메뉴 건너뛰기




Volumn 7, Issue 11, 2015, Pages

An overview of the molecular mechanismsof recombinational DNA repair

Author keywords

[No Author keywords available]

Indexed keywords

DNA; DNA HELICASE; RECA PROTEIN; SINGLE STRANDED DNA;

EID: 84946423579     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a016410     Document Type: Review
Times cited : (345)

References (373)
  • 1
    • 0026751086 scopus 로고
    • Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins
    • A, Chanet R, Adjiri A, Fabre F. 1992. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol Cell Biol 12: 3224–3234.
    • (1992) Mol Cell Biol , vol.12 , pp. 3224-3234
    • Aboussekhra, A.1    Chanet, R.2    Adjiri, A.3    Fabre, F.4
  • 3
    • 78449233040 scopus 로고    scopus 로고
    • Role for the mammalian Swi5–Sfr1 complex in DNA strand break repair through homologous recombination
    • Akamatsu Y, Jasin M. 2010. Role for the mammalian Swi5–Sfr1 complex in DNA strand break repair through homologous recombination. PLoS Genet 6: e1001160
    • (2010) Plos Genet , vol.6
    • Akamatsu, Y.1    Jasin, M.2
  • 5
    • 84901358862 scopus 로고    scopus 로고
    • Human MUS81–EME2 can cleave a variety of DNA structures including intact Holliday junction and nicked duplex
    • Amangyeld T, Shin YK, Lee M, Kwon B, Seo YS. 2014. Human MUS81–EME2 can cleave a variety of DNA structures including intact Holliday junction and nicked duplex. Nucleic Acids Res 42: 5846–5862
    • (2014) Nucleic Acids Res , vol.42 , pp. 5846-5862
    • Amangyeld, T.1    Shin, Y.K.2    Lee, M.3    Kwon, B.4    Seo, Y.S.5
  • 6
    • 4143070381 scopus 로고    scopus 로고
    • Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions
    • Amit R, Gileadi O, Stavans J. 2004. Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions. Proc Natl Acad Sci 101: 11605–11610
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 11605-11610
    • Amit, R.1    Gileadi, O.2    Stavans, J.3
  • 7
    • 33745498749 scopus 로고    scopus 로고
    • Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules
    • Amitani I, Baskin RJ, Kowalczykowski SC. 2006. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol Cell 23: 143–148
    • (2006) Mol Cell , vol.23 , pp. 143-148
    • Amitani, I.1    Baskin, R.J.2    Kowalczykowski, S.C.3
  • 8
    • 0030969429 scopus 로고    scopus 로고
    • The recombination hot spot x is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme
    • Anderson DG, Kowalczykowski SC. 1997a. The recombination hot spot x is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev 11: 571–581
    • (1997) Genes Dev , vol.11 , pp. 571-581
    • Anderson, D.G.1    Kowalczykowski, S.C.2
  • 9
    • 0031444642 scopus 로고    scopus 로고
    • The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a x-regulated manner
    • Anderson DG, Kowalczykowski SC. 1997b. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a x-regulated manner. Cell 90: 77–86
    • (1997) Cell , vol.90 , pp. 77-86
    • Anderson, D.G.1    Kowalczykowski, S.C.2
  • 10
    • 0034697325 scopus 로고    scopus 로고
    • Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme
    • Arnold DA, Kowalczykowski SC. 2000. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J Biol Chem 275: 12261–12265
    • (2000) J Biol Chem , vol.275 , pp. 12261-12265
    • Arnold, D.A.1    Kowalczykowski, S.C.2
  • 11
    • 0028022751 scopus 로고
    • DNA replication triggered by double-stranded breaks in E. Coli: Dependence on homologous recombination functions
    • Asai T, Bates DB, Kogoma T. 1994. DNA replication triggered by double-stranded breaks in E. coli: Dependence on homologous recombination functions. Cell 78: 1051–1061
    • (1994) Cell , vol.78 , pp. 1051-1061
    • Asai, T.1    Bates, D.B.2    Kogoma, T.3
  • 12
    • 79955456518 scopus 로고    scopus 로고
    • Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae
    • Ashton TM, Mankouri HW, Heidenblut A, McHugh PJ, Hickson ID. 2011. Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Mol Cell Biol 31: 1921–1933
    • (2011) Mol Cell Biol , vol.31 , pp. 1921-1933
    • Ashton, T.M.1    Mankouri, H.W.2    Heidenblut, A.3    McHugh, P.J.4    Hickson, I.D.5
  • 13
    • 33646843592 scopus 로고    scopus 로고
    • Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase
    • Bachrati CZ, Borts RH, Hickson ID. 2006. Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase. Nucleic Acids Res 34: 2269–2279
    • (2006) Nucleic Acids Res , vol.34 , pp. 2269-2279
    • Bachrati, C.Z.1    Borts, R.H.2    Hickson, I.D.3
  • 14
    • 0032500542 scopus 로고    scopus 로고
    • DNA2 of Saccharomyces cerevisiae possesses a singlestranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP
    • Bae SH, Choi E, Lee KH, Park JS, Lee SH, Seo YS. 1998. DNA2 of Saccharomyces cerevisiae possesses a singlestranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J Biol Chem 273: 26880–26890
    • (1998) J Biol Chem , vol.273 , pp. 26880-26890
    • Bae, S.H.1    Choi, E.2    Lee, K.H.3    Park, J.S.4    Lee, S.H.5    Seo, Y.S.6
  • 15
    • 0035954737 scopus 로고    scopus 로고
    • RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
    • Bae SH, Bae KH, Kim JA, Seo YS. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412: 456–461
    • (2001) Nature , vol.412 , pp. 456-461
    • Bae, S.H.1    Bae, K.H.2    Kim, J.A.3    Seo, Y.S.4
  • 16
    • 0029858775 scopus 로고    scopus 로고
    • A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae
    • Bai Y, Symington LS. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev 10: 2025–2037
    • (1996) Genes Dev , vol.10 , pp. 2025-2037
    • Bai, Y.1    Symington, L.S.2
  • 17
    • 0030766963 scopus 로고    scopus 로고
    • The human Rad51 protein: Polarity of strand transfer and stimulation by hRP-A
    • Baumann P, West SC. 1997. The human Rad51 protein: Polarity of strand transfer and stimulation by hRP-A. EMBO J 16: 5198–5206
    • (1997) EMBO J , vol.16 , pp. 5198-5206
    • Baumann, P.1    West, S.C.2
  • 18
    • 0030584084 scopus 로고    scopus 로고
    • Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro
    • Baumann P, Benson FE, West SC. 1996. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87: 757–766
    • (1996) Cell , vol.87 , pp. 757-766
    • Baumann, P.1    Benson, F.E.2    West, S.C.3
  • 19
    • 84868615392 scopus 로고    scopus 로고
    • Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA
    • Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. 2012. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 491: 274–278
    • (2012) Nature , vol.491 , pp. 274-278
    • Bell, J.C.1    Plank, J.L.2    Dombrowski, C.C.3    Kowalczykowski, S.C.4
  • 20
    • 0027376095 scopus 로고
    • Resolution of Holliday junctions by RuvC resolvase: Cleavage specificity and DNA distortion
    • Bennett RJ, Dunderdale HJ, West SC. 1993. Resolution of Holliday junctions by RuvC resolvase: Cleavage specificity and DNA distortion. Cell 74: 1021–1031
