메뉴 건너뛰기




Volumn 83, Issue , 2014, Pages 165-189

Metabolic and nontranscriptional circadian clocks: Eukaryotes

Author keywords

oscillator; oxidation reduction; peroxiredoxin; posttranscriptional; posttranslational; redox

Indexed keywords

PEROXIREDOXIN;

EID: 84902161090     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060713-035623     Document Type: Review
Times cited : (90)

References (186)
  • 2
    • 0001407680 scopus 로고
    • Circadian rhythms in man
    • Aschoff J. 1965. Circadian rhythms in man. Science 148:1427-32
    • (1965) Science , vol.148 , pp. 1427-1432
    • Aschoff, J.1
  • 3
    • 33845611615 scopus 로고    scopus 로고
    • Interplay of circadian clocks and metabolic rhythms
    • Wijnen H, Young MW. 2006. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40:409-48
    • (2006) Annu. Rev. Genet , vol.40 , pp. 409-448
    • Wijnen, H.1    Young, M.W.2
  • 4
    • 77951889295 scopus 로고    scopus 로고
    • The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
    • Dibner C, Schibler U, Albrecht U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72:517-49
    • (2010) Annu. Rev. Physiol , vol.72 , pp. 517-549
    • Dibner, C.1    Schibler, U.2    Albrecht, U.3
  • 5
    • 79955840690 scopus 로고    scopus 로고
    • The cyanobacterial circadian system: From biophysics to bioevolution
    • Johnson CH, Stewart PL, Egli M. 2011. The cyanobacterial circadian system: from biophysics to bioevolution. Annu. Rev. Biophys. 40:143-67
    • (2011) Annu. Rev. Biophys , vol.40 , pp. 143-167
    • Johnson, C.H.1    Stewart, P.L.2    Egli, M.3
  • 7
    • 4344699146 scopus 로고    scopus 로고
    • The adaptive value of circadian clocks: An experimental assessment in cyanobacteria
    • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. 2004. The adaptive value of circadian clocks: An experimental assessment in cyanobacteria. Curr. Biol. 14:1481-86
    • (2004) Curr. Biol , vol.14 , pp. 1481-1486
    • Woelfle, M.A.1    Ouyang, Y.2    Phanvijhitsiri, K.3    Johnson, C.H.4
  • 8
    • 22744451756 scopus 로고    scopus 로고
    • Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
    • Dodd AN, SalathiaN, Hall A, Kevei E, TóthR, et al. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630-33
    • (2005) Science , vol.309 , pp. 630-633
    • Dodd, A.N.1    Salathia, N.2    Hall, A.3    Kevei, E.4    Tóth, R.5
  • 9
    • 72549118386 scopus 로고    scopus 로고
    • Healthy clocks, healthy body, healthy mind
    • Reddy AB, ONeill JS. 2010. Healthy clocks, healthy body, healthy mind. Trends Cell Biol. 20:36-44
    • (2010) Trends Cell Biol , vol.20 , pp. 36-44
    • Reddy, A.B.1    Oneill, J.S.2
  • 10
    • 0042490526 scopus 로고    scopus 로고
    • A clockwork web: Circadian timing in brain and periphery, in health and disease
    • Hastings MH, Reddy AB, Maywood ES. 2003. A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4:649-61
    • (2003) Nat. Rev. Neurosci , vol.4 , pp. 649-661
    • Hastings, M.H.1    Reddy, A.B.2    Maywood, E.S.3
  • 11
    • 0037006795 scopus 로고    scopus 로고
    • Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
    • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12:540-50
    • (2002) Curr. Biol , vol.12 , pp. 540-550
    • Akhtar, R.A.1    Reddy, A.B.2    Maywood, E.S.3    Clayton, J.D.4    King, V.M.5
  • 12
    • 0035458732 scopus 로고    scopus 로고
    • Time zones: A comparative genetics of circadian clocks
    • Young MW, Kay SA. 2001. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2:702-15
    • (2001) Nat. Rev. Genet , vol.2 , pp. 702-715
    • Young, M.W.1    Kay, S.A.2
  • 14
    • 33847779219 scopus 로고    scopus 로고
    • Post-translational modifications regulate the ticking of the circadian clock
    • Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139-48
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 139-148
    • Gallego, M.1    Virshup, D.M.2
  • 16
    • 79551506940 scopus 로고    scopus 로고
    • Post-transcriptional control of circadian rhythms
    • Kojima S, Shingle DL, Green CB. 2011. Post-transcriptional control of circadian rhythms. J. Cell Sci. 124:311-20
    • (2011) J. Cell Sci , vol.124 , pp. 311-320
    • Kojima, S.1    Shingle, D.L.2    Green, C.B.3
  • 17
    • 17244373578 scopus 로고    scopus 로고
    • Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
    • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, et al. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414-15
    • (2005) Science , vol.308 , pp. 414-415
    • Nakajima, M.1    Imai, K.2    Ito, H.3    Nishiwaki, T.4    Murayama, Y.5
  • 18
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • ONeill JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature 469:498-503
    • (2011) Nature , vol.469 , pp. 498-503
    • Oneill, J.S.1    Reddy, A.B.2
  • 19
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • ONeill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, et al. 2011. Circadian rhythms persist without transcription in a eukaryote. Nature 469:554-58
    • (2011) Nature , vol.469 , pp. 554-558
    • Oneill, J.S.1    Van Ooijen, G.2    Dixon, L.E.3    Troein, C.4    Corellou, F.5
  • 20
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459-64
    • (2012) Nature , vol.485 , pp. 459-464
    • Edgar, R.S.1    Green, E.W.2    Zhao, Y.3    Van Ooijen, G.4    Olmedo, M.5
  • 22
    • 0021328737 scopus 로고
    • Molecular genetics of a biological clock in Drosophila
    • Bargiello TA, Young MW. 1984. Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81:2142-46
    • (1984) Proc. Natl. Acad. Sci. USA , vol.81 , pp. 2142-2146
    • Bargiello, T.A.1    Young, M.W.2
  • 23
    • 0021680955 scopus 로고
    • Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms
    • Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, et al. 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38:701-10
    • (1984) Cell , vol.38 , pp. 701-710
    • Reddy, P.1    Zehring, W.A.2    Wheeler, D.A.3    Pirrotta, V.4    Hadfield, C.5
  • 24
    • 0025044560 scopus 로고
    • Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels
    • Hardin PE, Hall JC, Rosbash M. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536-40
    • (1990) Nature , vol.343 , pp. 536-540
    • Hardin, P.E.1    Hall, J.C.2    Rosbash, M.3
  • 25
    • 0025468873 scopus 로고
    • Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila
    • Zerr DM, Hall JC, Rosbash M, Siwicki KK. 1990. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J. Neurosci. 10:2749-62
    • (1990) J. Neurosci , vol.10 , pp. 2749-2762
    • Zerr, D.M.1    Hall, J.C.2    Rosbash, M.3    Siwicki, K.K.4
  • 26
    • 0028258994 scopus 로고
    • Negative feedback defining a circadian clock: Autoregulation of the clock gene frequency
