메뉴 건너뛰기




Volumn 28, Issue 18, 2014, Pages 1989-1998

Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and period proteins in the mammalian circadian clock

Author keywords

Circadian; Cryptochrome; DNA binding; Period; Transcription

Indexed keywords

CRYPTOCHROME 1; CRYPTOCHROME 2; PER1 PROTEIN; PER2 PROTEIN; PROTEIN BMAL1; TRANSCRIPTION FACTOR CLOCK; CIRCADIAN RHYTHM SIGNALING PROTEIN; CRY1 PROTEIN, MOUSE; CRYPTOCHROME; MULTIPROTEIN COMPLEX; PER2 PROTEIN, MOUSE; TRANSCRIPTION FACTOR ARNTL;

EID: 84907146186     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.249417.114     Document Type: Article
Times cited : (177)

References (55)
  • 2
    • 84896736467 scopus 로고    scopus 로고
    • Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression
    • Annayev Y, Adar S, Chiou YY, Lieb JD, Sancar A, Ye R. 2014. Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. J Biol Chem 289: 5013-5024.
    • (2014) J Biol Chem , vol.289 , pp. 5013-5024
    • Annayev, Y.1    Adar, S.2    Chiou, Y.Y.3    Lieb, J.D.4    Sancar, A.5    Ye, R.6
  • 3
    • 0034989269 scopus 로고    scopus 로고
    • Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock
    • Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. 2001. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525-536.
    • (2001) Neuron , vol.30 , pp. 525-536
    • Bae, K.1    Jin, X.2    Maywood, E.S.3    Hastings, M.H.4    Reppert, S.M.5    Weaver, D.R.6
  • 9
    • 70449093653 scopus 로고    scopus 로고
    • Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
    • Chen R, Schirmer A, Lee Y, Lee H, Kumar V, Yoo SH, Takahashi JS, Lee C. 2009. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36: 417-430.
    • (2009) Mol Cell , vol.36 , pp. 417-430
    • Chen, R.1    Schirmer, A.2    Lee, Y.3    Lee, H.4    Kumar, V.5    Yoo, S.H.6    Takahashi, J.S.7    Lee, C.8
  • 11
  • 13
    • 84893787747 scopus 로고    scopus 로고
    • Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
    • Duong HA, Weitz CJ. 2014. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol 21: 126-132.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 126-132
    • Duong, H.A.1    Weitz, C.J.2
  • 14
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • Duong HA, Robles MS, Knutti D, Weitz CJ. 2011. A molecular mechanism for circadian clock negative feedback. Science 332: 1436-1439.
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.A.1    Robles, M.S.2    Knutti, D.3    Weitz, C.J.4
  • 15
    • 0037053314 scopus 로고    scopus 로고
    • The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Ie
    • Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. 2002. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Ie. J Biol Chem 277: 17248-17254.
    • (2002) J Biol Chem , vol.277 , pp. 17248-17254
    • Eide, E.J.1    Vielhaber, E.L.2    Hinz, W.A.3    Virshup, D.M.4
  • 16
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray JP, Lee C, Wade PA, Reppert SM. 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421: 177-182.
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.P.1    Lee, C.2    Wade, P.A.3    Reppert, S.M.4
  • 17
    • 85000348523 scopus 로고    scopus 로고
    • Emerging models for the molecular basis of mammalian circadian timing
    • in press
    • Gustafson CL, Partch CL. 2014. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry (in press).
    • (2014) Biochemistry
    • Gustafson, C.L.1    Partch, C.L.2
  • 18
    • 84884355792 scopus 로고    scopus 로고
    • Circadian timekeeping and output mechanisms in animals
    • Hardin PE, Panda S. 2013. Circadian timekeeping and output mechanisms in animals. Curr Opin Neurobiol 23: 724-731.
    • (2013) Curr Opin Neurobiol , vol.23 , pp. 724-731
    • Hardin, P.E.1    Panda, S.2
  • 21
    • 0036786776 scopus 로고    scopus 로고
    • Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA
    • Ishikawa T, Hirayama J, Kobayashi Y, Todo T. 2002. Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA. Genes Cells 7: 1073-1086.
    • (2002) Genes Cells , vol.7 , pp. 1073-1086
    • Ishikawa, T.1    Hirayama, J.2    Kobayashi, Y.3    Todo, T.4
  • 22
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338: 349-354.
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1    Yoo, S.H.2    Huang, H.C.3    Kumar, V.4    Lee, C.5    Kim, T.K.6    Takahashi, J.S.7