    • (1993) Cell , vol.74 , pp. 1021-1031
    • Bennett, R.J.1    Dunderdale, H.J.2    West, S.C.3
  • 21
    • 0032556865 scopus 로고    scopus 로고
    • Synergistic actions of Rad51 and Rad52 in recombination and DNA repair
    • Benson FE, Baumann P, West SC. 1998. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391: 401–404
    • (1998) Nature , vol.391 , pp. 401-404
    • Benson, F.E.1    Baumann, P.2    West, S.C.3
  • 22
    • 0032468201 scopus 로고    scopus 로고
    • A model for parallel triple helix formation by RecA: Single–single association with a homologous duplex via the minor groove
    • Bertucat G, Lavery R, Prévost C. 1998. A model for parallel triple helix formation by RecA: Single–single association with a homologous duplex via the minor groove. J Biomol Struct Dyn 16: 535–546
    • (1998) J Biomol Struct Dyn , vol.16 , pp. 535-546
    • Bertucat, G.1    Lavery, R.2    Prévost, C.3
  • 24
    • 84879796452 scopus 로고    scopus 로고
    • Substrate-selective repair and restart of replication forks by DNA translocases
    • Betous R, Couch FB, Mason AC, Eichman BF, Manosas M, Cortez D. 2013. Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep 3: 1958–1969
    • (2013) Cell Rep , vol.3 , pp. 1958-1969
    • Betous, R.1    Couch, F.B.2    Mason, A.C.3    Eichman, B.F.4    Manosas, M.5    Cortez, D.6
  • 25
    • 0030917148 scopus 로고    scopus 로고
    • The recombination hotspot x is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 50-GCTGGTGG-30
    • Bianco PR, Kowalczykowski SC. 1997. The recombination hotspot x is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 50-GCTGGTGG-30. Proc Natl Acad Sci 94: 6706–6711
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 6706-6711
    • Bianco, P.R.1    Kowalczykowski, S.C.2
  • 26
    • 0001865832 scopus 로고    scopus 로고
    • DNA strand exchange proteins: A biochemical and physical comparison
    • Bianco PR, Tracy RB, Kowalczykowski SC. 1998. DNA strand exchange proteins: A biochemical and physical comparison. Front Biosci 3: D570–603
    • (1998) Front Biosci , vol.3 , pp. D570-D603
    • Bianco, P.R.1    Tracy, R.B.2    Kowalczykowski, S.C.3
  • 29
    • 84898034120 scopus 로고    scopus 로고
    • Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability
    • Blanco MG, Matos J, West SC. 2014. Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability. Mol Cell 54: 94–106
    • (2014) Mol Cell , vol.54 , pp. 94-106
    • Blanco, M.G.1    Matos, J.2    West, S.C.3
  • 33
    • 77951057068 scopus 로고    scopus 로고
    • 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination
    • Bothmer A, Robbiani DF, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig MC. 2010. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med 207: 855–865
    • (2010) J Exp Med , vol.207 , pp. 855-865
    • Bothmer, A.1    Robbiani, D.F.2    Feldhahn, N.3    Gazumyan, A.4    Nussenzweig, A.5    Nussenzweig, M.C.6
  • 34
    • 0346850823 scopus 로고    scopus 로고
    • Functional interaction between the Bloom’s syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D)
    • Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID. 2003. Functional interaction between the Bloom’s syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D). J Biol Chem 278: 48357–48366
    • (2003) J Biol Chem , vol.278 , pp. 48357-48366
    • Braybrooke, J.P.1    Li, J.L.2    Wu, L.3    Caple, F.4    Benson, F.E.5    Hickson, I.D.6
  • 35
    • 84881145018 scopus 로고    scopus 로고
    • DNA helicases involved in DNA repair and their roles in cancer
    • Brosh RM Jr, 2013. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13: 542–558
    • (2013) Nat Rev Cancer , vol.13 , pp. 542-558
    • Brosh, R.M.1
  • 37
    • 0034596053 scopus 로고    scopus 로고
    • The nuclease activity of the yeast DNA2 protein, which is related to the RecBlike nucleases, is essential in vivo
    • Budd ME, Choe W, Campbell JL. 2000. The nuclease activity of the yeast DNA2 protein, which is related to the RecBlike nucleases, is essential in vivo. J Biol Chem 275: 16518–16529
    • (2000) J Biol Chem , vol.275 , pp. 16518-16529
    • Budd, M.E.1    Choe, W.2    Campbell, J.L.3
  • 38
    • 33746715608 scopus 로고    scopus 로고
    • Rad54 protein promotes branch migration of Holliday junctions
    • Bugreev DV, Mazina OM, Mazin AV. 2006. Rad54 protein promotes branch migration of Holliday junctions. Nature 442: 590–593
    • (2006) Nature , vol.442 , pp. 590-593
    • Bugreev, D.V.1    Mazina, O.M.2    Mazin, A.V.3
  • 39
    • 34547690736 scopus 로고    scopus 로고
    • Rad54 dissociates homologous recombination intermediates by branch migration
    • Bugreev DV, Hanaoka F, Mazin AV. 2007a. Rad54 dissociates homologous recombination intermediates by branch migration. Nat Struct Mol Biol 14: 746–753
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 746-753
    • Bugreev, D.V.1    Hanaoka, F.2    Mazin, A.V.3
  • 40
    • 36849029846 scopus 로고    scopus 로고
    • Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase
    • Bugreev DV, Yu X, Egelman EH, Mazin AV. 2007b. Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev 21: 3085–3094
    • (2007) Genes Dev , vol.21 , pp. 3085-3094
    • Bugreev, D.V.1    Yu, X.2    Egelman, E.H.3    Mazin, A.V.4
  • 41
    • 50649118135 scopus 로고    scopus 로고
    • RECQ1 possesses DNA branch migration activity
    • Bugreev DV, Brosh RM Jr., Mazin AV. 2008. RECQ1 possesses DNA branch migration activity. J Biol Chem 283: 20231–20242
    • (2008) J Biol Chem , vol.283 , pp. 20231-20242
    • Bugreev, D.V.1    Brosh, R.M.2    Mazin, A.V.3
  • 45
    • 84908045717 scopus 로고    scopus 로고
    • Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resectDNA breaks
    • Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resectDNA breaks. Nature 514: 122–125
    • (2014) Nature , vol.514 , pp. 122-125
    • Cannavo, E.1    Cejka, P.2
  • 46
    • 84876896603 scopus 로고    scopus 로고
    • Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11–Rad50–Xrs2 to DNA end resection
    • Cannavo E, Cejka P, Kowalczykowski SC. 2013. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11–Rad50–Xrs2 to DNA end resection. Proc Natl Acad Sci 110: E1661–E1668
    • (2013) Proc Natl Acad Sci , vol.110 , pp. E1661-E1668
    • Cannavo, E.1    Cejka, P.2    Kowalczykowski, S.C.3
  • 47
    • 79960597176 scopus 로고    scopus 로고
    • Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms
    • Carreira A, Kowalczykowski SC. 2011. Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms. Proc Natl Acad Sci 108: 10448–10453
    • (2011) Proc Natl Acad Sci , vol.108 , pp. 10448-10453
    • Carreira, A.1    Kowalczykowski, S.C.2
  • 49
    • 0032126530 scopus 로고    scopus 로고
    • The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family
    • Cartwright R, Tambini CE, Simpson PJ, Thacker J. 1998. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Res 26: 3084–3089
