Chromatin landscape and circadian dynamics: spatial and temporal organization of clock transcription. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.1411264111 (5 November 2014).
-
(2014)
Proc. Natl. Acad. Sci. USA
-
-
Aguilar-Arnal, L.1
Sassone-Corsi, P.2
-
3
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354 (2012).
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
4
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger, J.A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374 (2006).
-
(2006)
Nat. Genet.
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
5
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414-1421 (2010).
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
6
-
-
84886812954
-
The nexus of chromatin regulation and intermediary metabolism
-
Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489-498 (2013).
-
(2013)
Nature
, vol.502
, pp. 489-498
-
-
Gut, P.1
Verdin, E.2
-
7
-
-
84907441244
-
Sirtuins and the circadian clock: Bridging chromatin and metabolism
-
Masri, S. & Sassone-Corsi, P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal. 7, re6 (2014).
-
(2014)
Sci. Signal.
, vol.7
, pp. re6
-
-
Masri, S.1
Sassone-Corsi, P.2
-
8
-
-
84856090681
-
Connecting threads: Epigenetics and metabolism
-
Katada, S., Imhof, A. & Sassone-Corsi, P. Connecting threads: epigenetics and metabolism. Cell 148, 24-28 (2012).
-
(2012)
Cell
, vol.148
, pp. 24-28
-
-
Katada, S.1
Imhof, A.2
Sassone-Corsi, P.3
-
9
-
-
84863534997
-
Metabolic regulation of epigenetics
-
Lu, C. & Thompson, C.B. Metabolic regulation of epigenetics. Cell Metab. 16, 9-17 (2012).
-
(2012)
Cell Metab.
, vol.16
, pp. 9-17
-
-
Lu, C.1
Thompson, C.B.2
-
10
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
11
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654-657 (2009).
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
12
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey, K.M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651-654 (2009).
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
13
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328 (2008).
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
14
-
-
84879391795
-
SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
-
Chang, H.C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448-1460 (2013).
-
(2013)
Cell
, vol.153
, pp. 1448-1460
-
-
Chang, H.C.1
Guarente, L.2
-
15
-
-
84905389924
-
Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
-
Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659-672 (2014).
-
(2014)
Cell
, vol.158
, pp. 659-672
-
-
Masri, S.1
-
16
-
-
84874484700
-
Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
-
Bellet, M.M. et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc. Natl. Acad. Sci. USA 110, 3333-3338 (2013).
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 3333-3338
-
-
Bellet, M.M.1
-
17
-
-
84893442805
-
Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
-
Gomes, A.P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638 (2013).
-
(2013)
Cell
, vol.155
, pp. 1624-1638
-
-
Gomes, A.P.1
-
18
-
-
84904751060
-
NAD+ and sirtuins in aging and disease
-
Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464-471 (2014).
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 464-471
-
-
Imai, S.1
Guarente, L.2
-
19
-
-
84880517634
-
The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
-
Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441 (2013).
-
(2013)
Cell
, vol.154
, pp. 430-441
-
-
Mouchiroud, L.1
-
20
-
-
34249299791
-
The complex language of chromatin regulation during transcription
-
Berger, S.L. The complex language of chromatin regulation during transcription. Nature 447, 407-412 (2007).
-
(2007)
Nature
, vol.447
, pp. 407-412
-
-
Berger, S.L.1
-
21
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng, H.L. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 100, 10794-10799 (2003).
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
-
22
-
-
18744373853
-
MLL targets SET domain methyltransferase activity to Hox gene promoters
-
Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107-1117 (2002).
-
(2002)
Mol. Cell
, vol.10
, pp. 1107-1117
-
-
Milne, T.A.1
-
23
-
-
0028869112
-
Altered Hox expression and segmental identity in Mll-mutant mice
-
Yu, B.D., Hess, J.L., Horning, S.E., Brown, G.A. & Korsmeyer, S.J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505-508 (1995).
