-
2
-
-
0001407680
-
Circadian rhythms in man
-
Aschoff J. 1965. Circadian rhythms in man. Science 148:1427-32
-
(1965)
Science
, vol.148
, pp. 1427-1432
-
-
Aschoff, J.1
-
3
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
Wijnen H, Young MW. 2006. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40:409-48
-
(2006)
Annu. Rev. Genet
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
4
-
-
77951889295
-
The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
-
Dibner C, Schibler U, Albrecht U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72:517-49
-
(2010)
Annu. Rev. Physiol
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
5
-
-
79955840690
-
The cyanobacterial circadian system: From biophysics to bioevolution
-
Johnson CH, Stewart PL, Egli M. 2011. The cyanobacterial circadian system: from biophysics to bioevolution. Annu. Rev. Biophys. 40:143-67
-
(2011)
Annu. Rev. Biophys
, vol.40
, pp. 143-167
-
-
Johnson, C.H.1
Stewart, P.L.2
Egli, M.3
-
6
-
-
0032555144
-
Resonating circadian clocks enhance fitness in cyanobacteria
-
Ouyang Y, AnderssonCR, KondoT, Golden SS, JohnsonCH.1998. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA 95:8660-64
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 8660-8664
-
-
Ouyang, Y.1
Andersson, C.R.2
Kondo, T.3
Golden, S.S.4
Johnson, C.H.5
-
7
-
-
4344699146
-
The adaptive value of circadian clocks: An experimental assessment in cyanobacteria
-
Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. 2004. The adaptive value of circadian clocks: An experimental assessment in cyanobacteria. Curr. Biol. 14:1481-86
-
(2004)
Curr. Biol
, vol.14
, pp. 1481-1486
-
-
Woelfle, M.A.1
Ouyang, Y.2
Phanvijhitsiri, K.3
Johnson, C.H.4
-
8
-
-
22744451756
-
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
-
Dodd AN, SalathiaN, Hall A, Kevei E, TóthR, et al. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630-33
-
(2005)
Science
, vol.309
, pp. 630-633
-
-
Dodd, A.N.1
Salathia, N.2
Hall, A.3
Kevei, E.4
Tóth, R.5
-
9
-
-
72549118386
-
Healthy clocks, healthy body, healthy mind
-
Reddy AB, ONeill JS. 2010. Healthy clocks, healthy body, healthy mind. Trends Cell Biol. 20:36-44
-
(2010)
Trends Cell Biol
, vol.20
, pp. 36-44
-
-
Reddy, A.B.1
Oneill, J.S.2
-
10
-
-
0042490526
-
A clockwork web: Circadian timing in brain and periphery, in health and disease
-
Hastings MH, Reddy AB, Maywood ES. 2003. A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4:649-61
-
(2003)
Nat. Rev. Neurosci
, vol.4
, pp. 649-661
-
-
Hastings, M.H.1
Reddy, A.B.2
Maywood, E.S.3
-
11
-
-
0037006795
-
Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
-
Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12:540-50
-
(2002)
Curr. Biol
, vol.12
, pp. 540-550
-
-
Akhtar, R.A.1
Reddy, A.B.2
Maywood, E.S.3
Clayton, J.D.4
King, V.M.5
-
12
-
-
0035458732
-
Time zones: A comparative genetics of circadian clocks
-
Young MW, Kay SA. 2001. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2:702-15
-
(2001)
Nat. Rev. Genet
, vol.2
, pp. 702-715
-
-
Young, M.W.1
Kay, S.A.2
-
14
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139-48
-
(2007)
Nat. Rev. Mol. Cell Biol
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
16
-
-
79551506940
-
Post-transcriptional control of circadian rhythms
-
Kojima S, Shingle DL, Green CB. 2011. Post-transcriptional control of circadian rhythms. J. Cell Sci. 124:311-20
-
(2011)
J. Cell Sci
, vol.124
, pp. 311-320
-
-
Kojima, S.1
Shingle, D.L.2
Green, C.B.3
-
17
-
-
17244373578
-
Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
-
Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, et al. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414-15
-
(2005)
Science
, vol.308
, pp. 414-415
-
-
Nakajima, M.1
Imai, K.2
Ito, H.3
Nishiwaki, T.4
Murayama, Y.5
-
18
-
-
79251566511
-
Circadian clocks in human red blood cells
-
ONeill JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature 469:498-503
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
Oneill, J.S.1
Reddy, A.B.2
-
19
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
ONeill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, et al. 2011. Circadian rhythms persist without transcription in a eukaryote. Nature 469:554-58
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
Oneill, J.S.1
Van Ooijen, G.2
Dixon, L.E.3
Troein, C.4
Corellou, F.5
-
20
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459-64
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
Green, E.W.2
Zhao, Y.3
Van Ooijen, G.4
Olmedo, M.5
-
22
-
-
0021328737
-
Molecular genetics of a biological clock in Drosophila
-
Bargiello TA, Young MW. 1984. Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81:2142-46
-
(1984)
Proc. Natl. Acad. Sci. USA
, vol.81
, pp. 2142-2146
-
-
Bargiello, T.A.1
Young, M.W.2
-
23
-
-
0021680955
-
Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms
-
Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, et al. 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38:701-10
-
(1984)
Cell
, vol.38
, pp. 701-710
-
-
Reddy, P.1
Zehring, W.A.2
Wheeler, D.A.3
Pirrotta, V.4
Hadfield, C.5
-
24
-
-
0025044560
-
Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels
-
Hardin PE, Hall JC, Rosbash M. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536-40
-
(1990)
Nature
, vol.343
, pp. 536-540
-
-
Hardin, P.E.1
Hall, J.C.2
Rosbash, M.3
-
25
-
-
0025468873
-
Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila
-
Zerr DM, Hall JC, Rosbash M, Siwicki KK. 1990. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J. Neurosci. 10:2749-62
-
(1990)
J. Neurosci
, vol.10
, pp. 2749-2762
-
-
Zerr, D.M.1
Hall, J.C.2
Rosbash, M.3
Siwicki, K.K.4
-
26
-
-
0028258994
-
Negative feedback defining a circadian clock: Autoregulation of the clock gene frequency
-
Aronson BD, Johnson KA, Loros JJ, Dunlap JC. 1994. Negative feedback defining a circadian clock: Autoregulation of the clock gene frequency. Science 263:1578-84
-
(1994)
Science
, vol.263
, pp. 1578-1584
-
-
Aronson, B.D.1
Johnson, K.A.2
Loros, J.J.3
Dunlap, J.C.4
-
27
-
-
0032486432
-
Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim
-
Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, et al. 1998. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599-603
-
(1998)
Science
, vol.280
, pp. 1599-1603
-
-
Darlington, T.K.1
Wager-Smith, K.2
Ceriani, M.F.3
Staknis, D.4
Gekakis, N.5
-
28
-
-
17044451254
-
A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless
-
Allada R, White NE, SoWV, Hall JC, Rosbash M. 1998. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791-804