    • Aronson BD, Johnson KA, Loros JJ, Dunlap JC. 1994. Negative feedback defining a circadian clock: Autoregulation of the clock gene frequency. Science 263:1578-84
    • (1994) Science , vol.263 , pp. 1578-1584
    • Aronson, B.D.1    Johnson, K.A.2    Loros, J.J.3    Dunlap, J.C.4
  • 27
    • 0032486432 scopus 로고    scopus 로고
    • Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim
    • Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, et al. 1998. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599-603
    • (1998) Science , vol.280 , pp. 1599-1603
    • Darlington, T.K.1    Wager-Smith, K.2    Ceriani, M.F.3    Staknis, D.4    Gekakis, N.5
  • 28
    • 17044451254 scopus 로고    scopus 로고
    • A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless
    • Allada R, White NE, SoWV, Hall JC, Rosbash M. 1998. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791-804
    • (1998) Cell , vol.93 , pp. 791-804
    • Allada, R.1    White, N.E.2    So, W.V.3    Hall, J.C.4    Rosbash, M.5
  • 29
    • 0032577450 scopus 로고    scopus 로고
    • CYCLEis a secondbHLH-PASclock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless
    • Rutila JE, SuriV, LeM, SoWV, RosbashM, Hall JC. 1998.CYCLEis a secondbHLH-PASclock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805-14
    • (1998) Cell , vol.93 , Issue.5 , pp. 805-814
    • Rutila, J.E.1    Suri, V.2    Le, M.3    So, W.V.4    Rosbash, M.5    Hall, J.C.6
  • 30
    • 0028241271 scopus 로고
    • Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
    • Vitaterna M, King D, Chang A, Kornhauser J, Lowrey P, et al. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719-25
    • (1994) Science , vol.264 , pp. 719-725
    • Vitaterna, M.1    King, D.2    Chang, A.3    Kornhauser, J.4    Lowrey, P.5
  • 33
    • 0032510778 scopus 로고    scopus 로고
    • The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
    • Hogenesch JB, Gu YZ, Jain S, Bradfield CA. 1998. The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95:5474-79
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 5474-5479
    • Hogenesch, J.B.1    Gu, Y.Z.2    Jain, S.3    Bradfield, C.A.4
  • 34
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, et al. 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251-60
    • (2002) Cell , vol.110 , pp. 251-260
    • Preitner, N.1    Damiola, F.2    Lopez-Molina, L.3    Zakany, J.4    Duboule, D.5
  • 35
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-αand REV-ERB-β
    • Cho H, Zhao X, Hatori M, Yu RT, Barish GD, et al. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-αand REV-ERB-β. Nature 485:123-27
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1    Zhao, X.2    Hatori, M.3    Yu, R.T.4    Barish, G.D.5
  • 36
    • 84859329911 scopus 로고    scopus 로고
    • REV-ERBα and REV-ERBβ coordinately protect the circadian clock and normal metabolic function
    • Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, et al. 2012. REV-ERBα and REV-ERBβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26:657-67
    • (2012) Genes Dev , vol.26 , pp. 657-667
    • Bugge, A.1    Feng, D.2    Everett, L.J.3    Briggs, E.R.4    Mullican, S.E.5
  • 37
    • 79952261359 scopus 로고    scopus 로고
    • Genome-wide and phasespecific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
    • Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. 2011. Genome-wide and phasespecific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e1000595
    • (2011) PLoS Biol , vol.9
    • Rey, G.1    Cesbron, F.2    Rougemont, J.3    Reinke, H.4    Brunner, M.5    Naef, F.6
  • 38
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • KoikeN, Yoo S-H, Huang H-C, Kumar V, Lee C, et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349-54
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1    Yoo, S.-H.2    Huang, H.-C.3    Kumar, V.4    Lee, C.5
  • 39
    • 77955983063 scopus 로고    scopus 로고
    • Circadian control of global gene expression patterns
    • Doherty CJ, Kay SA. 2010. Circadian control of global gene expression patterns. Annu. Rev. Genet. 44:419-44
    • (2010) Annu. Rev. Genet , vol.44 , pp. 419-444
    • Doherty, C.J.1    Kay, S.A.2
  • 41
    • 79955925912 scopus 로고    scopus 로고
    • Perfect timing: Epigenetic regulation of the circadian clock
    • Ripperger JA, MerrowM. 2011. Perfect timing: Epigenetic regulation of the circadian clock. FEBS Lett. 585:1406-11
    • (2011) FEBS Lett , vol.585 , pp. 1406-1411
    • Ripperger, J.A.1    Merrow, M.2
  • 42
    • 50849136513 scopus 로고    scopus 로고
    • Cellular circadian pacemaking and the role of cytosolic rhythms
    • Hastings MH, Maywood ES, ONeill JS. 2008. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 18:R805-15
    • (2008) Curr. Biol , vol.18
    • Hastings, M.H.1    Maywood, E.S.2    Oneill, J.S.3
  • 43
    • 47549088250 scopus 로고    scopus 로고
    • TheNAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, et al. 2008. TheNAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329-40
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3    Sahar, S.4    Hirayama, J.5
  • 44
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317-28
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1    Gatfield, D.2    Stratmann, M.3    Reinke, H.4    Dibner, C.5
  • 45
    • 33746344698 scopus 로고    scopus 로고
    • The polycomb group protein EZH2 is required for mammalian circadian clock function
    • Etchegaray J-P, Yang X, DeBruyne JP, Peters AHFM, Weaver DR, et al. 2006. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281:21209-15
    • (2006) J. Biol. Chem , vol.281 , pp. 21209-21215
    • Etchegaray, J.-P.1    Yang, X.2    Debruyne, J.P.3    Ahfm, P.4    Weaver, D.R.5
  • 46
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger JA, Schibler U. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369-74
    • (2006) Nat. Genet , vol.38 , pp. 369-374
    • Ripperger, J.A.1    Schibler, U.2
  • 48
    • 84455161709 scopus 로고    scopus 로고
    • O-GlcNAcylation, novel posttranslational modification linking myocardial metabolism and cardiomyocyte circadian clock
    • Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai J-Y, et al. 2011. O-GlcNAcylation, novel posttranslational modification linking myocardial metabolism and cardiomyocyte circadian clock. J. Biol. Chem. 286:44606-19
    • (2011) J. Biol. Chem , vol.286 , pp. 44606-44619
    • Durgan, D.J.1    Pat, B.M.2    Laczy, B.3    Bradley, J.A.4    Tsai, J.-Y.5
  • 50
    • 84873351364 scopus 로고    scopus 로고
    • Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
    • Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y, et al. 2013. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17:291-302
    • (2013) Cell Metab , vol.17 , pp. 291-302
    • Kaasik, K.1    Kivimäe, S.2    Allen, J.J.3    Chalkley, R.J.4    Huang, Y.5
  • 51
    • 84873362932 scopus 로고    scopus 로고