-
(1995)
Nature
, vol.378
, pp. 505-508
-
-
Yu, B.D.1
Hess, J.L.2
Horning, S.E.3
Brown, G.A.4
Korsmeyer, S.J.5
-
24
-
-
71949107301
-
Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II
-
Wang, P. et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29, 6074-6085 (2009).
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 6074-6085
-
-
Wang, P.1
-
25
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S. & Reppert, S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
-
26
-
-
64049083872
-
CK2α phosphorylates BMAL1 to regulate the mammalian clock
-
Tamaru, T. et al. CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nat. Struct. Mol. Biol. 16, 446-448 (2009).
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 446-448
-
-
Tamaru, T.1
-
27
-
-
77953913196
-
Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis
-
Milne, T.A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853-863 (2010).
-
(2010)
Mol. Cell
, vol.38
, pp. 853-863
-
-
Milne, T.A.1
-
28
-
-
0038492426
-
MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein
-
Xia, Z.B., Anderson, M., Diaz, M.O. & Zeleznik-Le, N.J. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc. Natl. Acad. Sci. USA 100, 8342-8347 (2003).
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 8342-8347
-
-
Xia, Z.B.1
Anderson, M.2
Diaz, M.O.3
Zeleznik-Le, N.J.4
-
29
-
-
0035102477
-
MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein
-
Ernst, P., Wang, J., Huang, M., Goodman, R.H. & Korsmeyer, S.J. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol. Cell. Biol. 21, 2249-2258 (2001).
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 2249-2258
-
-
Ernst, P.1
Wang, J.2
Huang, M.3
Goodman, R.H.4
Korsmeyer, S.J.5
-
30
-
-
0037044756
-
Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP): The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain
-
Goto, N.K., Zor, T., Martinez-Yamout, M., Dyson, H.J. & Wright, P.E. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP): the mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J. Biol. Chem. 277, 43168-43174 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 43168-43174
-
-
Goto, N.K.1
Zor, T.2
Martinez-Yamout, M.3
Dyson, H.J.4
Wright, P.E.5
-
31
-
-
20444397430
-
Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
-
Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873-885 (2005).
-
(2005)
Cell
, vol.121
, pp. 873-885
-
-
Dou, Y.1
-
32
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
-
Liszt, G., Ford, E., Kurtev, M. & Guarente, L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313-21320 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
33
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4623-4635
-
-
Michishita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
34
-
-
34247271282
-
SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
-
Scher, M.B., Vaquero, A. & Reinberg, D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21, 920-928 (2007).
-
(2007)
Genes Dev.
, vol.21
, pp. 920-928
-
-
Scher, M.B.1
Vaquero, A.2
Reinberg, D.3
-
35
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 (2009).
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
-
36
-
-
15444377466
-
SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
-
Bouras, T. et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 280, 10264-10276 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10264-10276
-
-
Bouras, T.1
-
37
-
-
84864020743
-
SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60
-
Peng, L. et al. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol. Cell. Biol. 32, 2823-2836 (2012).
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 2823-2836
-
-
Peng, L.1
-
38
-
-
36248954501
-
SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation
-
Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440-444 (2007).
-
(2007)
Nature
, vol.450
, pp. 440-444
-
-
Vaquero, A.1
-
39
-
-
84885433507
-
Cycles in spatial and temporal chromosomal organization driven by the circadian clock
-
Aguilar-Arnal, L. et al. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat. Struct. Mol. Biol. 20, 1206-1213 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1206-1213
-
-
Aguilar-Arnal, L.1
-
40
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006).
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
41
-
-
84891677378
-
CLOCK:BMAL1 is a pioneer-like transcription factor
-
Menet, J.S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8-13 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 8-13
-
-
Menet, J.S.1
Pescatore, S.2
Rosbash, M.3
-
42
-
-
84874763341
-
H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation
-
Lauberth, S.M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021-1036 (2013).