    • (1998) Nucleic Acids Res , vol.26 , pp. 3084-3089
    • Cartwright, R.1    Tambini, C.E.2    Simpson, P.J.3    Thacker, J.4
  • 50
    • 0020997753 scopus 로고
    • Binding of RecA protein to single-stranded nucleic acids: Spectroscopic studies using fluorescent polynucleotides
    • Cazenave C, Toulme JJ, Helene C. 1983. Binding of RecA protein to single-stranded nucleic acids: spectroscopic studies using fluorescent polynucleotides. EMBO J 2: 2247–2251
    • (1983) EMBO J , vol.2 , pp. 2247-2251
    • Cazenave, C.1    Toulme, J.J.2    Helene, C.3
  • 51
    • 80052675332 scopus 로고    scopus 로고
    • Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination
    • Ceballos SJ, Heyer WD. 2011. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim Biophys Acta 1809: 509–523
    • (2011) Biochim Biophys Acta , vol.1809 , pp. 509-523
    • Ceballos, S.J.1    Heyer, W.D.2
  • 52
    • 77950900571 scopus 로고    scopus 로고
    • The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorousDNA helicase that preferentially unwinds Holliday junctions
    • Cejka P, Kowalczykowski SC. 2010. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorousDNA helicase that preferentially unwinds Holliday junctions. J Biol Chem 285: 8290–8301
    • (2010) J Biol Chem , vol.285 , pp. 8290-8301
    • Cejka, P.1    Kowalczykowski, S.C.2
  • 55
    • 84923329344 scopus 로고    scopus 로고
    • Spatial control of the GEN1 Holliday junction resolvase ensures genome stability
    • Chan YW, West SC. 2014. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat Commun 5: 4844
    • (2014) Nat Commun , vol.5 , pp. 4844
    • Chan, Y.W.1    West, S.C.2
  • 56
    • 0029772319 scopus 로고    scopus 로고
    • Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase
    • Chanet R, Heude M, Adjiri A, Maloisel L, Fabre F. 1996. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol Cell Biol 16: 4782–4789
    • (1996) Mol Cell Biol , vol.16 , pp. 4782-4789
    • Chanet, R.1    Heude, M.2    Adjiri, A.3    Maloisel, L.4    Fabre, F.5
  • 59
    • 0036228220 scopus 로고    scopus 로고
    • A novel family of regulated helicases/nucleases from Gram-positive bacteria: Insights into the initiation of DNA recombination
    • Chédin F, Kowalczykowski SC. 2002. A novel family of regulated helicases/nucleases from Gram-positive bacteria: Insights into the initiation of DNA recombination. Mol Microbiol 43: 823–834
    • (2002) Mol Microbiol , vol.43 , pp. 823-834
    • Chédin, F.1    Kowalczykowski, S.C.2
  • 60
    • 35348986443 scopus 로고    scopus 로고
    • Binding and activation of DNA topoisomerase III by the Rmi1 subunit
    • Chen CF, Brill SJ. 2007. Binding and activation of DNA topoisomerase III by the Rmi1 subunit. J Biol Chem 282: 28971–28979
    • (2007) J Biol Chem , vol.282 , pp. 28971-28979
    • Chen, C.F.1    Brill, S.J.2
  • 61
    • 84919774724 scopus 로고    scopus 로고
    • Replication protein A: Singlestranded DNA’s first responder: Dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair
    • Chen R, Wold MS. 2014. Replication protein A: singlestranded DNA’s first responder: Dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. Bioessays 36: 1156–1161
    • (2014) Bioessays , vol.36 , pp. 1156-1161
    • Chen, R.1    Wold, M.S.2
  • 63
    • 44349162159 scopus 로고    scopus 로고
    • Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures
    • Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453: 489–494
    • (2008) Nature , vol.453 , pp. 489-494
    • Chen, Z.1    Yang, H.2    Pavletich, N.P.3
  • 64
    • 84866954195 scopus 로고    scopus 로고
    • The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends
    • Chen X, Cui D, Papusha A, Zhang X, Chu CD, Tang J, Chen K, Pan X, Ira G. 2012. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489: 576–580
    • (2012) Nature , vol.489 , pp. 576-580
    • Chen, X.1    Cui, D.2    Papusha, A.3    Zhang, X.4    Chu, C.D.5    Tang, J.6    Chen, K.7    Pan, X.8    Ira, G.9
  • 65
    • 84878183628 scopus 로고    scopus 로고
    • RPA coordinates DNA end resection and prevents formation of DNA hairpins
    • Chen H, Lisby M, Symington LS. 2013. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50: 589–600
    • (2013) Mol Cell , vol.50 , pp. 589-600
    • Chen, H.1    Lisby, M.2    Symington, L.S.3
  • 67
    • 35649023709 scopus 로고    scopus 로고
    • The human F-box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles
    • Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS, Liberi G. 2007. The human F-box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27: 7439–7450
    • (2007) Mol Cell Biol , vol.27 , pp. 7439-7450
    • Chiolo, I.1    Saponaro, M.2    Baryshnikova, A.3    Kim, J.H.4    Seo, Y.S.5    Liberi, G.6
  • 68
    • 0034737310 scopus 로고    scopus 로고
    • Identification of the RecA protein-loading domain of RecBCD enzyme
    • Churchill JJ, Kowalczykowski SC. 2000. Identification of the RecA protein-loading domain of RecBCD enzyme. J Mol Biol 297: 537–542
    • (2000) J Mol Biol , vol.297 , pp. 537-542
    • Churchill, J.J.1    Kowalczykowski, S.C.2
  • 69
    • 0033119260 scopus 로고    scopus 로고
    • The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of x, resulting in constitutive recombination activation
    • Churchill JJ, Anderson DG, Kowalczykowski SC. 1999. The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of x, resulting in constitutive recombination activation. Genes Dev 13: 901–911
    • (1999) Genes Dev , vol.13 , pp. 901-911
    • Churchill, J.J.1    Erson, D.G.2    Kowalczykowski, S.C.3
  • 70
    • 0043092025 scopus 로고    scopus 로고
    • Identification and characterization of the human mus81-eme1 endonuclease
    • Ciccia A, Constantinou A, West SC. 2003. Identification and characterization of the human mus81-eme1 endonuclease. J Biol Chem 278: 25172–25178
    • (2003) J Biol Chem , vol.278 , pp. 25172-25178
    • Ciccia, A.1    Constantinou, A.2    West, S.C.3
  • 72
    • 0015823973 scopus 로고
    • Recombination deficient mutants of E. Coli and other bacteria
    • Clark AJ. 1973. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet 7: 67–86
    • (1973) Annu Rev Genet , vol.7 , pp. 67-86
    • Clark, A.J.1
  • 73
    • 0000880652 scopus 로고
    • Isolation and characterization of recombination-deficient mutants of Escherichia coli K12
    • Clark AJ, Margulies AD. 1965. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc Natl Acad Sci 53: 451–459
    • (1965) Proc Natl Acad Sci , vol.53 , pp. 451-459
    • Clark, A.J.1    Margulies, A.D.2
  • 74
    • 0032493294 scopus 로고    scopus 로고
    • The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA
    • Connelly JC, Kirkham LA, Leach DR. 1998. The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc Natl Acad Sci 95: 7969–7974
    • (1998) Proc Natl Acad Sci , vol.95 , pp. 7969-7974