    • O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
    • Li M-D, Ruan H-B, Hughes ME, Lee J-S, Singh JP, et al. 2013. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 17:303-10
    • (2013) Cell Metab , vol.17 , pp. 303-310
    • Li, M.-D.1    Ruan, H.-B.2    Hughes, M.E.3    Lee, J.-S.4    Singh, J.P.5
  • 52
    • 34248525919 scopus 로고    scopus 로고
    • The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
    • Godinho SIH, Maywood ES, Shaw L, Tucci V, Barnard AR, et al. 2007. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316:897-900
    • (2007) Science , vol.316 , pp. 897-900
    • Sih, G.1    Maywood, E.S.2    Shaw, L.3    Tucci, V.4    Barnard, A.R.5
  • 53
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, et al. 2007. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900-4
    • (2007) Science , vol.316 , pp. 900-904
    • Busino, L.1    Bassermann, F.2    Maiolica, A.3    Lee, C.4    Nolan, P.M.5
  • 54
    • 34249097203 scopus 로고    scopus 로고
    • Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
    • Siepka SM, Yoo S-H, Park J, Song W, Kumar V, et al. 2007. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011-23
    • (2007) Cell , vol.129 , pp. 1011-1023
    • Siepka, S.M.1    Yoo, S.-H.2    Park, J.3    Song, W.4    Kumar, V.5
  • 55
    • 84874772651 scopus 로고    scopus 로고
    • FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
    • Hirano A, Yumimoto K, Tsunematsu R, MatsumotoM, Oyama M, et al. 2013. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152:1106-18
    • (2013) Cell , vol.152 , pp. 1106-1118
    • Hirano, A.1    Yumimoto, K.2    Tsunematsu, R.3    Matsumoto, M.4    Oyama, M.5
  • 56
    • 84874768419 scopus 로고    scopus 로고
    • Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
    • Yoo S-H, Mohawk JA, Siepka SM, Shan Y, Huh SK, et al. 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152:1091-105
    • (2013) Cell , vol.152 , pp. 1091-1105
    • Yoo, S.-H.1    Mohawk, J.A.2    Siepka, S.M.3    Shan, Y.4    Huh, S.K.5
  • 58
    • 0037069671 scopus 로고    scopus 로고
    • Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime
    • Ko HW, Jiang J, Edery I. 2002. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420:673-78
    • (2002) Nature , vol.420 , pp. 673-678
    • Ko, H.W.1    Jiang, J.2    Edery, I.3
  • 59
    • 33745503975 scopus 로고    scopus 로고
    • JETLAG resets the Drosophila circadian clock by promoting lightinduced degradation of TIMELESS
    • Koh K, Zheng X, Sehgal A. 2006. JETLAG resets the Drosophila circadian clock by promoting lightinduced degradation of TIMELESS. Science 312:1809-12
    • (2006) Science , vol.312 , pp. 1809-1812
    • Koh, K.1    Zheng, X.2    Sehgal, A.3
  • 60
    • 0042237024 scopus 로고    scopus 로고
    • FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation
    • He Q, Cheng P, Yang Y, He Q, Yu H, Liu Y. 2003. FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J. 22:4421-30
    • (2003) EMBO J , vol.22 , pp. 4421-4430
    • He, Q.1    Cheng, P.2    Yang, Y.3    He, Q.4    Yu, H.5    Liu, Y.6
  • 61
    • 34548813657 scopus 로고    scopus 로고
    • ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light
    • Kim WY, Fujiwara S, Suh S-S, Kim J, Kim Y, et al. 2007. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356-60
    • (2007) Nature , vol.449 , pp. 356-360
    • Kim, W.Y.1    Fujiwara, S.2    Suh, S.-S.3    Kim, J.4    Kim, Y.5
  • 62
    • 79957491160 scopus 로고    scopus 로고
    • Proteasome function is required for biological timing throughout the twenty-four hour cycle
    • van Ooijen G, Dixon LE, Troein C, Millar AJ. 2011. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 21:869-75
    • (2011) Curr. Biol , vol.21 , pp. 869-875
    • Van Ooijen, G.1    Dixon, L.E.2    Troein, C.3    Millar, A.J.4
  • 63
    • 71649093603 scopus 로고    scopus 로고
    • Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock
    • Deery MJ, Maywood ES, Chesham JE, Sládek M, Karp NA, et al. 2009. Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Curr. Biol. 19:2031-36
    • (2009) Curr. Biol , vol.19 , pp. 2031-2036
    • Deery, M.J.1    Maywood, E.S.2    Chesham, J.E.3    Sládek, M.4    Karp, N.A.5
  • 65
    • 84867670963 scopus 로고    scopus 로고
    • Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
    • Morf J, Rey G, Schneider K, Stratmann M, Fujita J, et al. 2012. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338:379-83
    • (2012) Science , vol.338 , pp. 379-383
    • Morf, J.1    Rey, G.2    Schneider, K.3    Stratmann, M.4    Fujita, J.5
  • 67
    • 84871581540 scopus 로고    scopus 로고
    • Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
    • Kojima S, Sher-Chen EL, Green CB. 2012. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26:2724-36
    • (2012) Genes Dev , vol.26 , pp. 2724-2736
    • Kojima, S.1    Sher-Chen, E.L.2    Green, C.B.3
  • 68
    • 84881506759 scopus 로고    scopus 로고
    • Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
    • Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. 2012. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1:e00011
    • (2012) ELife , vol.1
    • Menet, J.S.1    Rodriguez, J.2    Abruzzi, K.C.3    Rosbash, M.4
  • 69
    • 84870288931 scopus 로고    scopus 로고
    • Genome-wideRNApolymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
    • Le Martelot G, Canella D, SymulL, Migliavacca E, Gilardi F, et al. 2012. Genome-wideRNApolymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10:e1001442
    • (2012) PLoS Biol , vol.10
    • Le Martelot, G.1    Canella, D.2    Symul, L.3    Migliavacca, E.4    Gilardi, F.5
  • 71
    • 84876791786 scopus 로고    scopus 로고
    • Connecting cellular metabolism to circadian clocks
    • Rey G, Reddy AB. 2013. Connecting cellular metabolism to circadian clocks. Trends Cell Biol. 23:234-41
    • (2013) Trends Cell Biol , vol.23 , pp. 234-241
    • Rey, G.1    Reddy, A.B.2
  • 72
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651-54
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1    Yoshino, J.2    Brace, C.S.3    Abrassart, D.4    Kobayashi, Y.5
  • 74
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J, Reick M, Wu LC, McKnight SL. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510-14
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1    Reick, M.2    Wu, L.C.3    McKnight, S.L.4
  • 75
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. 2010. Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943-53
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1    Reinke, H.2    Altmeyer, M.3    Gutierrez-Arcelus, M.4    Hottiger, M.O.5    Schibler, U.6
  • 76
    • 44249094901 scopus 로고    scopus 로고
    • CAMP-dependent signaling as a core component of the mammalian circadian pacemaker