-
(1998)
Cell
, vol.93
, pp. 791-804
-
-
Allada, R.1
White, N.E.2
So, W.V.3
Hall, J.C.4
Rosbash, M.5
-
29
-
-
0032577450
-
CYCLEis a secondbHLH-PASclock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless
-
Rutila JE, SuriV, LeM, SoWV, RosbashM, Hall JC. 1998.CYCLEis a secondbHLH-PASclock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805-14
-
(1998)
Cell
, vol.93
, Issue.5
, pp. 805-814
-
-
Rutila, J.E.1
Suri, V.2
Le, M.3
So, W.V.4
Rosbash, M.5
Hall, J.C.6
-
30
-
-
0028241271
-
Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
-
Vitaterna M, King D, Chang A, Kornhauser J, Lowrey P, et al. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719-25
-
(1994)
Science
, vol.264
, pp. 719-725
-
-
Vitaterna, M.1
King, D.2
Chang, A.3
Kornhauser, J.4
Lowrey, P.5
-
31
-
-
33646130147
-
A clock shock: Mouse CLOCK is not required for circadian oscillator function
-
DeBruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. 2006. A clock shock: Mouse CLOCK is not required for circadian oscillator function. Neuron 50:465-77
-
(2006)
Neuron
, vol.50
, pp. 465-477
-
-
Debruyne, J.P.1
Noton, E.2
Lambert, C.M.3
Maywood, E.S.4
Weaver, D.R.5
Reppert, S.M.6
-
33
-
-
0032510778
-
The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
-
Hogenesch JB, Gu YZ, Jain S, Bradfield CA. 1998. The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95:5474-79
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 5474-5479
-
-
Hogenesch, J.B.1
Gu, Y.Z.2
Jain, S.3
Bradfield, C.A.4
-
34
-
-
0037178787
-
The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, et al. 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251-60
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
Damiola, F.2
Lopez-Molina, L.3
Zakany, J.4
Duboule, D.5
-
35
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-αand REV-ERB-β
-
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, et al. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-αand REV-ERB-β. Nature 485:123-27
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
Zhao, X.2
Hatori, M.3
Yu, R.T.4
Barish, G.D.5
-
36
-
-
84859329911
-
REV-ERBα and REV-ERBβ coordinately protect the circadian clock and normal metabolic function
-
Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, et al. 2012. REV-ERBα and REV-ERBβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26:657-67
-
(2012)
Genes Dev
, vol.26
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
Briggs, E.R.4
Mullican, S.E.5
-
37
-
-
79952261359
-
Genome-wide and phasespecific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. 2011. Genome-wide and phasespecific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e1000595
-
(2011)
PLoS Biol
, vol.9
-
-
Rey, G.1
Cesbron, F.2
Rougemont, J.3
Reinke, H.4
Brunner, M.5
Naef, F.6
-
38
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
KoikeN, Yoo S-H, Huang H-C, Kumar V, Lee C, et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349-54
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.-H.2
Huang, H.-C.3
Kumar, V.4
Lee, C.5
-
39
-
-
77955983063
-
Circadian control of global gene expression patterns
-
Doherty CJ, Kay SA. 2010. Circadian control of global gene expression patterns. Annu. Rev. Genet. 44:419-44
-
(2010)
Annu. Rev. Genet
, vol.44
, pp. 419-444
-
-
Doherty, C.J.1
Kay, S.A.2
-
40
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, et al. 2006. Circadian orchestration of the hepatic proteome. Curr. Biol. 16:1107-15
-
(2006)
Curr. Biol
, vol.16
, pp. 1107-1115
-
-
Reddy, A.B.1
Karp, N.A.2
Maywood, E.S.3
Sage, E.A.4
Deery, M.5
-
41
-
-
79955925912
-
Perfect timing: Epigenetic regulation of the circadian clock
-
Ripperger JA, MerrowM. 2011. Perfect timing: Epigenetic regulation of the circadian clock. FEBS Lett. 585:1406-11
-
(2011)
FEBS Lett
, vol.585
, pp. 1406-1411
-
-
Ripperger, J.A.1
Merrow, M.2
-
42
-
-
50849136513
-
Cellular circadian pacemaking and the role of cytosolic rhythms
-
Hastings MH, Maywood ES, ONeill JS. 2008. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 18:R805-15
-
(2008)
Curr. Biol
, vol.18
-
-
Hastings, M.H.1
Maywood, E.S.2
Oneill, J.S.3
-
43
-
-
47549088250
-
TheNAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, et al. 2008. TheNAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329-40
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
Sahar, S.4
Hirayama, J.5
-
44
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317-28
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
-
45
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray J-P, Yang X, DeBruyne JP, Peters AHFM, Weaver DR, et al. 2006. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281:21209-15
-
(2006)
J. Biol. Chem
, vol.281
, pp. 21209-21215
-
-
Etchegaray, J.-P.1
Yang, X.2
Debruyne, J.P.3
Ahfm, P.4
Weaver, D.R.5
-
46
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger JA, Schibler U. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369-74
-
(2006)
Nat. Genet
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
47
-
-
23944470712
-
Circadian clock control by SUMOylation of BMAL1
-
Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. 2005. Circadian clock control by SUMOylation of BMAL1. Science 309:1390-94
-
(2005)
Science
, vol.309
, pp. 1390-1394
-
-
Cardone, L.1
Hirayama, J.2
Giordano, F.3
Tamaru, T.4
Palvimo, J.J.5
Sassone-Corsi, P.6
-
48
-
-
84455161709
-
O-GlcNAcylation, novel posttranslational modification linking myocardial metabolism and cardiomyocyte circadian clock
-
Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai J-Y, et al. 2011. O-GlcNAcylation, novel posttranslational modification linking myocardial metabolism and cardiomyocyte circadian clock. J. Biol. Chem. 286:44606-19
-
(2011)
J. Biol. Chem
, vol.286
, pp. 44606-44619
-
-
Durgan, D.J.1
Pat, B.M.2
Laczy, B.3
Bradley, J.A.4
Tsai, J.-Y.5
-
49
-
-
84863230299
-
A role for O-GlcNAcylation in setting circadian clock speed
-
Kim EY, Jeong EH, Park S, Jeong H-J, Edery I, Cho JW. 2012. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26:490-502
-
(2012)
Genes Dev
, vol.26
, pp. 490-502
-
-
Kim, E.Y.1
Jeong, E.H.2
Park, S.3
Jeong, H.-J.4
Edery, I.5
Cho, J.W.6
-
50
-
-
84873351364
-
Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
-
Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y, et al. 2013. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17:291-302
-
(2013)
Cell Metab
, vol.17
, pp. 291-302
-
-
Kaasik, K.1
Kivimäe, S.2
Allen, J.J.3
Chalkley, R.J.4
Huang, Y.5
-
51
-
-
84873362932
-