    • Connelly, J.C.1    Kirkham, L.A.2    Leach, D.R.3
  • 76
    • 0032740855 scopus 로고    scopus 로고
    • RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli
    • Courcelle J, Hanawalt PC. 1999. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet 262: 543–551
    • (1999) Mol Gen Genet , vol.262 , pp. 543-551
    • Courcelle, J.1    Hanawalt, P.C.2
  • 77
    • 33847795537 scopus 로고    scopus 로고
    • Regulation of bacterial RecA protein function
    • Cox MM. 2007. Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42: 41–63
    • (2007) Crit Rev Biochem Mol Biol , vol.42 , pp. 41-63
    • Cox, M.M.1
  • 78
    • 0020576887 scopus 로고
    • On the role of single-stranded DNA binding protein in recA proteinpromotedDNA strand exchange
    • Cox MM, Soltis DA, Livneh Z, Lehman IR. 1983. On the role of single-stranded DNA binding protein in recA proteinpromotedDNA strand exchange. J Biol Chem 258: 2577–2585
    • (1983) J Biol Chem , vol.258 , pp. 2577-2585
    • Cox, M.M.1    Soltis, D.A.2    Livneh, Z.3    Lehman, I.R.4
  • 79
    • 84919375868 scopus 로고    scopus 로고
    • Multifaceted role of the Topo IIIa–RMI1–RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection
    • Daley JM, Chiba T, Xue X, Niu H, Sung P. 2014a. Multifaceted role of the Topo IIIa–RMI1–RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection. Nucleic Acids Res 42: 11083–11091
    • (2014) Nucleic Acids Res , vol.42 , pp. 11083-11091
    • Daley, J.M.1    Chiba, T.2    Xue, X.3    Niu, H.4    Sung, P.5
  • 81
    • 4143135445 scopus 로고    scopus 로고
    • Singlemolecule study of RuvAB-mediated Holliday-junction migration
    • Dawid A, Croquette V, Grigoriev M, Heslot F. 2004. Singlemolecule study of RuvAB-mediated Holliday-junction migration. Proc Natl Acad Sci 101: 11611–11616
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 11611-11616
    • Dawid, A.1    Croquette, V.2    Grigoriev, M.3    Heslot, F.4
  • 82
    • 79959635260 scopus 로고    scopus 로고
    • DNA interstrand crosslink repair and cancer
    • Deans AJ, West SC. 2011. DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11: 467–480
    • (2011) Nat Rev Cancer , vol.11 , pp. 467-480
    • Deans, A.J.1    West, S.C.2
  • 84
    • 57349157777 scopus 로고    scopus 로고
    • RecBCD enzyme and the repair of double-stranded DNA breaks
    • Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72: 642–671
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 642-671
    • Dillingham, M.S.1    Kowalczykowski, S.C.2
  • 86
    • 27744469165 scopus 로고    scopus 로고
    • BipolarDNA translocation contributes to highly processive DNA unwinding by RecBCD enzyme
    • Dillingham MS, Webb MR, Kowalczykowski SC. 2005. BipolarDNA translocation contributes to highly processive DNA unwinding by RecBCD enzyme. J Biol Chem 280: 37069–37077
    • (2005) J Biol Chem , vol.280 , pp. 37069-37077
    • Dillingham, M.S.1    Webb, M.R.2    Kowalczykowski, S.C.3
  • 87
    • 84860500314 scopus 로고    scopus 로고
    • Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
    • Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM. 2012. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14: 502–509
    • (2012) Nat Cell Biol , vol.14 , pp. 502-509
    • Dion, V.1    Kalck, V.2    Horigome, C.3    Towbin, B.D.4    Gasser, S.M.5
  • 88
    • 0025902330 scopus 로고
    • Homologous pairing in vitro stimulated by the recombination hotspot, x
    • Dixon DA, Kowalczykowski SC. 1991. Homologous pairing in vitro stimulated by the recombination hotspot, x. Cell 66: 361–371
    • (1991) Cell , vol.66 , pp. 361-371
    • Dixon, D.A.1    Kowalczykowski, S.C.2
  • 89
    • 0027511858 scopus 로고
    • The recombination hotspot x is a regulatory sequence that acts by attenuating the nuclease activity of the
    • Dixon DA, Kowalczykowski SC. 1993. The recombination hotspot x is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73: 87–96
    • (1993) E. Coli Recbcd Enzyme. Cell , vol.73 , pp. 87-96
    • Dixon, D.A.1    Kowalczykowski, S.C.2
  • 90
    • 0002834423 scopus 로고
    • Genetic recombination and replication in bacteriophage
    • Doermann AH, Chase M, Stahl FW. 1955. Genetic recombination and replication in bacteriophage. J Cell Physiol Suppl 45: 51–74
    • (1955) J Cell Physiol Suppl , vol.45 , pp. 51-74
    • Doermann, A.H.1    Chase, M.2    Stahl, F.W.3
  • 91
    • 84919390877 scopus 로고    scopus 로고
    • The role of double-strand break repair pathways at functional and dysfunctional telomeres
    • Doksani Y, de Lange T. 2014. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol 6: a016576
    • (2014) Cold Spring Harb Perspect Biol , vol.6
    • Doksani, Y.1    De Lange, T.2
  • 93
    • 38649130654 scopus 로고    scopus 로고
    • The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: Implications for crossover incidence during mitotic recombination
    • Dupaigne P, Le Breton C, Fabre F, Gangloff S, Le Cam E, Veaute X. 2008. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: Implications for crossover incidence during mitotic recombination. Mol Cell 29: 243–254
    • (2008) Mol Cell , vol.29 , pp. 243-254
    • Dupaigne, P.1    Le Breton, C.2    Fabre, F.3    Gangloff, S.4    Le Cam, E.5    Veaute, X.6
  • 94
    • 84868694661 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation
    • Eapen VV, Sugawara N, Tsabar M, Wu WH, Haber JE. 2012. The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation. Mol Cell Biol 32: 4727–4740
    • (2012) Mol Cell Biol , vol.32 , pp. 4727-4740
    • Eapen, V.V.1    Sugawara, N.2    Tsabar, M.3    Wu, W.H.4    Haber, J.E.5
  • 95
    • 0037131257 scopus 로고    scopus 로고
    • The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A
    • Eggler AL, Inman RB, Cox MM. 2002. The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A. J Biol Chem 277: 39280–39288
    • (2002) J Biol Chem , vol.277 , pp. 39280-39288
    • Eggler, A.L.1    Inman, R.B.2    Cox, M.M.3
  • 96
    • 0025790996 scopus 로고
    • An overview of homologous pairing and DNA strand exchange proteins
    • Eggleston AK, Kowalczykowski SC. 1991. An overview of homologous pairing and DNA strand exchange proteins. Biochimie 73: 163–176
    • (1991) Biochimie , vol.73 , pp. 163-176
    • Eggleston, A.K.1    Kowalczykowski, S.C.2
  • 97
    • 0034714309 scopus 로고    scopus 로고
    • Cleavage of Holliday junctions by the Escherichia coli RuvABC complex
    • Eggleston AK, West SC. 2000. Cleavage of Holliday junctions by the Escherichia coli RuvABC complex. J Biol Chem 275: 26467–26476
    • (2000) J Biol Chem , vol.275 , pp. 26467-26476
    • Eggleston, A.K.1    West, S.C.2
  • 98
    • 42449115326 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Mus81–Mms4 is a catalytic, DNA structure-selective endonuclease
    • Ehmsen KT, Heyer WD. 2008. Saccharomyces cerevisiae Mus81–Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res 36: 2182–2195