    • ONeill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. 2008. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949-53
    • (2008) Science , vol.320 , pp. 949-953
    • Oneill, J.S.1    Maywood, E.S.2    Chesham, J.E.3    Takahashi, J.S.4    Hastings, M.H.5
  • 77
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437-40
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1    Sachdeva, U.M.2    Ditacchio, L.3    Williams, E.C.4    Alvarez, J.G.5
  • 78
    • 75649101290 scopus 로고    scopus 로고
    • Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork
    • Hirota T, Kon N, Itagaki T, Hoshina N, Okano T, Fukada Y. 2010. Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15:111-21
    • (2010) Genes Cells , vol.15 , pp. 111-121
    • Hirota, T.1    Kon, N.2    Itagaki, T.3    Hoshina, N.4    Okano, T.5    Fukada, Y.6
  • 79
    • 0027413657 scopus 로고
    • Two circadian oscillators in one cell
    • Roenneberg T, Morse D. 1993. Two circadian oscillators in one cell. Nature 362:362-64
    • (1993) Nature , vol.362 , pp. 362-364
    • Roenneberg, T.1    Morse, D.2
  • 80
    • 8844256589 scopus 로고    scopus 로고
    • Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells
    • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. 2004. Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693-705
    • (2004) Cell , vol.119 , pp. 693-705
    • Nagoshi, E.1    Saini, C.2    Bauer, C.3    Laroche, T.4    Naef, F.5    Schibler, U.6
  • 83
    • 58749109143 scopus 로고    scopus 로고
    • Circadian gene expression is resilient to large fluctuations in overall transcription rates
    • Dibner C, Sage D, Unser M, Bauer C, dEysmond T, et al. 2009. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 28:123-34
    • (2009) EMBO J , vol.28 , pp. 123-134
    • Dibner, C.1    Sage, D.2    Unser, M.3    Bauer, C.4    Deysmond, T.5
  • 84
    • 0035102288 scopus 로고    scopus 로고
    • Role of molecular oscillations in generating behavioral rhythms in Drosophila
    • Yang Z, Sehgal A. 2001. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29:453-67
    • (2001) Neuron , vol.29 , pp. 453-467
    • Yang, Z.1    Sehgal, A.2
  • 85
    • 33644603280 scopus 로고    scopus 로고
    • Transcriptional feedback oscillators: Maybe, maybe not
    • Lakin-Thomas PL. 2006. Transcriptional feedback oscillators: maybe, maybe not . . . . J. Biol. Rhythms 21:83-92
    • (2006) J. Biol. Rhythms , vol.21 , pp. 83-92
    • Lakin-Thomas, P.L.1
  • 86
    • 0024486256 scopus 로고
    • Circadian regulation of bioluminescence in Gonyaulax involves translational control
    • Morse D, Milos PM, Roux E, Hastings JW. 1989. Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc. Natl. Acad. Sci. USA 86:172-76
    • (1989) Proc. Natl. Acad. Sci. USA , vol.86 , pp. 172-176
    • Morse, D.1    Milos, P.M.2    Roux, E.3    Hastings, J.W.4
  • 87
    • 0028298969 scopus 로고
    • Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3 untranslated region of its mRNA
    • MittagM, Lee DH, Hastings JW. 1994. Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3 untranslated region of its mRNA. Proc. Natl. Acad. Sci. USA 91:5257-61
    • (1994) Proc. Natl. Acad. Sci. USA , vol.91 , pp. 5257-5261
    • Mittag, M.1    Lee, D.H.2    Hastings, J.W.3
  • 88
    • 33749031807 scopus 로고    scopus 로고
    • Molecular components of themammalian circadian clock
    • Ko CH, Takahashi JS. 2006. Molecular components of themammalian circadian clock. Hum. Mol. Genet. 15:R271-77
    • (2006) Hum. Mol. Genet , vol.15
    • Ko, C.H.1    Takahashi, J.S.2
  • 89
    • 33751565112 scopus 로고    scopus 로고
    • Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
    • McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, et al. 2006. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314:1304-8
    • (2006) Science , vol.314 , pp. 1304-1308
    • McDearmon, E.L.1    Patel, K.N.2    Ko, C.H.3    Walisser, J.A.4    Schook, A.C.5
  • 90
    • 84890015150 scopus 로고    scopus 로고
    • Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration
    • Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, et al. 2013. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Investig. 123:5389-400
    • (2013) J. Clin. Investig , vol.123 , pp. 5389-5400
    • Musiek, E.S.1    Lim, M.M.2    Yang, G.3    Bauer, A.Q.4    Qi, L.5
  • 91
    • 78149369911 scopus 로고    scopus 로고
    • Emergence of noise-induced oscillations in the central circadian pacemaker
    • Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, et al. 2010. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol. 8:e1000513
    • (2010) PLoS Biol , vol.8
    • Ko, C.H.1    Yamada, Y.R.2    Welsh, D.K.3    Buhr, E.D.4    Liu, A.C.5
  • 92
    • 80052185196 scopus 로고    scopus 로고
    • A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits
    • Maywood ES, Chesham JE, OBrien JA, Hastings MH. 2011. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc. Natl. Acad. Sci. USA 108:14306-11
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 14306-14311
    • Maywood, E.S.1    Chesham, J.E.2    Obrien, J.A.3    Hastings, M.H.4
  • 93
    • 84877768157 scopus 로고    scopus 로고
    • Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus
    • Ono D, Honma S, Honma K-I. 2013. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat. Commun. 4:1666
    • (2013) Nat. Commun , vol.4 , pp. 1666
    • Ono, D.1    Honma, S.2    Honma, K.-I.3
  • 94
    • 0023203621 scopus 로고
    • Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine
    • Honma K, Honma S, Hiroshige T. 1987. Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine. Physiol. Behav. 40:767-74
    • (1987) Physiol. Behav , vol.40 , pp. 767-774
    • Honma, K.1    Honma, S.2    Hiroshige, T.3
  • 96
    • 62549090648 scopus 로고    scopus 로고
    • The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes
    • Mohawk JA, Baer ML, Menaker M. 2009. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc. Natl. Acad. Sci. USA 106:3519-24
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 3519-3524
    • Mohawk, J.A.1    Baer, M.L.2    Menaker, M.3
  • 97
    • 0014258550 scopus 로고
    • Self-oscillations in glycolysis 1 A simple kinetic model
    • Selkov EE. 1968. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4:79-86
    • (1968) Eur. J. Biochem , vol.4 , pp. 79-86
    • Selkov, E.E.1
  • 98
    • 0015419716 scopus 로고
    • Dissipative structures for an allosteric model Application to glycolytic oscillations
    • Goldbeter A, Lefever R. 1972. Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12:1302-15
    • (1972) Biophys. J , vol.12 , pp. 1302-1315
    • Goldbeter, A.1    Lefever, R.2
  • 99
    • 84890678355 scopus 로고
    • A model based on receptor desensitization for cyclic AMP signaling in dictyostelium cells