O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
-
Li M-D, Ruan H-B, Hughes ME, Lee J-S, Singh JP, et al. 2013. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 17:303-10
-
(2013)
Cell Metab
, vol.17
, pp. 303-310
-
-
Li, M.-D.1
Ruan, H.-B.2
Hughes, M.E.3
Lee, J.-S.4
Singh, J.P.5
-
52
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho SIH, Maywood ES, Shaw L, Tucci V, Barnard AR, et al. 2007. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316:897-900
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Sih, G.1
Maywood, E.S.2
Shaw, L.3
Tucci, V.4
Barnard, A.R.5
-
53
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, et al. 2007. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900-4
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
Bassermann, F.2
Maiolica, A.3
Lee, C.4
Nolan, P.M.5
-
54
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka SM, Yoo S-H, Park J, Song W, Kumar V, et al. 2007. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011-23
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
Yoo, S.-H.2
Park, J.3
Song, W.4
Kumar, V.5
-
55
-
-
84874772651
-
FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
-
Hirano A, Yumimoto K, Tsunematsu R, MatsumotoM, Oyama M, et al. 2013. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152:1106-18
-
(2013)
Cell
, vol.152
, pp. 1106-1118
-
-
Hirano, A.1
Yumimoto, K.2
Tsunematsu, R.3
Matsumoto, M.4
Oyama, M.5
-
56
-
-
84874768419
-
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
-
Yoo S-H, Mohawk JA, Siepka SM, Shan Y, Huh SK, et al. 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152:1091-105
-
(2013)
Cell
, vol.152
, pp. 1091-1105
-
-
Yoo, S.-H.1
Mohawk, J.A.2
Siepka, S.M.3
Shan, Y.4
Huh, S.K.5
-
57
-
-
34848913124
-
β -TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
-
Reischl S, Vanselow K, Westermark PO, Thierfelder N, Maier B, et al. 2007. β-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22:375-86
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 375-386
-
-
Reischl, S.1
Vanselow, K.2
Westermark, P.O.3
Thierfelder, N.4
Maier, B.5
-
58
-
-
0037069671
-
Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime
-
Ko HW, Jiang J, Edery I. 2002. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420:673-78
-
(2002)
Nature
, vol.420
, pp. 673-678
-
-
Ko, H.W.1
Jiang, J.2
Edery, I.3
-
59
-
-
33745503975
-
JETLAG resets the Drosophila circadian clock by promoting lightinduced degradation of TIMELESS
-
Koh K, Zheng X, Sehgal A. 2006. JETLAG resets the Drosophila circadian clock by promoting lightinduced degradation of TIMELESS. Science 312:1809-12
-
(2006)
Science
, vol.312
, pp. 1809-1812
-
-
Koh, K.1
Zheng, X.2
Sehgal, A.3
-
60
-
-
0042237024
-
FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation
-
He Q, Cheng P, Yang Y, He Q, Yu H, Liu Y. 2003. FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J. 22:4421-30
-
(2003)
EMBO J
, vol.22
, pp. 4421-4430
-
-
He, Q.1
Cheng, P.2
Yang, Y.3
He, Q.4
Yu, H.5
Liu, Y.6
-
61
-
-
34548813657
-
ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light
-
Kim WY, Fujiwara S, Suh S-S, Kim J, Kim Y, et al. 2007. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356-60
-
(2007)
Nature
, vol.449
, pp. 356-360
-
-
Kim, W.Y.1
Fujiwara, S.2
Suh, S.-S.3
Kim, J.4
Kim, Y.5
-
62
-
-
79957491160
-
Proteasome function is required for biological timing throughout the twenty-four hour cycle
-
van Ooijen G, Dixon LE, Troein C, Millar AJ. 2011. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 21:869-75
-
(2011)
Curr. Biol
, vol.21
, pp. 869-875
-
-
Van Ooijen, G.1
Dixon, L.E.2
Troein, C.3
Millar, A.J.4
-
63
-
-
71649093603
-
Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock
-
Deery MJ, Maywood ES, Chesham JE, Sládek M, Karp NA, et al. 2009. Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Curr. Biol. 19:2031-36
-
(2009)
Curr. Biol
, vol.19
, pp. 2031-2036
-
-
Deery, M.J.1
Maywood, E.S.2
Chesham, J.E.3
Sládek, M.4
Karp, N.A.5
-
64
-
-
84874479803
-
The circadian acetylome reveals regulation of mitochondrial metabolic pathways
-
Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, et al. 2013. The circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc. Natl. Acad. Sci. USA 110:3339-44
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 3339-3344
-
-
Masri, S.1
Patel, V.R.2
Eckel-Mahan, K.L.3
Peleg, S.4
Forne, I.5
-
65
-
-
84867670963
-
Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
-
Morf J, Rey G, Schneider K, Stratmann M, Fujita J, et al. 2012. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338:379-83
-
(2012)
Science
, vol.338
, pp. 379-383
-
-
Morf, J.1
Rey, G.2
Schneider, K.3
Stratmann, M.4
Fujita, J.5
-
66
-
-
84862496485
-
Regulation of alternative splicing by the circadian clock and food-related cues
-
McGlincy NJ, Valomon A, Chesham JE, Maywood ES, Hastings MH, Ule J. 2012. Regulation of alternative splicing by the circadian clock and food-related cues. Genome Biol. 13:R54
-
(2012)
Genome Biol
, vol.13
-
-
McGlincy, N.J.1
Valomon, A.2
Chesham, J.E.3
Maywood, E.S.4
Hastings, M.H.5
Ule, J.6
-
67
-
-
84871581540
-
Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
-
Kojima S, Sher-Chen EL, Green CB. 2012. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26:2724-36
-
(2012)
Genes Dev
, vol.26
, pp. 2724-2736
-
-
Kojima, S.1
Sher-Chen, E.L.2
Green, C.B.3
-
68
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. 2012. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1:e00011
-
(2012)
ELife
, vol.1
-
-
Menet, J.S.1
Rodriguez, J.2
Abruzzi, K.C.3
Rosbash, M.4
-
69
-
-
84870288931
-
Genome-wideRNApolymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
-
Le Martelot G, Canella D, SymulL, Migliavacca E, Gilardi F, et al. 2012. Genome-wideRNApolymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10:e1001442
-
(2012)
PLoS Biol
, vol.10
-
-
Le Martelot, G.1
Canella, D.2
Symul, L.3
Migliavacca, E.4
Gilardi, F.5
-
70
-
-
84872875650
-
HistonemethyltransferaseMLL3contributes to genome-scale circadian transcription
-
Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GTJ, ONeill JS, et al. 2013. HistonemethyltransferaseMLL3contributes to genome-scale circadian transcription. Proc.Natl. Acad. Sci. USA 110:1554-59
-
(2013)
Proc.Natl. Acad. Sci. USA
, vol.110
, pp. 1554-1559
-
-
Valekunja, U.K.1
Edgar, R.S.2
Oklejewicz, M.3
Van Der Horst Gtj4
Oneill, J.S.5
-
71
-
-
84876791786
-
Connecting cellular metabolism to circadian clocks
-
Rey G, Reddy AB. 2013. Connecting cellular metabolism to circadian clocks. Trends Cell Biol. 23:234-41
-
(2013)
Trends Cell Biol