  • 24
  • 25
    • 0346095322 scopus 로고    scopus 로고
    • Direct association between mouse PERIOD and CKIe is critical for a functioning circadian clock
    • Lee C, Weaver DR, Reppert SM. 2004. Direct association between mouse PERIOD and CKIe is critical for a functioning circadian clock. Mol Cell Biol 24: 584-594.
    • (2004) Mol Cell Biol , vol.24 , pp. 584-594
    • Lee, C.1    Weaver, D.R.2    Reppert, S.M.3
  • 26
    • 0029002136 scopus 로고
    • A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins
    • Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI. 1995. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23: 1686-1690.
    • (1995) Nucleic Acids Res , vol.23 , pp. 1686-1690
    • Littlewood, T.D.1    Hancock, D.C.2    Danielian, P.S.3    Parker, M.G.4    Evan, G.I.5
  • 27
    • 40149090376 scopus 로고    scopus 로고
    • Redundant function of REV-ERBa and b and nonessential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms
    • Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA. 2008. Redundant function of REV-ERBa and b and nonessential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4: e1000023.
    • (2008) PLoS Genet , vol.4
    • Liu, A.C.1    Tran, H.G.2    Zhang, E.E.3    Priest, A.A.4    Welsh, D.K.5    Kay, S.A.6
  • 28
    • 0030729774 scopus 로고    scopus 로고
    • The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior
    • Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U. 1997. The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16: 6762-6771.
    • EMBO J , vol.16 , pp. 1997-6771
    • Lopez-Molina, L.1    Conquet, F.2    Dubois-Dauphin, M.3    Schibler, U.4
  • 29
    • 77958574512 scopus 로고    scopus 로고
    • Plasticity and specificity of the circadian epigenome
    • Masri S, Sassone-Corsi P. 2010. Plasticity and specificity of the circadian epigenome. Nat Neurosci 13: 1324-1329.
    • (2010) Nat Neurosci , vol.13 , pp. 1324-1329
    • Masri, S.1    Sassone-Corsi, P.2
  • 30
    • 76749085755 scopus 로고    scopus 로고
    • Dynamic PER repression mechanisms in the Drosophila circadian clock: From on-DNA to off-DNA
    • Menet JS, Abruzzi KC, Desrochers J, Rodriguez J, Rosbash M. 2010. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev 24: 358-367.
    • (2010) Genes Dev , vol.24 , pp. 358-367
    • Menet, J.S.1    Abruzzi, K.C.2    Desrochers, J.3    Rodriguez, J.4    Rosbash, M.5
  • 32
    • 84864739194 scopus 로고    scopus 로고
    • Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
    • Padmanabhan K, Robles MS, Westerling T, Weitz CJ. 2012. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337: 599-602.
    • (2012) Science , vol.337 , pp. 599-602
    • Padmanabhan, K.1    Robles, M.S.2    Westerling, T.3    Weitz, C.J.4
  • 33
    • 84892976423 scopus 로고    scopus 로고
    • Molecular architecture of the mammalian circadian clock
    • Partch CL, Green CB, Takahashi JS. 2014. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24: 90-99.
    • (2014) Trends Cell Biol , vol.24 , pp. 90-99
    • Partch, C.L.1    Green, C.B.2    Takahashi, J.S.3
  • 34
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV-ERBa controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. 2002. The orphan nuclear receptor REV-ERBa controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260.
    • (2002) Cell , vol.110 , pp. 251-260
    • Preitner, N.1    Damiola, F.2    Lopez-Molina, L.3    Zakany, J.4    Duboule, D.5    Albrecht, U.6    Schibler, U.7
  • 35
    • 0037194790 scopus 로고    scopus 로고
    • Coordination of circadian timing in mammals
    • Reppert SM, Weaver DR. 2002. Coordination of circadian timing in mammals. Nature 418: 935-941.
    • (2002) Nature , vol.418 , pp. 935-941
    • Reppert, S.M.1    Weaver, D.R.2
  • 36
    • 79952261359 scopus 로고    scopus 로고
    • Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
    • Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. 2011. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9: e1000595.
    • (2011) PLoS Biol , vol.9
    • Rey, G.1    Cesbron, F.2    Rougemont, J.3    Reinke, H.4    Brunner, M.5    Naef, F.6
  • 37
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger J., Schibler U. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38: 369-374.