    • Martiel JL, Goldbeter A. 1987. A model based on receptor desensitization for cyclic AMP signaling in dictyostelium cells. Biophys. J. 52:807-28
    • (1987) Biophys. J , vol.52 , pp. 807-828
    • Martiel, J.L.1    Goldbeter, A.2
  • 100
    • 45149141570 scopus 로고
    • Spiral waves of cyclic AMP in a model of slime mold aggregation
    • Tyson JJ, Alexander KA, Manoranjan VS. 1989. Spiral waves of cyclic AMP in a model of slime mold aggregation. Physica D 34: 193-207
    • (1989) Physica D , vol.34 , pp. 193-207
    • Tyson, J.J.1    Alexander, K.A.2    Manoranjan, V.S.3
  • 101
    • 0022253422 scopus 로고
    • Biochemical modeling of an autonomously oscillatory circadian clock in Euglena
    • Goto K, Laval-Martin DL, Edmunds LN. 1985. Biochemical modeling of an autonomously oscillatory circadian clock in Euglena. Science 228:1284-88
    • (1985) Science , vol.228 , pp. 1284-1288
    • Goto, K.1    Laval-Martin, D.L.2    Edmunds, L.N.3
  • 102
    • 0028817878 scopus 로고
    • Circadian oscillations of cytosolic and chloroplastic free calcium in plants
    • Johnson CH, KnightMR, KondoT, Masson P, Sedbrook J, et al. 1995. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863-65
    • (1995) Science , vol.269 , pp. 1863-1865
    • Johnson, C.H.1    Knight, M.R.2    Kondo, T.3    Masson, P.4    Sedbrook, J.5
  • 103
    • 0016000987 scopus 로고
    • A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes
    • Sweeney BM. 1974. A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. Int. J. Chronobiol. 2:25-33
    • (1974) Int. J. Chronobiol , vol.2 , pp. 25-33
    • Sweeney, B.M.1
  • 104
    • 0016220085 scopus 로고
    • Membrane model for the circadian clock
    • Njus D, Sulzman FM, Hastings JW. 1974. Membrane model for the circadian clock. Nature 248:116-20
    • (1974) Nature , vol.248 , pp. 116-120
    • Njus, D.1    Sulzman, F.M.2    Hastings, J.W.3
  • 105
    • 0017625682 scopus 로고
    • Circadian rhythms in unicellular organisms: An endeavor to explain the molecular mechanism
    • Schweiger HG, SchweigerM. 1977. Circadian rhythms in unicellular organisms: An endeavor to explain the molecular mechanism. Int. Rev. Cytol. 51:315-42
    • (1977) Int. Rev. Cytol , vol.51 , pp. 315-342
    • Schweiger, H.G.1    Schweiger, M.2
  • 106
    • 0018092025 scopus 로고
    • A model for the molecular basis of circadian rhythm involving monovalent ionmediated translational control
    • Burgoyne RD. 1978. A model for the molecular basis of circadian rhythm involving monovalent ionmediated translational control. FEBS Lett. 94:17-19
    • (1978) FEBS Lett , vol.94 , pp. 17-19
    • Burgoyne, R.D.1
  • 107
    • 0007765997 scopus 로고
    • Persistence of a photosynthetic rhythm in enucleated Acetabularia
    • Sweeney BM, Haxo FT. 1961. Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134:1361-63
    • (1961) Science , vol.134 , pp. 1361-1363
    • Sweeney, B.M.1    Haxo, F.T.2
  • 108
    • 0039209611 scopus 로고
    • Endogenous circadian rhythm in cytoplasm of Acetabularia: Influence of the nucleus
    • Schweiger E, Wallraff HG, Schweiger HG. 1964. Endogenous circadian rhythm in cytoplasm of Acetabularia: Influence of the nucleus. Science 146:658-59
    • (1964) Science , vol.146 , pp. 658-659
    • Schweiger, E.1    Wallraff, H.G.2    Schweiger, H.G.3
  • 109
    • 0016830138 scopus 로고
    • The effect of different inhibitors of transcription and translation on the expression and control of circadian rhythm in individual cells of Acetabularia
    • Mergenhagen D, Schweiger HG. 1975. The effect of different inhibitors of transcription and translation on the expression and control of circadian rhythm in individual cells of Acetabularia. Exp. Cell Res. 94:321-26
    • (1975) Exp. Cell Res , vol.94 , pp. 321-326
    • Mergenhagen, D.1    Schweiger, H.G.2
  • 110
    • 0017196098 scopus 로고
    • 2+-dependent ATPase activity in human red blood cell membranes in vitro
    • 2+-dependent ATPase activity in human red blood cell membranes in vitro. Biochem. Biophys. Res. Commun. 71:1269-72
    • (1976) Biochem. Biophys. Res. Commun , vol.71 , pp. 1269-1272
    • Cornelius, G.1    Rensing, L.2
  • 111
    • 0022393529 scopus 로고
    • Glutathione levels in human platelets display a circadian rhythm in vitro
    • Radha E, Hill TD, Rao GH, White JG. 1985. Glutathione levels in human platelets display a circadian rhythm in vitro. Thromb. Res. 40:823-31
    • (1985) Thromb. Res , vol.40 , pp. 823-831
    • Radha, E.1    Hill, T.D.2    Rao, G.H.3    White, J.G.4
  • 112
    • 12244296161 scopus 로고    scopus 로고
    • No transcription-translation feedback in circadian rhythm of KaiC phosphorylation
    • Tomita J, Nakajima M, Kondo T, Iwasaki H. 2005. No transcription- translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251-54
    • (2005) Science , vol.307 , pp. 251-254
    • Tomita, J.1    Nakajima, M.2    Kondo, T.3    Iwasaki, H.4
  • 113
    • 37549018348 scopus 로고    scopus 로고
    • Ordered phosphorylation governs oscillation of a three-protein circadian clock
    • Rust MJ, Markson JS, LaneWS, Fisher DS, OShea EK. 2007. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809-12
    • (2007) Science , vol.318 , pp. 809-812
    • Rust, M.J.1    Markson, J.S.2    Lane, W.S.3    Fisher, D.S.4    Oshea, E.K.5
  • 114
    • 34548382214 scopus 로고    scopus 로고
    • A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria
    • Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R, et al. 2007. A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. 26:4029-37
    • (2007) EMBO J , vol.26 , pp. 4029-4037
    • Nishiwaki, T.1    Satomi, Y.2    Kitayama, Y.3    Terauchi, K.4    Kiyohara, R.5
  • 115
    • 51349134181 scopus 로고    scopus 로고
    • The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria
    • Kim Y-I, Dong G, Carruthers CW, Golden SS, Li Wang A. 2008. The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. USA 105:12825-30
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 12825-12830
    • Kim, Y.-I.1    Dong, G.2    Carruthers, C.W.3    Golden, S.S.4    Li Wang, A.5
  • 116
    • 78651453820 scopus 로고    scopus 로고
    • Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator
    • Rust MJ, Golden SS, OShea EK. 2011. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220-23
    • (2011) Science , vol.331 , pp. 220-223
    • Rust, M.J.1    Golden, S.S.2    Oshea, E.K.3
  • 117
    • 17144372902 scopus 로고    scopus 로고
    • LdpA: A component of the circadian clock senses redox state of the cell
    • Ivleva NB, BramlettMR, Lindahl PA, Golden SS. 2005. LdpA: A component of the circadian clock senses redox state of the cell. EMBO J. 24:1202-10
    • (2005) EMBO J , vol.24 , pp. 1202-1210
    • Ivleva, N.B.1    Bramlett, M.R.2    Lindahl, P.A.3    Golden, S.S.4
  • 118
    • 77950528207 scopus 로고    scopus 로고
    • TheKaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor
    • Wood TL, Bridwell-Rabb J, Kim Y-I, Gao T, Chang Y-G, et al. 2010. TheKaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc. Natl. Acad. Sci. USA 107:5804-9
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 5804-5809
    • Wood, T.L.1    Bridwell-Rabb, J.2    Kim, Y.-I.3    Gao, T.4    Chang, Y.-G.5
  • 119
    • 44849136755 scopus 로고    scopus 로고
    • Dual KaiC-based oscillations constitute the circadian system of cyanobacteria
    • Kitayama Y, Nishiwaki T, Terauchi K, Kondo T. 2008. Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev. 22:1513-21
    • (2008) Genes Dev , vol.22 , pp. 1513-1521
    • Kitayama, Y.1    Nishiwaki, T.2    Terauchi, K.3    Kondo, T.4
  • 120
    • 77954703765 scopus 로고    scopus 로고
    • Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system
    • Qin X, Byrne M, Xu Y, Mori T, Johnson CH. 2010. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol. 8:e1000394
    • (2010) PLoS Biol , vol.8
    • Qin, X.1    Byrne, M.2    Xu, Y.3    Mori, T.4    Johnson, C.H.5
  • 121
    • 78651071941 scopus 로고    scopus 로고
    • Robust circadian clocks from coupled proteinmodification and transcription-translation cycles
    • Zwicker D, Lubensky DK, ten Wolde PR. 2010. Robust circadian clocks from coupled proteinmodification and transcription-translation cycles. Proc. Natl. Acad. Sci. USA 107:22540-45
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 22540-22545
    • Zwicker, D.1    Lubensky, D.K.2    Ten Wolde, P.R.3
  • 122
    • 84877587194 scopus 로고    scopus 로고
    • Robust circadian oscillations in growing cyanobacteria require transcriptional feedback
    • Teng SW, Mukherji S, Moffitt JR, de Buyl S, OShea EK. 2013. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340:737-40
    • (2013) Science , vol.340 , pp. 737-740
    • Teng, S.W.1    Mukherji, S.2    Moffitt, J.R.3    De Buyl, S.4    Oshea, E.K.5
  • 123
    • 84868139341 scopus 로고    scopus 로고
    • A design principle for a posttranslational biochemical oscillator
    • Jolley CC, Ode KL, Ueda HR. 2012. A design principle for a posttranslational biochemical oscillator. Cell Rep. 2:938-50
    • (2012) Cell Rep , vol.2 , pp. 938-950
    • Jolley, C.C.1    Ode, K.L.2    Ueda, H.R.3
  • 124
    • 84870951025 scopus 로고    scopus 로고
    • Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans
    • Olmedo M, ONeill JS, Edgar RS, Valekunja UK, Reddy AB, Merrow M. 2012. Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109:20479-84
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 20479-20484
    • Olmedo, M.1    Oneill, J.S.2    Edgar, R.S.3    Valekunja, U.K.4    Reddy, A.B.5    Merrow, M.6
  • 125
    • 64149085448 scopus 로고    scopus 로고
    • Typical 2-Cys peroxiredoxins: Structures, mechanisms and functions
    • Hall A, Karplus PA, Poole LB. 2009. Typical 2-Cys peroxiredoxins: structures, mechanisms and functions. FEBS J. 276:2469-77
    • (2009) FEBS J , vol.276 , pp. 2469-2477
    • Hall, A.1    Karplus, P.A.2    Poole, L.B.3
  • 126
    • 34547441421 scopus 로고    scopus 로고
    • Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significance
    • Rhee SG, Jeong W, Chang T-S, Woo HA. 2007. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significance. Kidney Int. 72:S3-S8
    • (2007) Kidney Int , vol.72
    • Rhee, S.G.1    Jeong, W.2    Chang, T.-S.3    Woo, H.A.4
  • 127
    • 38749094500 scopus 로고    scopus 로고
    • The catalytic mechanism of peroxiredoxins
    • Poole LB. 2007. The catalytic mechanism of peroxiredoxins. Subcell. Biochem. 44:61-81
    • (2007) Subcell. Biochem , vol.44 , pp. 61-81
    • Poole, L.B.1
  • 128
    • 84869036539 scopus 로고    scopus 로고
    • Circadian topology of metabolism
    • Bass J. 2012. Circadian topology of metabolism. Nature 491:348-56
    • (2012) Nature , vol.491 , pp. 348-356
    • Bass, J.1
  • 129
    • 35548930677 scopus 로고    scopus 로고
    • High-fat diet disrupts behavioral and molecular circadian rhythms in mice
    • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, et al. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414-21
    • (2007) Cell Metab , vol.6 , pp. 414-421
    • Kohsaka, A.1    Laposky, A.D.2    Ramsey, K.M.3    Estrada, C.4    Joshu, C.5
  • 130
    • 84860383862 scopus 로고    scopus 로고
    • Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption
    • Buxton OM, Cain SW, OConnor SP, Porter JH, Duffy JF, et al. 2012. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl.Med. 4:129ra43
    • (2012) Sci. Transl.Med , vol.4
    • Buxton, O.M.1    Cain, S.W.2    Oconnor, S.P.3    Porter, J.H.4    Duffy, J.F.5
  • 132
    • 37249086610 scopus 로고    scopus 로고
    • REV-ERBα, a heme sensor that coordinates metabolic and circadian pathways
    • Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, et al. 2007. REV-ERBα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786-89
    • (2007) Science , vol.318 , pp. 1786-1789
    • Yin, L.1    Wu, N.2    Curtin, J.C.3    Qatanani, M.4    Szwergold, N.R.5
  • 133
    • 79953012491 scopus 로고    scopus 로고
    • Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor REV-ERBα
    • Gupta N, Ragsdale SW. 2011. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor REV-ERBα. J. Biol. Chem. 286:4392-403
    • (2011) J. Biol. Chem , vol.286 , pp. 4392-4403
    • Gupta, N.1    Ragsdale, S.W.2
  • 134
    • 47949112304 scopus 로고    scopus 로고
    • A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
    • Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, et al. 2008. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 28:4697-711
    • (2008) Mol. Cell. Biol , vol.28 , pp. 4697-4711
    • Yang, J.1    Kim, K.D.2    Lucas, A.3    Drahos, K.E.4    Santos, C.S.5
  • 135
    • 84856090681 scopus 로고    scopus 로고
    • Connecting threads: Epigenetics andmetabolism
    • Katada S, Imhof A, Sassone-Corsi P. 2012. Connecting threads: Epigenetics andmetabolism. Cell 148:24-28
    • (2012) Cell , vol.148 , pp. 24-28
    • Katada, S.1    Imhof, A.2    Sassone-Corsi, P.3
  • 136
    • 0033603555 scopus 로고    scopus 로고
    • Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator
    • Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, et al. 1999. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274:18157-60
    • (1999) J. Biol. Chem , vol.274 , pp. 18157-18160
    • Tanner, K.G.1    Trievel, R.C.2    Kuo, M.H.3    Howard, R.M.4    Berger, S.L.5
  • 137
    • 84867420625 scopus 로고    scopus 로고
    • On acetyl-CoA as a gauge of cellular metabolic state
    • Cai L, Tu BP. 2011. On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb. Symp. Quant. Biol. 76:195-202
    • (2011) Cold Spring Harb. Symp. Quant. Biol , vol.76 , pp. 195-202
    • Cai, L.1    Tu, B.P.2
  • 138
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834-40