, vol.23
, pp. 234-241
-
-
Rey, G.1
Reddy, A.B.2
-
72
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651-54
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
Abrassart, D.4
Kobayashi, Y.5
-
73
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654-57
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
74
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J, Reick M, Wu LC, McKnight SL. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510-14
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
Reick, M.2
Wu, L.C.3
McKnight, S.L.4
-
75
-
-
77956627087
-
Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. 2010. Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943-53
-
(2010)
Cell
, vol.142
, pp. 943-953
-
-
Asher, G.1
Reinke, H.2
Altmeyer, M.3
Gutierrez-Arcelus, M.4
Hottiger, M.O.5
Schibler, U.6
-
76
-
-
44249094901
-
CAMP-dependent signaling as a core component of the mammalian circadian pacemaker
-
ONeill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. 2008. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949-53
-
(2008)
Science
, vol.320
, pp. 949-953
-
-
Oneill, J.S.1
Maywood, E.S.2
Chesham, J.E.3
Takahashi, J.S.4
Hastings, M.H.5
-
77
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437-40
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
Sachdeva, U.M.2
Ditacchio, L.3
Williams, E.C.4
Alvarez, J.G.5
-
78
-
-
75649101290
-
Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork
-
Hirota T, Kon N, Itagaki T, Hoshina N, Okano T, Fukada Y. 2010. Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15:111-21
-
(2010)
Genes Cells
, vol.15
, pp. 111-121
-
-
Hirota, T.1
Kon, N.2
Itagaki, T.3
Hoshina, N.4
Okano, T.5
Fukada, Y.6
-
79
-
-
0027413657
-
Two circadian oscillators in one cell
-
Roenneberg T, Morse D. 1993. Two circadian oscillators in one cell. Nature 362:362-64
-
(1993)
Nature
, vol.362
, pp. 362-364
-
-
Roenneberg, T.1
Morse, D.2
-
80
-
-
8844256589
-
Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells
-
Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. 2004. Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693-705
-
(2004)
Cell
, vol.119
, pp. 693-705
-
-
Nagoshi, E.1
Saini, C.2
Bauer, C.3
Laroche, T.4
Naef, F.5
Schibler, U.6
-
81
-
-
0031032072
-
Circadian rhythms in rapidly dividing cyanobacteria
-
Kondo T, Mori T, Lebedeva NV, Aoki S, Ishiura M, Golden SS. 1997. Circadian rhythms in rapidly dividing cyanobacteria. Science 275:224-27
-
(1997)
Science
, vol.275
, pp. 224-227
-
-
Kondo, T.1
Mori, T.2
Lebedeva, N.V.3
Aoki, S.4
Ishiura, M.5
Golden, S.S.6
-
82
-
-
79955381895
-
Mammalian genes are transcribed with widely different bursting kinetics
-
Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. 2011. Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472-74
-
(2011)
Science
, vol.332
, pp. 472-474
-
-
Suter, D.M.1
Molina, N.2
Gatfield, D.3
Schneider, K.4
Schibler, U.5
Naef, F.6
-
83
-
-
58749109143
-
Circadian gene expression is resilient to large fluctuations in overall transcription rates
-
Dibner C, Sage D, Unser M, Bauer C, dEysmond T, et al. 2009. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 28:123-34
-
(2009)
EMBO J
, vol.28
, pp. 123-134
-
-
Dibner, C.1
Sage, D.2
Unser, M.3
Bauer, C.4
Deysmond, T.5
-
84
-
-
0035102288
-
Role of molecular oscillations in generating behavioral rhythms in Drosophila
-
Yang Z, Sehgal A. 2001. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29:453-67
-
(2001)
Neuron
, vol.29
, pp. 453-467
-
-
Yang, Z.1
Sehgal, A.2
-
85
-
-
33644603280
-
Transcriptional feedback oscillators: Maybe, maybe not
-
Lakin-Thomas PL. 2006. Transcriptional feedback oscillators: maybe, maybe not . . . . J. Biol. Rhythms 21:83-92
-
(2006)
J. Biol. Rhythms
, vol.21
, pp. 83-92
-
-
Lakin-Thomas, P.L.1
-
86
-
-
0024486256
-
Circadian regulation of bioluminescence in Gonyaulax involves translational control
-
Morse D, Milos PM, Roux E, Hastings JW. 1989. Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc. Natl. Acad. Sci. USA 86:172-76
-
(1989)
Proc. Natl. Acad. Sci. USA
, vol.86
, pp. 172-176
-
-
Morse, D.1
Milos, P.M.2
Roux, E.3
Hastings, J.W.4
-
87
-
-
0028298969
-
Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3 untranslated region of its mRNA
-
MittagM, Lee DH, Hastings JW. 1994. Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3 untranslated region of its mRNA. Proc. Natl. Acad. Sci. USA 91:5257-61
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, pp. 5257-5261
-
-
Mittag, M.1
Lee, D.H.2
Hastings, J.W.3
-
88
-
-
33749031807
-
Molecular components of themammalian circadian clock
-
Ko CH, Takahashi JS. 2006. Molecular components of themammalian circadian clock. Hum. Mol. Genet. 15:R271-77
-
(2006)
Hum. Mol. Genet
, vol.15
-
-
Ko, C.H.1
Takahashi, J.S.2
-
89
-
-
33751565112
-
Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
-
McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, et al. 2006. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314:1304-8
-
(2006)
Science
, vol.314
, pp. 1304-1308
-
-
McDearmon, E.L.1
Patel, K.N.2
Ko, C.H.3
Walisser, J.A.4
Schook, A.C.5
-
90
-
-
84890015150
-
Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration
-
Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, et al. 2013. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Investig. 123:5389-400
-
(2013)
J. Clin. Investig
, vol.123
, pp. 5389-5400
-
-
Musiek, E.S.1
Lim, M.M.2
Yang, G.3
Bauer, A.Q.4
Qi, L.5
-
91
-
-
78149369911
-
Emergence of noise-induced oscillations in the central circadian pacemaker
-
Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, et al. 2010. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol. 8:e1000513
-
(2010)
PLoS Biol
, vol.8
-
-
Ko, C.H.1
Yamada, Y.R.2
Welsh, D.K.3
Buhr, E.D.4
Liu, A.C.5
-
92
-
-
80052185196
-
A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits
-
Maywood ES, Chesham JE, OBrien JA, Hastings MH. 2011. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc. Natl. Acad. Sci. USA 108:14306-11
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 14306-14311
-
-
Maywood, E.S.1
Chesham, J.E.2
Obrien, J.A.3
Hastings, M.H.4
-
93
-
-
84877768157
-
Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus
-
Ono D, Honma S, Honma K-I. 2013. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat. Commun. 4:1666
-
(2013)
Nat. Commun
, vol.4
, pp. 1666
-
-
Ono, D.1
Honma, S.2
Honma, K.-I.3
-
94
-
-
0023203621
-
Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine
-
Honma K, Honma S, Hiroshige T. 1987. Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine. Physiol. Behav. 40:767-74