    • (2008) Nucleic Acids Res , vol.36 , pp. 2182-2195
    • Ehmsen, K.T.1    Heyer, W.D.2
  • 100
    • 84898022907 scopus 로고    scopus 로고
    • The Cdk/cDc14 module controls activation of the Yen1 Holliday junction resolvase to promote genome stability
    • Eissler CL, Mazon G, Powers BL, Savinov SN, Symington LS, Hall MC. 2014. The Cdk/cDc14 module controls activation of the Yen1 Holliday junction resolvase to promote genome stability. Mol Cell 54: 80–93
    • (2014) Mol Cell , vol.54 , pp. 80-93
    • Eissler, C.L.1    Mazon, G.2    Powers, B.L.3    Savinov, S.N.4    Symington, L.S.5    Hall, M.C.6
  • 102
    • 84923838375 scopus 로고    scopus 로고
    • Top3–Rmi1 dissolve Rad51-mediatedDloops by a topoisomerase- based mechanism
    • Fasching CL, Cejka P, Kowalczykowski SC, Heyer WD. 2015. Top3–Rmi1 dissolve Rad51-mediatedDloops by a topoisomerase- based mechanism. Mol Cell 57: 595–606
    • (2015) Mol Cell , vol.57 , pp. 595-606
    • Fasching, C.L.1    Cejka, P.2    Kowalczykowski, S.C.3    Heyer, W.D.4
  • 105
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
    • Flaus A, Martin DM, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34: 2887–2905
    • (2006) Nucleic Acids Res , vol.34 , pp. 2887-2905
    • Flaus, A.1    Martin, D.M.2    Barton, G.J.3    Owen-Hughes, T.4
  • 106
    • 84857118715 scopus 로고    scopus 로고
    • Single-molecule imaging ofDNA pairing by RecA reveals a three-dimensional homology search
    • Forget AL, Kowalczykowski SC. 2012. Single-molecule imaging ofDNA pairing by RecA reveals a three-dimensional homology search. Nature 482: 423–427
    • (2012) Nature , vol.482 , pp. 423-427
    • Forget, A.L.1    Kowalczykowski, S.C.2
  • 107
    • 0037124355 scopus 로고    scopus 로고
    • Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes
    • Fortin GS, Symington LS. 2002. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes. EMBO J 21: 3160–3170
    • (2002) EMBO J , vol.21 , pp. 3160-3170
    • Fortin, G.S.1    Symington, L.S.2
  • 108
    • 0038167328 scopus 로고    scopus 로고
    • Slx1–Slx4 is a second structurespecific endonuclease functionally redundantwith Sgs1–Top3
    • Fricke WM, Brill SJ. 2003. Slx1–Slx4 is a second structurespecific endonuclease functionally redundantwith Sgs1–Top3. Genes Dev 17: 1768–1778
    • (2003) Genes Dev , vol.17 , pp. 1768-1778
    • Fricke, W.M.1    Brill, S.J.2
  • 110
    • 33748945703 scopus 로고    scopus 로고
    • Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation
    • Fulconis R, Mine´ J, Bancaud A, Dutreix M, Viovy JL. 2006. Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation. EMBO J 25: 4293–4304
    • (2006) EMBO J , vol.25 , pp. 4293-4304
    • Fulconis, R.1    Mine´, J.2    Bancaud, A.3    Dutreix, M.4    Viovy, J.L.5
  • 111
    • 79955476626 scopus 로고    scopus 로고
    • Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein
    • Galkin VE, Britt RL, Bane LB, Yu X, Cox MM, Egelman EH. 2011. Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein. J Mol Biol 408: 815–824
    • (2011) J Mol Biol , vol.408 , pp. 815-824
    • Galkin, V.E.1    Britt, R.L.2    Bane, L.B.3    Yu, X.4    Cox, M.M.5    Egelman, E.H.6
  • 112
    • 33750296934 scopus 로고    scopus 로고
    • Direct observation of individual RecA filaments assembling on single DNA molecules
    • Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC. 2006. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443: 875–878
    • (2006) Nature , vol.443 , pp. 875-878
    • Galletto, R.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 113
    • 0028033989 scopus 로고
    • The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: A potential eukaryotic reverse gyrase
    • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R. 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: A potential eukaryotic reverse gyrase. Mol Cell Biol 14: 8391–8398
    • (1994) Mol Cell Biol , vol.14 , pp. 8391-8398
    • Gangloff, S.1    McDonald, J.P.2    Bendixen, C.3    Arthur, L.4    Rothstein, R.5
  • 114
    • 80855144827 scopus 로고    scopus 로고
    • Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1
    • Garcia V, Phelps SE, Gray S, Neale MJ. 2011. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479: 241–244
    • (2011) Nature , vol.479 , pp. 241-244
    • Garcia, V.1    Phelps, S.E.2    Gray, S.3    Neale, M.J.4
  • 115
    • 38349050087 scopus 로고    scopus 로고
    • The Fanconi anemia protein FANCMcan promote branch migration of Holliday junctions and replication forks
    • Gari K, Decaillet C, Stasiak AZ, Stasiak A, Constantinou A. 2008. The Fanconi anemia protein FANCMcan promote branch migration of Holliday junctions and replication forks. Mol Cell 29: 141–148
    • (2008) Mol Cell , vol.29 , pp. 141-148
    • Gari, K.1    Decaillet, C.2    Stasiak, A.Z.3    Stasiak, A.4    Constantinou, A.5
  • 116
    • 0020823126 scopus 로고
    • By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology
    • Gonda DK, Radding CM. 1983. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34: 647–654
    • (1983) Cell , vol.34 , pp. 647-654
    • Gonda, D.K.1    Radding, C.M.2
  • 117
    • 0029328551 scopus 로고
    • In vivo biochemistry: Physical monitoring of recombination induced by site-specific endonucleases
    • Haber JE. 1995. In vivo biochemistry: Physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17: 609–620
    • (1995) Bioessays , vol.17 , pp. 609-620
    • Haber, J.E.1
  • 119
    • 0030888233 scopus 로고    scopus 로고
    • RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli
    • Hanada K, Ukita T, Kohno Y, Saito K, Kato J, Ikeda H. 1997. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci 94: 3860–3865
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 3860-3865
    • Hanada, K.1    Ukita, T.2    Kohno, Y.3    Saito, K.4    Kato, J.5    Ikeda, H.6
  • 120
    • 14644412914 scopus 로고    scopus 로고
    • Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after x recognition
    • Handa N, Bianco PR, Baskin RJ, Kowalczykowski SC. 2005. Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after x recognition. Mol Cell 17: 745–750
    • (2005) Mol Cell , vol.17 , pp. 745-750
    • Handa, N.1    Bianco, P.R.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 121
    • 67650567353 scopus 로고    scopus 로고
    • Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions
    • Handa N, Amitani I, Gumlaw N, Sandler SJ, Kowalczykowski SC. 2009a. Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions. J Biol Chem 284: 18664–18673
    • (2009) J Biol Chem , vol.284 , pp. 18664-18673
    • Handa, N.1    Amitani, I.2    Gumlaw, N.3    Sandler, S.J.4    Kowalczykowski, S.C.5
  • 122
    • 66149130735 scopus 로고    scopus 로고
    • Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. Coli
    • Handa N, Morimatsu K, Lovett ST, Kowalczykowski SC. 2009b. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev 23: 1234–1245