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gnad, F.3    Nielsen, M.L.4    Rehman, M.5
  • 139
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • Zhao S, Xu W, Jiang W, Yu W, Lin Y, et al. 2010. Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000-4
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1    Xu, W.2    Jiang, W.3    Yu, W.4    Lin, Y.5
  • 140
    • 79959381299 scopus 로고    scopus 로고
    • Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease
    • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. 2011. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80:825-58
    • (2011) Annu. Rev. Biochem , vol.80 , pp. 825-858
    • Hart, G.W.1    Slawson, C.2    Ramirez-Correa, G.3    Lagerlof, O.4
  • 142
    • 0017339770 scopus 로고
    • Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue
    • Isaacs J, Binkley F. 1977. Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue. Biochim. Biophys. Acta 497:192-204
    • (1977) Biochim. Biophys. Acta , vol.497 , pp. 192-204
    • Isaacs, J.1    Binkley, F.2
  • 143
    • 0017380975 scopus 로고
    • Cyclic AMP-dependent control of the rat hepatic glutathione disulfidesulfhydryl ratio
    • Isaacs JT, Binkley F. 1977. Cyclic AMP-dependent control of the rat hepatic glutathione disulfidesulfhydryl ratio. Biochim. Biophys. Acta 498:29-38
    • (1977) Biochim. Biophys. Acta , vol.498 , pp. 29-38
    • Isaacs, J.T.1    Binkley, F.2
  • 144
    • 0019821550 scopus 로고
    • Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet
    • Robinson JL, Foustock S, Chanez M, Bois-Joyeux B, Peret J. 1981. Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet. J. Nutr. 111:1711-20
    • (1981) J. Nutr , vol.111 , pp. 1711-1720
    • Robinson, J.L.1    Foustock, S.2    Chanez, M.3    Bois-Joyeux, B.4    Peret, J.5
  • 145
    • 0021231801 scopus 로고
    • Analysis of the circadian rhythm in energy metabolism of rat liver
    • Kaminsky YG, Kosenko EA, Kondrashova MN. 1984. Analysis of the circadian rhythm in energy metabolism of rat liver. Int. J. Biochem. 16:629-39
    • (1984) Int. J. Biochem , vol.16 , pp. 629-639
    • Kaminsky, Y.G.1    Kosenko, E.A.2    Kondrashova, M.N.3
  • 146
    • 0025970306 scopus 로고
    • Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver
    • Bélanger PM, DesgagnéM, Bruguerolle B. 1991. Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver. Drug Metab. Dispos. 19:241-44
    • (1991) Drug Metab. Dispos , vol.19 , pp. 241-244
    • Bélanger, P.M.1    Desgagné, M.2    Bruguerolle, B.3
  • 147
    • 80052523535 scopus 로고    scopus 로고
    • The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors
    • Scheer FAJL, Michelson AD, Frelinger AL, Evoniuk H, Kelly EE, et al. 2011. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS ONE 6:e24549
    • (2011) PLoS ONE , vol.6
    • Fajl, S.1    Michelson, A.D.2    Frelinger, A.L.3    Evoniuk, H.4    Kelly, E.E.5
  • 148
    • 0033389661 scopus 로고    scopus 로고
    • Circadian systems and metabolism
    • Roenneberg T, Merrow M. 1999. Circadian systems and metabolism. J. Biol. Rhythms 14:449-59
    • (1999) J. Biol. Rhythms , vol.14 , pp. 449-459
    • Roenneberg, T.1    Merrow, M.2
  • 149
    • 0035997367 scopus 로고    scopus 로고
    • Metabolism and the control of circadian rhythms
    • Rutter J, Reick M, McKnight SL. 2002. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71:307-31
    • (2002) Annu. Rev. Biochem , vol.71 , pp. 307-331
    • Rutter, J.1    Reick, M.2    McKnight, S.L.3
  • 150
    • 35648973259 scopus 로고    scopus 로고
    • Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish
    • Hirayama J, Cho S, Sassone-Corsi P. 2007. Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish. Proc. Natl. Acad. Sci. USA 104:15747-52
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 15747-15752
    • Hirayama, J.1    Cho, S.2    Sassone-Corsi, P.3
  • 151
    • 48349130341 scopus 로고    scopus 로고
    • Circadian regulation of response to oxidative stress in Drosophila melanogaster
    • Krishnan N, Davis AJ, Giebultowicz JM. 2008. Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 374:299-303
    • (2008) Biochem. Biophys. Res. Commun , vol.374 , pp. 299-303
    • Krishnan, N.1    Davis, A.J.2    Giebultowicz, J.M.3
  • 153
    • 84865080952 scopus 로고    scopus 로고
    • Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
    • Wang TA, Yu YV, Govindaiah G, Ye X, Artinian L, et al. 2012. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337:839-42
    • (2012) Science , vol.337 , pp. 839-842
    • Wang, T.A.1    Yu, Y.V.2    Govindaiah, G.3    Ye, X.4    Artinian, L.5
  • 154
    • 84861964383 scopus 로고    scopus 로고
    • Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
    • Kil IS, Lee SK, Ryu KW, Woo HA, Hu M-C, et al. 2012. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46:584-94
    • (2012) Mol. Cell , vol.46 , pp. 584-594
    • Kil, I.S.1    Lee, S.K.2    Ryu, K.W.3    Woo, H.A.4    Hu, M.-C.5
  • 155
    • 82555185702 scopus 로고    scopus 로고
    • Cross-talk between the cellular redox state and the circadian system in Neurospora
    • Yoshida Y, Iigusa H, Wang N, Hasunuma K. 2011. Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS ONE 6:e28227
    • (2011) PLoS ONE , vol.6
    • Yoshida, Y.1    Iigusa, H.2    Wang, N.3    Hasunuma, K.4
  • 156
    • 38349068562 scopus 로고    scopus 로고
    • Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa
    • YoshidaY, Maeda T, Lee B, HasunumaK. 2008. Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa. Mol. Genet. Genomics 279:193-202
    • (2008) Mol. Genet. Genomics , vol.279 , pp. 193-202
    • Yoshida, Y.1    Maeda, T.2    Lee, B.3    Hasunuma, K.4
  • 157
    • 84874936227 scopus 로고    scopus 로고
    • Reactive oxygen species can modulate circadian phase and period in Neurospora crassa
    • Gyöngyösi N, Nagy D, Makara K, Ella K, Käldi K. 2013. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic. Biol. Med. 58:134-43
    • (2013) Free Radic. Biol. Med , vol.58 , pp. 134-143
    • Gyöngyösi, N.1    Nagy, D.2    Makara, K.3    Ella, K.4    Käldi, K.5
  • 158
    • 10944237769 scopus 로고    scopus 로고
    • Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
    • Chang T-S, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. 2004. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279:50994-1001
    • (2004) J. Biol. Chem , vol.279 , pp. 50994-51001
    • Chang, T.-S.1    Jeong, W.2    Woo, H.A.3    Lee, S.M.4    Park, S.5    Rhee, S.G.6
  • 159
    • 0037064080 scopus 로고    scopus 로고
    • Inactivation of human peroxiredoxin i during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
    • Yang K-S, Kang SW, Woo HA, Hwang SC, Chae HZ, et al. 2002. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277:38029-36
    • (2002) J. Biol. Chem , vol.277 , pp. 38029-38036