-
(1987)
Physiol. Behav
, vol.40
, pp. 767-774
-
-
Honma, K.1
Honma, S.2
Hiroshige, T.3
-
96
-
-
62549090648
-
The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes
-
Mohawk JA, Baer ML, Menaker M. 2009. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc. Natl. Acad. Sci. USA 106:3519-24
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 3519-3524
-
-
Mohawk, J.A.1
Baer, M.L.2
Menaker, M.3
-
97
-
-
0014258550
-
Self-oscillations in glycolysis 1 A simple kinetic model
-
Selkov EE. 1968. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4:79-86
-
(1968)
Eur. J. Biochem
, vol.4
, pp. 79-86
-
-
Selkov, E.E.1
-
98
-
-
0015419716
-
Dissipative structures for an allosteric model Application to glycolytic oscillations
-
Goldbeter A, Lefever R. 1972. Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12:1302-15
-
(1972)
Biophys. J
, vol.12
, pp. 1302-1315
-
-
Goldbeter, A.1
Lefever, R.2
-
99
-
-
84890678355
-
A model based on receptor desensitization for cyclic AMP signaling in dictyostelium cells
-
Martiel JL, Goldbeter A. 1987. A model based on receptor desensitization for cyclic AMP signaling in dictyostelium cells. Biophys. J. 52:807-28
-
(1987)
Biophys. J
, vol.52
, pp. 807-828
-
-
Martiel, J.L.1
Goldbeter, A.2
-
100
-
-
45149141570
-
Spiral waves of cyclic AMP in a model of slime mold aggregation
-
Tyson JJ, Alexander KA, Manoranjan VS. 1989. Spiral waves of cyclic AMP in a model of slime mold aggregation. Physica D 34: 193-207
-
(1989)
Physica D
, vol.34
, pp. 193-207
-
-
Tyson, J.J.1
Alexander, K.A.2
Manoranjan, V.S.3
-
101
-
-
0022253422
-
Biochemical modeling of an autonomously oscillatory circadian clock in Euglena
-
Goto K, Laval-Martin DL, Edmunds LN. 1985. Biochemical modeling of an autonomously oscillatory circadian clock in Euglena. Science 228:1284-88
-
(1985)
Science
, vol.228
, pp. 1284-1288
-
-
Goto, K.1
Laval-Martin, D.L.2
Edmunds, L.N.3
-
102
-
-
0028817878
-
Circadian oscillations of cytosolic and chloroplastic free calcium in plants
-
Johnson CH, KnightMR, KondoT, Masson P, Sedbrook J, et al. 1995. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863-65
-
(1995)
Science
, vol.269
, pp. 1863-1865
-
-
Johnson, C.H.1
Knight, M.R.2
Kondo, T.3
Masson, P.4
Sedbrook, J.5
-
103
-
-
0016000987
-
A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes
-
Sweeney BM. 1974. A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. Int. J. Chronobiol. 2:25-33
-
(1974)
Int. J. Chronobiol
, vol.2
, pp. 25-33
-
-
Sweeney, B.M.1
-
104
-
-
0016220085
-
Membrane model for the circadian clock
-
Njus D, Sulzman FM, Hastings JW. 1974. Membrane model for the circadian clock. Nature 248:116-20
-
(1974)
Nature
, vol.248
, pp. 116-120
-
-
Njus, D.1
Sulzman, F.M.2
Hastings, J.W.3
-
105
-
-
0017625682
-
Circadian rhythms in unicellular organisms: An endeavor to explain the molecular mechanism
-
Schweiger HG, SchweigerM. 1977. Circadian rhythms in unicellular organisms: An endeavor to explain the molecular mechanism. Int. Rev. Cytol. 51:315-42
-
(1977)
Int. Rev. Cytol
, vol.51
, pp. 315-342
-
-
Schweiger, H.G.1
Schweiger, M.2
-
106
-
-
0018092025
-
A model for the molecular basis of circadian rhythm involving monovalent ionmediated translational control
-
Burgoyne RD. 1978. A model for the molecular basis of circadian rhythm involving monovalent ionmediated translational control. FEBS Lett. 94:17-19
-
(1978)
FEBS Lett
, vol.94
, pp. 17-19
-
-
Burgoyne, R.D.1
-
107
-
-
0007765997
-
Persistence of a photosynthetic rhythm in enucleated Acetabularia
-
Sweeney BM, Haxo FT. 1961. Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134:1361-63
-
(1961)
Science
, vol.134
, pp. 1361-1363
-
-
Sweeney, B.M.1
Haxo, F.T.2
-
108
-
-
0039209611
-
Endogenous circadian rhythm in cytoplasm of Acetabularia: Influence of the nucleus
-
Schweiger E, Wallraff HG, Schweiger HG. 1964. Endogenous circadian rhythm in cytoplasm of Acetabularia: Influence of the nucleus. Science 146:658-59
-
(1964)
Science
, vol.146
, pp. 658-659
-
-
Schweiger, E.1
Wallraff, H.G.2
Schweiger, H.G.3
-
109
-
-
0016830138
-
The effect of different inhibitors of transcription and translation on the expression and control of circadian rhythm in individual cells of Acetabularia
-
Mergenhagen D, Schweiger HG. 1975. The effect of different inhibitors of transcription and translation on the expression and control of circadian rhythm in individual cells of Acetabularia. Exp. Cell Res. 94:321-26
-
(1975)
Exp. Cell Res
, vol.94
, pp. 321-326
-
-
Mergenhagen, D.1
Schweiger, H.G.2
-
110
-
-
0017196098
-
2+-dependent ATPase activity in human red blood cell membranes in vitro
-
2+-dependent ATPase activity in human red blood cell membranes in vitro. Biochem. Biophys. Res. Commun. 71:1269-72
-
(1976)
Biochem. Biophys. Res. Commun
, vol.71
, pp. 1269-1272
-
-
Cornelius, G.1
Rensing, L.2
-
111
-
-
0022393529
-
Glutathione levels in human platelets display a circadian rhythm in vitro
-
Radha E, Hill TD, Rao GH, White JG. 1985. Glutathione levels in human platelets display a circadian rhythm in vitro. Thromb. Res. 40:823-31
-
(1985)
Thromb. Res
, vol.40
, pp. 823-831
-
-
Radha, E.1
Hill, T.D.2
Rao, G.H.3
White, J.G.4
-
112
-
-
12244296161
-
No transcription-translation feedback in circadian rhythm of KaiC phosphorylation
-
Tomita J, Nakajima M, Kondo T, Iwasaki H. 2005. No transcription- translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251-54
-
(2005)
Science
, vol.307
, pp. 251-254
-
-
Tomita, J.1
Nakajima, M.2
Kondo, T.3
Iwasaki, H.4
-
113
-
-
37549018348
-
Ordered phosphorylation governs oscillation of a three-protein circadian clock
-
Rust MJ, Markson JS, LaneWS, Fisher DS, OShea EK. 2007. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809-12
-
(2007)
Science
, vol.318
, pp. 809-812
-
-
Rust, M.J.1
Markson, J.S.2
Lane, W.S.3
Fisher, D.S.4
Oshea, E.K.5
-
114
-
-
34548382214
-
A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria
-
Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R, et al. 2007. A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. 26:4029-37
-
(2007)
EMBO J
, vol.26
, pp. 4029-4037
-
-
Nishiwaki, T.1
Satomi, Y.2
Kitayama, Y.3
Terauchi, K.4
Kiyohara, R.5
-
115
-
-
51349134181
-
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria
-
Kim Y-I, Dong G, Carruthers CW, Golden SS, Li Wang A. 2008. The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. USA 105:12825-30
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 12825-12830
-
-
Kim, Y.-I.1
Dong, G.2
Carruthers, C.W.3