    • (2009) Genes Dev , vol.23 , pp. 1234-1245
    • Handa, N.1    Morimatsu, K.2    Lovett, S.T.3    Kowalczykowski, S.C.4
  • 123
    • 84861889126 scopus 로고    scopus 로고
    • Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, x, by RecBCD enzyme
    • Handa N, Yang L, Dillingham MS, Kobayashi I, Wigley DB, Kowalczykowski SC. 2012. Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, x, by RecBCD enzyme. Proc Natl Acad Sci 109: 8901–8906
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 8901-8906
    • Handa, N.1    Yang, L.2    Dillingham, M.S.3    Kobayashi, I.4    Wigley, D.B.5    Kowalczykowski, S.C.6
  • 124
    • 0032522789 scopus 로고    scopus 로고
    • RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination
    • Harmon FG, Kowalczykowski SC. 1998. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev 12: 1134–1144
    • (1998) Genes Dev , vol.12 , pp. 1134-1144
    • Harmon, F.G.1    Kowalczykowski, S.C.2
  • 125
    • 0035808456 scopus 로고    scopus 로고
    • Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase
    • Harmon FG, Kowalczykowski SC. 2001. Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase. J Biol Chem 276: 232–243
    • (2001) J Biol Chem , vol.276 , pp. 232-243
    • Harmon, F.G.1    Kowalczykowski, S.C.2
  • 126
    • 0033031935 scopus 로고    scopus 로고
    • RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: A conserved mechanismfor control of DNA recombination
    • Harmon FG, DiGate RJ, Kowalczykowski SC. 1999. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanismfor control of DNA recombination. Mol Cell 3: 611–620
    • (1999) Mol Cell , vol.3 , pp. 611-620
    • Harmon, F.G.1    Digate, R.J.2    Kowalczykowski, S.C.3
  • 127
    • 0142180061 scopus 로고    scopus 로고
    • RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III
    • Harmon FG, Brockman JP, Kowalczykowski SC. 2003. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III. J Biol Chem 278: 42668–42678
    • (2003) J Biol Chem , vol.278 , pp. 42668-42678
    • Harmon, F.G.1    Brockman, J.P.2    Kowalczykowski, S.C.3
  • 128
    • 0024498701 scopus 로고
    • UvsY protein of bacteriophage T4 is an accessory protein for in vitro catalysis of strand exchange
    • Harris LD, Griffith JD. 1989. UvsY protein of bacteriophage T4 is an accessory protein for in vitro catalysis of strand exchange. J Mol Biol 206: 19–27
    • (1989) J Mol Biol , vol.206 , pp. 19-27
    • Harris, L.D.1    Griffith, J.D.2
  • 129
    • 0033621088 scopus 로고    scopus 로고
    • Polymerization and mechanical properties of single RecA-DNA filaments
    • Hegner M, Smith SB, Bustamante C. 1999. Polymerization and mechanical properties of single RecA-DNA filaments. Proc Natl Acad Sci 96: 10109–10114
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 10109-10114
    • Hegner, M.1    Smith, S.B.2    Bustamante, C.3
  • 131
    • 84940050527 scopus 로고    scopus 로고
    • Regulation of recombination and genomic maintenance
    • Heyer WD. 2015. Regulation of recombination and genomic maintenance. Cold Spring Harb Perspect Biol 7: a016501
    • (2015) Cold Spring Harb Perspect Biol , vol.7
    • Heyer, W.D.1
  • 132
    • 78149425175 scopus 로고    scopus 로고
    • Regulation of homologous recombination in eukaryotes
    • Heyer WD, Ehmsen KT, Liu J. 2010. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44: 113–139
    • (2010) Annu Rev Genet , vol.44 , pp. 113-139
    • Heyer, W.D.1    Ehmsen, K.T.2    Liu, J.3
  • 133
    • 58849096231 scopus 로고    scopus 로고
    • Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules
    • Hilario J, Amitani I, Baskin RJ, Kowalczykowski SC. 2009. Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc Natl Acad Sci 106: 361–368
    • (2009) Proc Natl Acad Sci , vol.106 , pp. 361-368
    • Hilario, J.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 135
    • 78650242581 scopus 로고    scopus 로고
    • Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast
    • Ho CK, Mazon G, Lam AF, Symington LS. 2010.Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol Cell 40: 988–1000
    • (2010) Mol Cell , vol.40 , pp. 988-1000
    • Ho, C.K.1    Mazon, G.2    Lam, A.F.3    Symington, L.S.4
  • 136
    • 0035902108 scopus 로고    scopus 로고
    • Genome maintenance mechanisms for preventing cancer
    • Hoeijmakers JH. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374
    • (2001) Nature , vol.411 , pp. 366-374
    • Hoeijmakers, J.H.1
  • 137
    • 84959678845 scopus 로고
    • A mechanism for gene conversion in fungi
    • Holliday R. 1964. A mechanism for gene conversion in fungi. Genet Res 5: 282–304
    • (1964) Genet Res , vol.5 , pp. 282-304
    • Holliday, R.1
  • 138
    • 0026740399 scopus 로고
    • The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA
    • Hsieh P, Camerini-Otero CS, Camerini-Otero RD. 1992. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc Natl Acad Sci 89: 6492–6496
    • (1992) Proc Natl Acad Sci , vol.89 , pp. 6492-6496
    • Hsieh, P.1    Camerini-Otero, C.S.2    Camerini-Otero, R.D.3
  • 139
    • 36849013079 scopus 로고    scopus 로고
    • RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments
    • Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, et al. 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21: 3073–3084
    • (2007) Genes Dev , vol.21 , pp. 3073-3084
    • Hu, Y.1    Raynard, S.2    Sehorn, M.G.3    Lu, X.4    Bussen, W.5    Zheng, L.6    Stark, J.M.7    Barnes, E.L.8    Chi, P.9    Janscak, P.10
  • 140
    • 66149114020 scopus 로고    scopus 로고
    • Human CtIP mediates cell cycle control of DNA end resection and double strand break repair
    • Huertas P, Jackson SP. 2009.Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284: 9558–9565
    • (2009) J Biol Chem , vol.284 , pp. 9558-9565
    • Huertas, P.1    Jackson, S.P.2
  • 141
    • 84946440917 scopus 로고    scopus 로고
    • Meiotic recombination: The essence of heredity
    • Hunter N. 2015. Meiotic recombination: The essence of heredity. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016618
    • (2015) Cold Spring Harb Perspect Biol
    • Hunter, N.1
  • 142
    • 0033830809 scopus 로고    scopus 로고
    • MUS81 encodes a novel helix–hairpin–helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae
    • Interthal H, Heyer WD. 2000. MUS81 encodes a novel helix–hairpin–helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol Gen Genet 263: 812–827
    • (2000) Mol Gen Genet , vol.263 , pp. 812-827
    • Interthal, H.1    Heyer, W.D.2
  • 143
    • 56749119855 scopus 로고    scopus 로고
    • Identification of Holliday junction resolvases from humans and yeast
    • Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC. 2008. Identification of Holliday junction resolvases from humans and yeast. Nature 456: 357–361
    • (2008) Nature , vol.456 , pp. 357-361