    • Yang, K.-S.1    Kang, S.W.2    Woo, H.A.3    Hwang, S.C.4    Chae, H.Z.5
  • 160
    • 78650883333 scopus 로고    scopus 로고
    • Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution
    • Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, et al. 2011. Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. EMBO J. 30:68-78
    • (2011) EMBO J , vol.30 , pp. 68-78
    • Murayama, Y.1    Mukaiyama, A.2    Imai, K.3    Onoue, Y.4    Tsunoda, A.5
  • 161
    • 84869137280 scopus 로고    scopus 로고
    • Toward the beginning of time: Circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells
    • Paulose JK, Rucker EB, Cassone VM. 2012. Toward the beginning of time: Circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS ONE 7:e49555
    • (2012) PLoS ONE , vol.7
    • Paulose, J.K.1    Rucker, E.B.2    Cassone, V.M.3
  • 163
    • 17244374730 scopus 로고    scopus 로고
    • Caenorhabditis elegans opens up new insights into circadian clock mechanisms
    • Hasegawa K, Saigusa T, Tamai Y. 2005. Caenorhabditis elegans opens up new insights into circadian clock mechanisms. Chronobiol. Int. 22:1-19
    • (2005) Chronobiol. Int , vol.22 , pp. 1-19
    • Hasegawa, K.1    Saigusa, T.2    Tamai, Y.3
  • 164
    • 0013770047 scopus 로고
    • Oscillations of glycolytic intermediates in yeast cells
    • Ghosh A, Chance B. 1964. Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun. 16:174-81
    • (1964) Biochem. Biophys. Res. Commun , vol.16 , pp. 174-181
    • Ghosh, A.1    Chance, B.2
  • 165
    • 0141727003 scopus 로고
    • Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract
    • Chance B, Schoener B, Elsässer S. 1964. Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract. Proc. Natl. Acad. Sci. USA 52:337-41
    • (1964) Proc. Natl. Acad. Sci. USA , vol.52 , pp. 337-341
    • Chance, B.1    Schoener, B.2    Elsässer, S.3
  • 167
    • 0014277349 scopus 로고
    • Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts
    • Frenkel R. 1968. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. Arch. Biochem. Biophys. 125:151-56
    • (1968) Arch. Biochem. Biophys , vol.125 , pp. 151-156
    • Frenkel, R.1
  • 168
    • 0026653686 scopus 로고
    • Oscillations of lactate released from islets of Langerhans: Evidence for oscillatory glycolysis in β-cells
    • Chou HF, Berman N, Ipp E 1992. Oscillations of lactate released from islets of Langerhans: Evidence for oscillatory glycolysis in β-cells. Am. J. Physiol. Endocrinol. Metab. 262:800-5
    • (1992) Am. J. Physiol. Endocrinol. Metab , vol.262 , pp. 800-805
    • Chou, H.F.1    Berman, N.2    Ipp, E.3
  • 169
    • 0028037717 scopus 로고
    • Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells
    • ORourke B, Ramza BM, Marban E 1994. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265:962-66
    • (1994) Science , vol.265 , pp. 962-966
    • Orourke, B.1    Ramza, B.M.2    Marban, E.3
  • 171
    • 0016829888 scopus 로고
    • Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation
    • Selkov EE. 1975. Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 59:151-57
    • (1975) Eur. J. Biochem , vol.59 , pp. 151-157
    • Selkov, E.E.1
  • 172
    • 0014108715 scopus 로고
    • Biological rhythms and the behavior of populations of coupled oscillators
    • Winfree AT. 1967. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16:15-42
    • (1967) J. Theor. Biol , vol.16 , pp. 15-42
    • Winfree, A.T.1
  • 173
    • 0014486609 scopus 로고
    • Populations of interacting oscillators and circadian rhythms
    • Pavlidis T. 1969. Populations of interacting oscillators and circadian rhythms. J. Theor. Biol. 22:418-36
    • (1969) J. Theor. Biol , vol.22 , pp. 418-436
    • Pavlidis, T.1
  • 174
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
    • Tu BP, Kudlicki A, Rowicka M, McKnight SL. 2005. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science 310:1152-58
    • (2005) Science , vol.310 , pp. 1152-1158
    • Tu, B.P.1    Kudlicki, A.2    Rowicka, M.3    McKnight, S.L.4
  • 175
    • 0842342616 scopus 로고    scopus 로고
    • A genome-wide oscillation in transcription gates DNA replication and cell cycle
    • Klevecz RR, Bolen J, Forrest G, Murray DB. 2004. A genome-wide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci. USA 101:1200-5
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 1200-1205
    • Klevecz, R.R.1    Bolen, J.2    Forrest, G.3    Murray, D.B.4
  • 179
    • 0141528621 scopus 로고    scopus 로고
    • Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature
    • Carey HV, Andrews MT, Martin SL. 2003. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83:1153-81
    • (2003) Physiol. Rev , vol.83 , pp. 1153-1181
    • Carey, H.V.1    Andrews, M.T.2    Martin, S.L.3
  • 180
    • 33747591416 scopus 로고    scopus 로고
    • Metabolic cycles as an underlying basis of biological oscillations
    • Tu BP, McKnight SL. 2006. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7:696-701
    • (2006) Nat. Rev. Mol. Cell Biol , vol.7 , pp. 696-701
    • Tu, B.P.1    McKnight, S.L.2
  • 181
    • 0027349267 scopus 로고
    • Temporal organization: Reflections of a Darwinian clock-watcher
    • Pittendrigh CS. 1993. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55:16-54
    • (1993) Annu. Rev. Physiol , vol.55 , pp. 16-54
    • Pittendrigh, C.S.1
  • 182
    • 0029790052 scopus 로고    scopus 로고
    • Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours
    • Mori T, Binder B, Johnson CH. 1996. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl. Acad. Sci. USA 93:10183-88
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 10183-10188
    • Mori, T.1    Binder, B.2    Johnson, C.H.3
  • 183
    • 79959404050 scopus 로고    scopus 로고
    • Evolution of time-keeping mechanisms: Early emergence and adaptation to photoperiod
    • Hut RA, Beersma DGM. 2011. Evolution of time-keeping mechanisms: Early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. B 366:2141-54
    • (2011) Philos. Trans. R. Soc. B , vol.366 , pp. 2141-2154
    • Hut, R.A.1    Dgm, B.2
  • 185
    • 34249703509 scopus 로고    scopus 로고
    • The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents
    • Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. 2007. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282:11885-92
    • (2007) J. Biol. Chem , vol.282 , pp. 11885-11892
    • Peskin, A.V.1    Low, F.M.2    Paton, L.N.3    Maghzal, G.J.4    Hampton, M.B.5    Winterbourn, C.C.6
  • 186
    • 49349085256 scopus 로고    scopus 로고
    • Redox compartmentalization in eukaryotic cells
    • Go Y-M, Jones DP. 2008. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780:1273-90
    • (2008) Biochim. Biophys. Acta , vol.1780 , pp. 1273-1290
    • Go, Y.-M.1    Jones, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.