Golden, S.S.4
Li Wang, A.5
-
116
-
-
78651453820
-
Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator
-
Rust MJ, Golden SS, OShea EK. 2011. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220-23
-
(2011)
Science
, vol.331
, pp. 220-223
-
-
Rust, M.J.1
Golden, S.S.2
Oshea, E.K.3
-
117
-
-
17144372902
-
LdpA: A component of the circadian clock senses redox state of the cell
-
Ivleva NB, BramlettMR, Lindahl PA, Golden SS. 2005. LdpA: A component of the circadian clock senses redox state of the cell. EMBO J. 24:1202-10
-
(2005)
EMBO J
, vol.24
, pp. 1202-1210
-
-
Ivleva, N.B.1
Bramlett, M.R.2
Lindahl, P.A.3
Golden, S.S.4
-
118
-
-
77950528207
-
TheKaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor
-
Wood TL, Bridwell-Rabb J, Kim Y-I, Gao T, Chang Y-G, et al. 2010. TheKaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc. Natl. Acad. Sci. USA 107:5804-9
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 5804-5809
-
-
Wood, T.L.1
Bridwell-Rabb, J.2
Kim, Y.-I.3
Gao, T.4
Chang, Y.-G.5
-
119
-
-
44849136755
-
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria
-
Kitayama Y, Nishiwaki T, Terauchi K, Kondo T. 2008. Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev. 22:1513-21
-
(2008)
Genes Dev
, vol.22
, pp. 1513-1521
-
-
Kitayama, Y.1
Nishiwaki, T.2
Terauchi, K.3
Kondo, T.4
-
120
-
-
77954703765
-
Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system
-
Qin X, Byrne M, Xu Y, Mori T, Johnson CH. 2010. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol. 8:e1000394
-
(2010)
PLoS Biol
, vol.8
-
-
Qin, X.1
Byrne, M.2
Xu, Y.3
Mori, T.4
Johnson, C.H.5
-
121
-
-
78651071941
-
Robust circadian clocks from coupled proteinmodification and transcription-translation cycles
-
Zwicker D, Lubensky DK, ten Wolde PR. 2010. Robust circadian clocks from coupled proteinmodification and transcription-translation cycles. Proc. Natl. Acad. Sci. USA 107:22540-45
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 22540-22545
-
-
Zwicker, D.1
Lubensky, D.K.2
Ten Wolde, P.R.3
-
122
-
-
84877587194
-
Robust circadian oscillations in growing cyanobacteria require transcriptional feedback
-
Teng SW, Mukherji S, Moffitt JR, de Buyl S, OShea EK. 2013. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340:737-40
-
(2013)
Science
, vol.340
, pp. 737-740
-
-
Teng, S.W.1
Mukherji, S.2
Moffitt, J.R.3
De Buyl, S.4
Oshea, E.K.5
-
123
-
-
84868139341
-
A design principle for a posttranslational biochemical oscillator
-
Jolley CC, Ode KL, Ueda HR. 2012. A design principle for a posttranslational biochemical oscillator. Cell Rep. 2:938-50
-
(2012)
Cell Rep
, vol.2
, pp. 938-950
-
-
Jolley, C.C.1
Ode, K.L.2
Ueda, H.R.3
-
124
-
-
84870951025
-
Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans
-
Olmedo M, ONeill JS, Edgar RS, Valekunja UK, Reddy AB, Merrow M. 2012. Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109:20479-84
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 20479-20484
-
-
Olmedo, M.1
Oneill, J.S.2
Edgar, R.S.3
Valekunja, U.K.4
Reddy, A.B.5
Merrow, M.6
-
125
-
-
64149085448
-
Typical 2-Cys peroxiredoxins: Structures, mechanisms and functions
-
Hall A, Karplus PA, Poole LB. 2009. Typical 2-Cys peroxiredoxins: structures, mechanisms and functions. FEBS J. 276:2469-77
-
(2009)
FEBS J
, vol.276
, pp. 2469-2477
-
-
Hall, A.1
Karplus, P.A.2
Poole, L.B.3
-
126
-
-
34547441421
-
Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significance
-
Rhee SG, Jeong W, Chang T-S, Woo HA. 2007. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significance. Kidney Int. 72:S3-S8
-
(2007)
Kidney Int
, vol.72
-
-
Rhee, S.G.1
Jeong, W.2
Chang, T.-S.3
Woo, H.A.4
-
127
-
-
38749094500
-
The catalytic mechanism of peroxiredoxins
-
Poole LB. 2007. The catalytic mechanism of peroxiredoxins. Subcell. Biochem. 44:61-81
-
(2007)
Subcell. Biochem
, vol.44
, pp. 61-81
-
-
Poole, L.B.1
-
128
-
-
84869036539
-
Circadian topology of metabolism
-
Bass J. 2012. Circadian topology of metabolism. Nature 491:348-56
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
129
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
-
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, et al. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414-21
-
(2007)
Cell Metab
, vol.6
, pp. 414-421
-
-
Kohsaka, A.1
Laposky, A.D.2
Ramsey, K.M.3
Estrada, C.4
Joshu, C.5
-
130
-
-
84860383862
-
Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption
-
Buxton OM, Cain SW, OConnor SP, Porter JH, Duffy JF, et al. 2012. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl.Med. 4:129ra43
-
(2012)
Sci. Transl.Med
, vol.4
-
-
Buxton, O.M.1
Cain, S.W.2
Oconnor, S.P.3
Porter, J.H.4
Duffy, J.F.5
-
131
-
-
0346668332
-
NPAS2: A gas-responsive transcription factor
-
Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-GonzalezM-A, McKnight SL. 2002. NPAS2: A gas-responsive transcription factor. Science 298:2385-87
-
(2002)
Science
, vol.298
, pp. 2385-2387
-
-
Dioum, E.M.1
Rutter, J.2
Tuckerman, J.R.3
Gonzalez, G.4
Gilles-Gonzalez, M.-A.5
McKnight, S.L.6
-
132
-
-
37249086610
-
REV-ERBα, a heme sensor that coordinates metabolic and circadian pathways
-
Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, et al. 2007. REV-ERBα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786-89
-
(2007)
Science
, vol.318
, pp. 1786-1789
-
-
Yin, L.1
Wu, N.2
Curtin, J.C.3
Qatanani, M.4
Szwergold, N.R.5
-
133
-
-
79953012491
-
Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor REV-ERBα
-
Gupta N, Ragsdale SW. 2011. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor REV-ERBα. J. Biol. Chem. 286:4392-403
-
(2011)
J. Biol. Chem
, vol.286
, pp. 4392-4403
-
-
Gupta, N.1
Ragsdale, S.W.2
-
134
-
-
47949112304
-
A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
-
Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, et al. 2008. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 28:4697-711
-
(2008)
Mol. Cell. Biol
, vol.28
, pp. 4697-4711
-
-
Yang, J.1
Kim, K.D.2
Lucas, A.3
Drahos, K.E.4
Santos, C.S.5
-
135
-
-
84856090681
-
Connecting threads: Epigenetics andmetabolism
-
Katada S, Imhof A, Sassone-Corsi P. 2012. Connecting threads: Epigenetics andmetabolism. Cell 148:24-28
-
(2012)
Cell
, vol.148
, pp. 24-28
-
-
Katada, S.1
Imhof, A.2
Sassone-Corsi, P.3
-
136
-
-
0033603555
-
Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator
-
Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, et al. 1999. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274:18157-60
-
(1999)
J. Biol. Chem
, vol.274
, pp. 18157-18160
-
-
Tanner, K.G.1