    • Ip, S.C.1    Rass, U.2    Blanco, M.G.3    Flynn, H.R.4    Skehel, J.M.5    West, S.C.6
  • 144
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1–Top3 suppress crossovers during doublestrand break repair in yeast
    • Ira G, Malkova A, Liberi G, Foiani M, Haber JE. 2003. Srs2 and Sgs1–Top3 suppress crossovers during doublestrand break repair in yeast. Cell 115: 401–411
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 145
    • 0026482604 scopus 로고
    • Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration
    • Iwasaki H, Takahagi M, Nakata A, Shinagawa H. 1992. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev 6: 2214–2220
    • (1992) Genes Dev , vol.6 , pp. 2214-2220
    • Iwasaki, H.1    Takahagi, M.2    Nakata, A.3    Shinagawa, H.4
  • 146
    • 77957975815 scopus 로고    scopus 로고
    • Purified human BRCA2 stimulates RAD51-mediated recombination
    • Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467: 678–683
    • (2010) Nature , vol.467 , pp. 678-683
    • Jensen, R.B.1    Carreira, A.2    Kowalczykowski, S.C.3
  • 147
    • 0029164962 scopus 로고
    • Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57
    • Johnson RD, Symington LS. 1995. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol Cell Biol 15: 4843–4850
    • (1995) Mol Cell Biol , vol.15 , pp. 4843-4850
    • Johnson, R.D.1    Symington, L.S.2
  • 148
    • 33746713745 scopus 로고    scopus 로고
    • Real-time observation of RecA filament dynamics with single monomer resolution
    • Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T. 2006. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126: 515–527
    • (2006) Cell , vol.126 , pp. 515-527
    • Joo, C.1    McKinney, S.A.2    Nakamura, M.3    Rasnik, I.4    Myong, S.5    Ha, T.6
  • 149
    • 0022646708 scopus 로고
    • On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli
    • Julin DA, Riddles PW, Lehman IR. 1986. On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli. J Biol Chem 261: 1025–1030
    • (1986) J Biol Chem , vol.261 , pp. 1025-1030
    • Julin, D.A.1    Riddles, P.W.2    Lehman, I.R.3
  • 150
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • Kaidi A, Weinert BT, Choudhary C, Jackson SP. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329: 1348–1353
    • (2010) Science , vol.329 , pp. 1348-1353
    • Kaidi, A.1    Weinert, B.T.2    Choudhary, C.3    Jackson, S.P.4
  • 151
    • 0037180443 scopus 로고    scopus 로고
    • Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination
    • Kantake N, Madiraju MV, Sugiyama T, Kowalczykowski SC. 2002. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc Natl Acad Sci 99: 15327–15332
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 15327-15332
    • Kantake, N.1    Madiraju, M.V.2    Sugiyama, T.3    Kowalczykowski, S.C.4
  • 152
    • 0034612333 scopus 로고    scopus 로고
    • The Bloom’s syndrome gene product promotes branch migration of Holliday junctions
    • Karow JK, Constantinou A, Li JL, West SC, Hickson ID. 2000. The Bloom’s syndrome gene product promotes branch migration of Holliday junctions. Proc Natl Acad Sci 97: 6504–6508
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 6504-6508
    • Karow, J.K.1    Constantinou, A.2    Li, J.L.3    West, S.C.4    Hickson, I.D.5
  • 153
    • 84885578390 scopus 로고    scopus 로고
    • RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double- strand breaks
    • Keyamura K, Sakaguchi C, Kubota Y, Niki H, Hishida T. 2013. RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double- strand breaks. J Biol Chem 288: 29229–29237
    • (2013) J Biol Chem , vol.288 , pp. 29229-29237
    • Keyamura, K.1    Sakaguchi, C.2    Kubota, Y.3    Niki, H.4    Hishida, T.5
  • 155
    • 0024474142 scopus 로고
    • The phage T4 uvs Y recombination protein stabilizes presynaptic filaments
    • Kodadek T, Gan DC, Stemke-Hale K. 1989. The phage T4 uvs Y recombination protein stabilizes presynaptic filaments. J Biol Chem 264: 16451–16457
    • (1989) J Biol Chem , vol.264 , pp. 16451-16457
    • Kodadek, T.1    Gan, D.C.2    Stemke-Hale, K.3
  • 156
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T. 1997. Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61: 212–238
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 157
    • 84872578210 scopus 로고    scopus 로고
    • Fanconi anaemia and the repair ofWatson and Crick DNA crosslinks
    • Kottemann MC, Smogorzewska A. 2013. Fanconi anaemia and the repair ofWatson and Crick DNA crosslinks. Nature 493: 356–363
    • (2013) Nature , vol.493 , pp. 356-363
    • Kottemann, M.C.1    Smogorzewska, A.2
  • 158
    • 0025848721 scopus 로고
    • Biochemical and biological function of Escherichia coli RecA protein: Behavior of mutant RecA proteins
    • Kowalczykowski SC. 1991. Biochemical and biological function of Escherichia coli RecA protein: Behavior of mutant RecA proteins. Biochimie 73: 289–304
    • (1991) Biochimie , vol.73 , pp. 289-304
    • Kowalczykowski, S.C.1
  • 159
    • 0034176335 scopus 로고    scopus 로고
    • Initiation of genetic recombination and recombination-dependent replication
    • Kowalczykowski SC. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25: 156–165
    • (2000) Trends Biochem Sci , vol.25 , pp. 156-165
    • Kowalczykowski, S.C.1
  • 160
    • 44349104598 scopus 로고    scopus 로고
    • Structural biology: Snapshots of DNA repair
    • Kowalczykowski SC. 2008. Structural biology: Snapshots of DNA repair. Nature 453: 463–466
    • (2008) Nature , vol.453 , pp. 463-466
    • Kowalczykowski, S.C.1
  • 161
    • 0028308710 scopus 로고
    • Homologous pairing and DNA strand-exchange proteins
    • Kowalczykowski SC, Eggleston AK. 1994.Homologous pairing and DNA strand-exchange proteins. Annu Rev Biochem 63: 991–1043
    • (1994) Annu Rev Biochem , vol.63 , pp. 991-1043
    • Kowalczykowski, S.C.1    Eggleston, A.K.2
  • 162
    • 0023135142 scopus 로고
    • Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA
    • Kowalczykowski SC, Krupp RA. 1987. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J Mol Biol 193: 97–113
    • (1987) J Mol Biol , vol.193 , pp. 97-113
    • Kowalczykowski, S.C.1    Krupp, R.A.2
  • 163
    • 0024318225 scopus 로고
    • Biochemical events essential to the recombination activity of Escherichia coli RecA protein. II: Co-dominant effects of RecA142 protein on wild-type RecA protein function
    • Kowalczykowski SC, Krupp RA. 1989. Biochemical events essential to the recombination activity of Escherichia coli RecA protein. II: Co-dominant effects of RecA142 protein on wild-type RecA protein function. J Mol Biol 207: 735–747
    • (1989) J Mol Biol , vol.207 , pp. 735-747
    • Kowalczykowski, S.C.1    Krupp, R.A.2
  • 164
    • 0023108585 scopus 로고
    • Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction
    • Kowalczykowski SC, Clow J, Somani R, Varghese A. 1987. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J Mol Biol 193: 81–95