    • (2006) Nat Genet , vol.38 , pp. 369-374
    • Ripperger, J.1    Schibler, U.2
  • 38
    • 84901358563 scopus 로고    scopus 로고
    • Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
    • Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, Benda C, Kramer A, Wolf E. 2014. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157: 1203-1215.
    • (2014) Cell , vol.157 , pp. 1203-1215
    • Schmalen, I.1    Reischl, S.2    Wallach, T.3    Klemz, R.4    Grudziecki, A.5    Prabu, J.R.6    Benda, C.7    Kramer, A.8    Wolf, E.9
  • 39
    • 76749139528 scopus 로고    scopus 로고
    • The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
    • Schmutz I, Ripperger J., Baeriswyl-Aebischer S, Albrecht U. 2010. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24: 345-357.
    • (2010) Genes Dev , vol.24 , pp. 345-357
    • Schmutz, I.1    Ripperger, J.2    Baeriswyl-Aebischer, S.3    Albrecht, U.4
  • 42
    • 84893477938 scopus 로고    scopus 로고
    • Spatiotemporal separation of PER and CRYposttranslational regulation in the mammalian circadian clock
    • St John PC, Hirota T, Kay SA, Doyle FJ. 2014. Spatiotemporal separation of PER and CRYposttranslational regulation in the mammalian circadian clock. Proc Natl Acad Sci 111: 2040-2045.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 2040-2045
    • St John, P.C.1    Hirota, T.2    Kay, S.A.3    Doyle, F.J.4
  • 43
    • 77953952168 scopus 로고    scopus 로고
    • Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1
    • Stratmann M, Stadler F, Tamanini F, van der Horst GT, Ripperger JA. 2010. Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1. Genes Dev 24: 1317-1328.
    • (2010) Genes Dev , vol.24 , pp. 1317-1328
    • Stratmann, M.1    Stadler, F.2    Tamanini, F.3    Van Der Horst, G.T.4    Ripperger, J.A.5
  • 44
    • 84868097990 scopus 로고    scopus 로고
    • Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
    • Stratmann M, Suter DM, Molina N, Naef F, Schibler U. 2012. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell 48: 277-287.
    • (2012) Mol Cell , vol.48 , pp. 277-287
    • Stratmann, M.1    Suter, D.M.2    Molina, N.3    Naef, F.4    Schibler, U.5
  • 45
    • 35548942704 scopus 로고    scopus 로고
    • Light signaling to the zebrafish circadian clock by Cryptochrome 1a
    • Tamai TK, Young LC, Whitmore D. 2007. Light signaling to the zebrafish circadian clock by Cryptochrome 1a. Proc Natl Acad Sci 104: 14712-14717.
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 14712-14717
    • Tamai, T.K.1    Young, L.C.2    Whitmore, D.3
  • 47
    • 78651491409 scopus 로고    scopus 로고
    • Delay in feedback repression by cryptochrome 1 is required for circadian clock function
    • Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger J., Liu AC, Ueda HR. 2011. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144: 268-281.
    • (2011) Cell , vol.144 , pp. 268-281
    • Ukai-Tadenuma, M.1    Yamada, R.G.2    Xu, H.3    Ripperger, J.4    Liu, A.C.5    Ueda, H.R.6
  • 48
    • 0034045931 scopus 로고    scopus 로고
    • Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase Ie
    • Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. 2000. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase Ie. Mol Cell Biol 20: 4888-4899.
    • (2000) Mol Cell Biol , vol.20 , pp. 4888-4899
    • Vielhaber, E.1    Eide, E.2    Rivers, A.3    Gao, Z.H.4    Virshup, D.M.5
  • 51
    • 0037086535 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein
    • Yagita K, Tamanini F, Yasuda M, Hoeijmakers JH, van der Horst GT, Okamura H. 2002. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J 21: 1301-1314.
    • (2002) EMBO J , vol.21 , pp. 1301-1314
    • Yagita, K.1    Tamanini, F.2    Yasuda, M.3    Hoeijmakers, J.H.4    Van Der Horst, G.T.5    Okamura, H.6
  • 52
    • 79960423858 scopus 로고    scopus 로고
    • Biochemical analysis of the canonical model for the mammalian circadian clock
    • Ye R, Selby CP, Ozturk N, Annayev Y, Sancar A. 2011. Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem 286: 25891-25902.
    • (2011) J Biol Chem , vol.286 , pp. 25891-25902
    • Ye, R.1    Selby, C.P.2    Ozturk, N.3    Annayev, Y.4    Sancar, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.