Trievel, R.C.2
Kuo, M.H.3
Howard, R.M.4
Berger, S.L.5
-
137
-
-
84867420625
-
On acetyl-CoA as a gauge of cellular metabolic state
-
Cai L, Tu BP. 2011. On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb. Symp. Quant. Biol. 76:195-202
-
(2011)
Cold Spring Harb. Symp. Quant. Biol
, vol.76
, pp. 195-202
-
-
Cai, L.1
Tu, B.P.2
-
138
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834-40
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
Nielsen, M.L.4
Rehman, M.5
-
139
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao S, Xu W, Jiang W, Yu W, Lin Y, et al. 2010. Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000-4
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
Xu, W.2
Jiang, W.3
Yu, W.4
Lin, Y.5
-
140
-
-
79959381299
-
Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease
-
Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. 2011. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80:825-58
-
(2011)
Annu. Rev. Biochem
, vol.80
, pp. 825-858
-
-
Hart, G.W.1
Slawson, C.2
Ramirez-Correa, G.3
Lagerlof, O.4
-
142
-
-
0017339770
-
Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue
-
Isaacs J, Binkley F. 1977. Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue. Biochim. Biophys. Acta 497:192-204
-
(1977)
Biochim. Biophys. Acta
, vol.497
, pp. 192-204
-
-
Isaacs, J.1
Binkley, F.2
-
143
-
-
0017380975
-
Cyclic AMP-dependent control of the rat hepatic glutathione disulfidesulfhydryl ratio
-
Isaacs JT, Binkley F. 1977. Cyclic AMP-dependent control of the rat hepatic glutathione disulfidesulfhydryl ratio. Biochim. Biophys. Acta 498:29-38
-
(1977)
Biochim. Biophys. Acta
, vol.498
, pp. 29-38
-
-
Isaacs, J.T.1
Binkley, F.2
-
144
-
-
0019821550
-
Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet
-
Robinson JL, Foustock S, Chanez M, Bois-Joyeux B, Peret J. 1981. Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet. J. Nutr. 111:1711-20
-
(1981)
J. Nutr
, vol.111
, pp. 1711-1720
-
-
Robinson, J.L.1
Foustock, S.2
Chanez, M.3
Bois-Joyeux, B.4
Peret, J.5
-
145
-
-
0021231801
-
Analysis of the circadian rhythm in energy metabolism of rat liver
-
Kaminsky YG, Kosenko EA, Kondrashova MN. 1984. Analysis of the circadian rhythm in energy metabolism of rat liver. Int. J. Biochem. 16:629-39
-
(1984)
Int. J. Biochem
, vol.16
, pp. 629-639
-
-
Kaminsky, Y.G.1
Kosenko, E.A.2
Kondrashova, M.N.3
-
146
-
-
0025970306
-
Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver
-
Bélanger PM, DesgagnéM, Bruguerolle B. 1991. Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver. Drug Metab. Dispos. 19:241-44
-
(1991)
Drug Metab. Dispos
, vol.19
, pp. 241-244
-
-
Bélanger, P.M.1
Desgagné, M.2
Bruguerolle, B.3
-
147
-
-
80052523535
-
The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors
-
Scheer FAJL, Michelson AD, Frelinger AL, Evoniuk H, Kelly EE, et al. 2011. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS ONE 6:e24549
-
(2011)
PLoS ONE
, vol.6
-
-
Fajl, S.1
Michelson, A.D.2
Frelinger, A.L.3
Evoniuk, H.4
Kelly, E.E.5
-
150
-
-
35648973259
-
Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish
-
Hirayama J, Cho S, Sassone-Corsi P. 2007. Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish. Proc. Natl. Acad. Sci. USA 104:15747-52
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 15747-15752
-
-
Hirayama, J.1
Cho, S.2
Sassone-Corsi, P.3
-
151
-
-
48349130341
-
Circadian regulation of response to oxidative stress in Drosophila melanogaster
-
Krishnan N, Davis AJ, Giebultowicz JM. 2008. Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 374:299-303
-
(2008)
Biochem. Biophys. Res. Commun
, vol.374
, pp. 299-303
-
-
Krishnan, N.1
Davis, A.J.2
Giebultowicz, J.M.3
-
152
-
-
84870587629
-
Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster
-
Beaver LM, Klichko VI, Chow ES, Kotwica-Rolinska J, WilliamsonM, et al. 2012. Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PLoS ONE 7:e50454
-
(2012)
PLoS ONE
, vol.7
-
-
Beaver, L.M.1
Klichko, V.I.2
Chow, E.S.3
Kotwica-Rolinska, J.4
Williamson, M.5
-
153
-
-
84865080952
-
Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
-
Wang TA, Yu YV, Govindaiah G, Ye X, Artinian L, et al. 2012. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337:839-42
-
(2012)
Science
, vol.337
, pp. 839-842
-
-
Wang, T.A.1
Yu, Y.V.2
Govindaiah, G.3
Ye, X.4
Artinian, L.5
-
154
-
-
84861964383
-
Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
-
Kil IS, Lee SK, Ryu KW, Woo HA, Hu M-C, et al. 2012. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46:584-94
-
(2012)
Mol. Cell
, vol.46
, pp. 584-594
-
-
Kil, I.S.1
Lee, S.K.2
Ryu, K.W.3
Woo, H.A.4
Hu, M.-C.5
-
155
-
-
82555185702
-
Cross-talk between the cellular redox state and the circadian system in Neurospora
-
Yoshida Y, Iigusa H, Wang N, Hasunuma K. 2011. Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS ONE 6:e28227
-
(2011)
PLoS ONE
, vol.6
-
-
Yoshida, Y.1
Iigusa, H.2
Wang, N.3
Hasunuma, K.4
-
156
-
-
38349068562
-
Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa
-
YoshidaY, Maeda T, Lee B, HasunumaK. 2008. Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa. Mol. Genet. Genomics 279:193-202
-
(2008)
Mol. Genet. Genomics
, vol.279
, pp. 193-202
-
-
Yoshida, Y.1
Maeda, T.2
Lee, B.3
Hasunuma, K.4
-
157
-
-
84874936227
-
Reactive oxygen species can modulate circadian phase and period in Neurospora crassa
-
Gyöngyösi N, Nagy D, Makara K, Ella K, Käldi K. 2013. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic. Biol. Med. 58:134-43
-
(2013)
Free Radic. Biol. Med
, vol.58
, pp. 134-143
-
-
Gyöngyösi, N.1
Nagy, D.2
Makara, K.3
Ella, K.4
Käldi, K.5
-
158
-
-
10944237769
-
Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
-
Chang T-S, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. 2004. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279:50994-1001
-
(2004)
J. Biol. Chem
, vol.279
, pp. 50994-51001
-
-
Chang, T.-S.1
Jeong, W.2
Woo, H.A.3
Lee, S.M.4
Park, S.5
Rhee, S.G.6
-
159
-
-
0037064080
-
Inactivation of human peroxiredoxin i during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
-
Yang K-S, Kang SW, Woo HA, Hwang SC, Chae HZ, et al. 2002. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277:38029-36
-
(2002)
J. Biol. Chem
, vol.277
, pp. 38029-38036
-
-
Yang, K.-S.1
Kang, S.W.2
Woo, H.A.3
Hwang, S.C.4
Chae, H.Z.5
-
160
-
-
78650883333
-
Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution
-
Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, et al. 2011. Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. EMBO J. 30:68-78
-
(2011)