-
(2013)
Cell
, vol.152
, pp. 1021-1036
-
-
Lauberth, S.M.1
-
43
-
-
33846019277
-
Methylation of lysine 4 on histone H3: Intricacy of writing and reading a single epigenetic mark
-
Ruthenburg, A.J., Allis, C.D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15-30 (2007).
-
(2007)
Mol. Cell
, vol.25
, pp. 15-30
-
-
Ruthenburg, A.J.1
Allis, C.D.2
Wysocka, J.3
-
44
-
-
84905392053
-
H3K4me3 breadth is linked to cell identity and transcriptional consistency
-
Benayoun, B.A. et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673-688 (2014).
-
(2014)
Cell
, vol.158
, pp. 673-688
-
-
Benayoun, B.A.1
-
45
-
-
33745532801
-
Increased cell-to-cell variation in gene expression in ageing mouse heart
-
Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011-1014 (2006).
-
(2006)
Nature
, vol.441
, pp. 1011-1014
-
-
Bahar, R.1
-
46
-
-
0036851242
-
Genome dynamics in aging mice
-
Dollé, M.E. & Vijg, J. Genome dynamics in aging mice. Genome Res. 12, 1732-1738 (2002).
-
(2002)
Genome Res.
, vol.12
, pp. 1732-1738
-
-
Dollé, M.E.1
Vijg, J.2
-
47
-
-
56749156405
-
SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging
-
Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907-918 (2008).
-
(2008)
Cell
, vol.135
, pp. 907-918
-
-
Oberdoerffer, P.1
-
48
-
-
84866455679
-
Deviation of innate circadian period from 24 h reduces longevity in mice
-
Libert, S., Bonkowski, M.S., Pointer, K., Pletcher, S.D. & Guarente, L. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 11, 794-800 (2012).
-
(2012)
Aging Cell
, vol.11
, pp. 794-800
-
-
Libert, S.1
Bonkowski, M.S.2
Pointer, K.3
Pletcher, S.D.4
Guarente, L.5
-
49
-
-
77952552718
-
Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain
-
Wyse, C.A. & Coogan, A.N. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 1337, 21-31 (2010).
-
(2010)
Brain Res.
, vol.1337
, pp. 21-31
-
-
Wyse, C.A.1
Coogan, A.N.2
-
52
-
-
0029665857
-
A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A
-
Yang, X.J., Ogryzko, V.V., Nishikawa, J., Howard, B.H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319-324 (1996).
-
(1996)
Nature
, vol.382
, pp. 319-324
-
-
Yang, X.J.1
Ogryzko, V.V.2
Nishikawa, J.3
Howard, B.H.4
Nakatani, Y.5
-
53
-
-
84856198547
-
Regulation of an RNA granule during spermatogenesis: Acetylation of MVH in the chromatoid body of germ cells
-
Nagamori, I., Cruickshank, V.A. & Sassone-Corsi, P. Regulation of an RNA granule during spermatogenesis: acetylation of MVH in the chromatoid body of germ cells. J. Cell Sci. 124, 4346-4355 (2011).
-
(2011)
J. Cell Sci.
, vol.124
, pp. 4346-4355
-
-
Nagamori, I.1
Cruickshank, V.A.2
Sassone-Corsi, P.3
-
54
-
-
0034730493
-
Resetting of circadian time in peripheral tissues by glucocorticoid signaling
-
Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344-2347 (2000).
-
(2000)
Science
, vol.289
, pp. 2344-2347
-
-
Balsalobre, A.1
-
55
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090 (2007).
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
-
56
-
-
44949139930
-
In vitro histone methyltransferase assay
-
pdb prot
-
Fingerman, I.M., Du, H.N. & Briggs, S.D. In vitro histone methyltransferase assay. CSH Protoc. 2008, pdb prot4939 (2008).
-
(2008)
CSH Protoc.
, vol.2008
, pp. 4939
-
-
Fingerman, I.M.1
Du, H.N.2
Briggs, S.D.3
|