EMBO J
, vol.30
, pp. 68-78
-
-
Murayama, Y.1
Mukaiyama, A.2
Imai, K.3
Onoue, Y.4
Tsunoda, A.5
-
161
-
-
84869137280
-
Toward the beginning of time: Circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells
-
Paulose JK, Rucker EB, Cassone VM. 2012. Toward the beginning of time: Circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS ONE 7:e49555
-
(2012)
PLoS ONE
, vol.7
-
-
Paulose, J.K.1
Rucker, E.B.2
Cassone, V.M.3
-
162
-
-
21344470923
-
Circadian rhythms from multiple oscillators: Lessons from diverse organisms
-
Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, et al. 2005. Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat. Rev. Genet. 6:544-56
-
(2005)
Nat. Rev. Genet
, vol.6
, pp. 544-556
-
-
Bell-Pedersen, D.1
Cassone, V.M.2
Earnest, D.J.3
Golden, S.S.4
Hardin, P.E.5
-
163
-
-
17244374730
-
Caenorhabditis elegans opens up new insights into circadian clock mechanisms
-
Hasegawa K, Saigusa T, Tamai Y. 2005. Caenorhabditis elegans opens up new insights into circadian clock mechanisms. Chronobiol. Int. 22:1-19
-
(2005)
Chronobiol. Int
, vol.22
, pp. 1-19
-
-
Hasegawa, K.1
Saigusa, T.2
Tamai, Y.3
-
164
-
-
0013770047
-
Oscillations of glycolytic intermediates in yeast cells
-
Ghosh A, Chance B. 1964. Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun. 16:174-81
-
(1964)
Biochem. Biophys. Res. Commun
, vol.16
, pp. 174-181
-
-
Ghosh, A.1
Chance, B.2
-
165
-
-
0141727003
-
Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract
-
Chance B, Schoener B, Elsässer S. 1964. Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract. Proc. Natl. Acad. Sci. USA 52:337-41
-
(1964)
Proc. Natl. Acad. Sci. USA
, vol.52
, pp. 337-341
-
-
Chance, B.1
Schoener, B.2
Elsässer, S.3
-
167
-
-
0014277349
-
Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts
-
Frenkel R. 1968. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. Arch. Biochem. Biophys. 125:151-56
-
(1968)
Arch. Biochem. Biophys
, vol.125
, pp. 151-156
-
-
Frenkel, R.1
-
168
-
-
0026653686
-
Oscillations of lactate released from islets of Langerhans: Evidence for oscillatory glycolysis in β-cells
-
Chou HF, Berman N, Ipp E 1992. Oscillations of lactate released from islets of Langerhans: Evidence for oscillatory glycolysis in β-cells. Am. J. Physiol. Endocrinol. Metab. 262:800-5
-
(1992)
Am. J. Physiol. Endocrinol. Metab
, vol.262
, pp. 800-805
-
-
Chou, H.F.1
Berman, N.2
Ipp, E.3
-
169
-
-
0028037717
-
Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells
-
ORourke B, Ramza BM, Marban E 1994. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265:962-66
-
(1994)
Science
, vol.265
, pp. 962-966
-
-
Orourke, B.1
Ramza, B.M.2
Marban, E.3
-
171
-
-
0016829888
-
Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation
-
Selkov EE. 1975. Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 59:151-57
-
(1975)
Eur. J. Biochem
, vol.59
, pp. 151-157
-
-
Selkov, E.E.1
-
172
-
-
0014108715
-
Biological rhythms and the behavior of populations of coupled oscillators
-
Winfree AT. 1967. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16:15-42
-
(1967)
J. Theor. Biol
, vol.16
, pp. 15-42
-
-
Winfree, A.T.1
-
173
-
-
0014486609
-
Populations of interacting oscillators and circadian rhythms
-
Pavlidis T. 1969. Populations of interacting oscillators and circadian rhythms. J. Theor. Biol. 22:418-36
-
(1969)
J. Theor. Biol
, vol.22
, pp. 418-436
-
-
Pavlidis, T.1
-
174
-
-
27944487902
-
Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
-
Tu BP, Kudlicki A, Rowicka M, McKnight SL. 2005. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science 310:1152-58
-
(2005)
Science
, vol.310
, pp. 1152-1158
-
-
Tu, B.P.1
Kudlicki, A.2
Rowicka, M.3
McKnight, S.L.4
-
176
-
-
36749067297
-
Cyclic changes in metabolic state during the life of a yeast cell
-
Tu BP, Mohler RE, Liu JC, Dombek KM, Young ET, et al. 2007. Cyclic changes in metabolic state during the life of a yeast cell. Proc. Natl. Acad. Sci. USA 104:16886-91
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 16886-16891
-
-
Tu, B.P.1
Mohler, R.E.2
Liu, J.C.3
Dombek, K.M.4
Young, E.T.5
-
178
-
-
84881440066
-
Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp ATCC 51142
-
Cerveny̌ J, Sinetova MA, Valledor L, Sherman LA, Nedbal L. 2013. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp ATCC 51142. Proc. Natl. Acad. Sci. USA 110:13210-15
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 13210-13215
-
-
Cerveny̌, J.1
Sinetova, M.A.2
Valledor, L.3
Sherman, L.A.4
Nedbal, L.5
-
179
-
-
0141528621
-
Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature
-
Carey HV, Andrews MT, Martin SL. 2003. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83:1153-81
-
(2003)
Physiol. Rev
, vol.83
, pp. 1153-1181
-
-
Carey, H.V.1
Andrews, M.T.2
Martin, S.L.3
-
180
-
-
33747591416
-
Metabolic cycles as an underlying basis of biological oscillations
-
Tu BP, McKnight SL. 2006. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7:696-701
-
(2006)
Nat. Rev. Mol. Cell Biol
, vol.7
, pp. 696-701
-
-
Tu, B.P.1
McKnight, S.L.2
-
181
-
-
0027349267
-
Temporal organization: Reflections of a Darwinian clock-watcher
-
Pittendrigh CS. 1993. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55:16-54
-
(1993)
Annu. Rev. Physiol
, vol.55
, pp. 16-54
-
-
Pittendrigh, C.S.1
-
182
-
-
0029790052
-
Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours
-
Mori T, Binder B, Johnson CH. 1996. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl. Acad. Sci. USA 93:10183-88
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, pp. 10183-10188
-
-
Mori, T.1
Binder, B.2
Johnson, C.H.3
-
183
-
-
79959404050
-
Evolution of time-keeping mechanisms: Early emergence and adaptation to photoperiod
-
Hut RA, Beersma DGM. 2011. Evolution of time-keeping mechanisms: Early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. B 366:2141-54
-
(2011)
Philos. Trans. R. Soc. B
, vol.366
, pp. 2141-2154
-
-
Hut, R.A.1
Dgm, B.2
-
185
-
-
34249703509
-
The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents
-
Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. 2007. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282:11885-92
-
(2007)
J. Biol. Chem
, vol.282
, pp. 11885-11892
-
-
Peskin, A.V.1
Low, F.M.2
Paton, L.N.3
Maghzal, G.J.4
Hampton, M.B.5
Winterbourn, C.C.6
-
186
-
-
49349085256
-
Redox compartmentalization in eukaryotic cells
-
Go Y-M, Jones DP. 2008. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780:1273-90
-
(2008)
Biochim. Biophys. Acta
, vol.1780
, pp. 1273-1290
-
-
Go, Y.-M.1
Jones, D.P.2
|