    • (1987) J Mol Biol , vol.193 , pp. 81-95
    • Kowalczykowski, S.C.1    Clow, J.2    Somani, R.3    Varghese, A.4
  • 165
    • 0024318225 scopus 로고
    • Biochemical events essential to the recombination activity of Escherichia coli RecA protein. II: Co-dominant effects of RecA142 protein on wild-type RecA protein function
    • Kowalczykowski SC, Krupp RA. 1989. Biochemical events essential to the recombination activity of Escherichia coli RecA protein. II: Co-dominant effects of RecA142 protein on wild-type RecA protein function. J Mol Biol 207: 735–747
    • (1989) J Mol Biol , vol.207 , pp. 735-747
    • Kowalczykowski, S.C.1    Krupp, R.A.2
  • 166
    • 0023108585 scopus 로고
    • Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction
    • Kowalczykowski SC, Clow J, Somani R, Varghese A. 1987. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J Mol Biol 193: 81–95
    • (1987) J Mol Biol , vol.193 , pp. 81-95
    • Kowalczykowski, S.C.1    Clow, J.2    Somani, R.3    Varghese, A.4
  • 168
    • 84898995018 scopus 로고    scopus 로고
    • Structural basis for translocation by AddAB helicase-nuclease and its arrest at x sites
    • Krajewski WW, Fu X, Wilkinson M, Cronin NB, Dillingham MS, Wigley DB. 2014. Structural basis for translocation by AddAB helicase-nuclease and its arrest at x sites. Nature 508: 416–419
    • (2014) Nature , vol.508 , pp. 416-419
    • Krajewski, W.W.1    Fu, X.2    Wilkinson, M.3    Cronin, N.B.4    Dillingham, M.S.5    Wigley, D.B.6
  • 170
    • 0034176951 scopus 로고    scopus 로고
    • Recombination-dependent DNA replication in phage T4
    • Kreuzer KN. 2000. Recombination-dependent DNA replication in phage T4. Trends Biochem Sci 25: 165–173
    • (2000) Trends Biochem Sci , vol.25 , pp. 165-173
    • Kreuzer, K.N.1
  • 171
    • 0032715175 scopus 로고    scopus 로고
    • Recombinational repair ofDNAdamage in Escherichia coli and bacteriophage l
    • Kuzminov A. 1999. Recombinational repair ofDNAdamage in Escherichia coli and bacteriophage l. Microbiol Mol Biol Rev 63: 751–813
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 751-813
    • Kuzminov, A.1
  • 172
    • 84920527784 scopus 로고    scopus 로고
    • Mechanism and regulation of meiotic recombination initiation
    • Lam I, Keeney S. 2015. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 7: a016634
    • (2015) Cold Spring Harb Perspect Biol , vol.7
    • Lam, I.1    Keeney, S.2
  • 174
    • 39549102855 scopus 로고    scopus 로고
    • Rad52 promotes postinvasion steps of meiotic doublestrand- break repair
    • Lao JP, Oh SD, Shinohara M, Shinohara A, Hunter N. 2008. Rad52 promotes postinvasion steps of meiotic doublestrand- break repair. Mol Cell 29: 517–524
    • (2008) Mol Cell , vol.29 , pp. 517-524
    • Lao, J.P.1    Oh, S.D.2    Shinohara, M.3    Shinohara, A.4    Hunter, N.5
  • 175
    • 0026795611 scopus 로고
    • Apostsynaptic role for single-stranded DNA-binding protein in recA proteinpromoted DNA strand exchange
    • Lavery PE, Kowalczykowski SC. 1992.Apostsynaptic role for single-stranded DNA-binding protein in recA proteinpromoted DNA strand exchange. J Biol Chem 267: 9315–9320
    • (1992) J Biol Chem , vol.267 , pp. 9315-9320
    • Lavery, P.E.1    Kowalczykowski, S.C.2
  • 176
    • 0032514675 scopus 로고    scopus 로고
    • RecA binding to a single double-strandedDNA molecule: A possible role ofDNA conformational fluctuations
    • Léger JF, Robert J, Bourdieu L, Chatenay D, Marko JF. 1998. RecA binding to a single double-strandedDNA molecule: A possible role ofDNA conformational fluctuations. Proc Natl Acad Sci 95: 12295–12299
    • (1998) Proc Natl Acad Sci , vol.95 , pp. 12295-12299
    • Léger, J.F.1    Robert, J.2    Bourdieu, L.3    Chatenay, D.4    Marko, J.F.5
  • 178
    • 59649102253 scopus 로고    scopus 로고
    • RAD54 controls access to the invading 30-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae
    • Li X, Heyer WD. 2009. RAD54 controls access to the invading 30-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 37: 638–646.
    • (2009) Nucleic Acids Res , vol.37 , pp. 638-646
    • Li, X.1    Heyer, W.D.2
  • 180
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699–713
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 182
    • 77957804215 scopus 로고    scopus 로고
    • Human BRCA2 protein promotes RAD51 filament formation on RPAcovered single-stranded DNA
    • Liu J, Doty T, Gibson B, Heyer WD. 2010. Human BRCA2 protein promotes RAD51 filament formation on RPAcovered single-stranded DNA. Nat Struct Mol Biol 17: 1260–1262
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1260-1262
    • Liu, J.1    Doty, T.2    Gibson, B.3    Heyer, W.D.4
  • 183
    • 80855132890 scopus 로고    scopus 로고
    • Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
    • Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer WD. 2011a. Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479: 245–248
    • (2011) Nature , vol.479 , pp. 245-248
    • Liu, J.1    Renault, L.2    Veaute, X.3    Fabre, F.4    Stahlberg, H.5    Heyer, W.D.6
  • 184
    • 82355181545 scopus 로고    scopus 로고
    • HSWS1SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair
    • Liu T, Wan L, Wu Y, Chen J, Huang J. 2011b. hSWS1SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair. J Biol Chem 286: 41758–41766
    • (2011) J Biol Chem , vol.286 , pp. 41758-41766
    • Liu, T.1    Wan, L.2    Wu, Y.3    Chen, J.4    Huang, J.5
  • 185
    • 84882823133 scopus 로고    scopus 로고
    • DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate
    • Liu B, Baskin RJ, Kowalczykowski SC. 2013. DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate. Nature 500: 482–485
    • (2013) Nature , vol.500 , pp. 482-485
    • Liu, B.1    Baskin, R.J.2    Kowalczykowski, S.C.3
  • 186
    • 0028246888 scopus 로고
    • Escherichia coli singlestranded DNA-binding protein: Multiple DNA-binding modes and cooperativities
    • Lohman TM, Ferrari ME. 1994. Escherichia coli singlestranded DNA-binding protein: Multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63: 527–570
    • (1994) Annu Rev Biochem , vol.63 , pp. 527-570
    • Lohman, T.M.1    Ferrari, M.E.2
  • 188
    • 0345587483 scopus 로고
    • Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli
    • Lovett ST, Kolodner RD. 1989. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci 86: 2627–2631
    • (1989) Proc Natl Acad Sci , vol.86 , pp. 2627-2631
    • Lovett, S.T.1    Kolodner, R.D.2
  • 189
    • 0023390512 scopus 로고
    • Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: Effects of temperature, osmotic strength and mating type
    • Lovett ST, Mortimer RK. 1987. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: Effects of temperature, osmotic strength and mating type. Genetics 116: 547–553
    • (1987) Genetics , vol.116 , pp. 547-553
    • Lovett, S.T.1    Mortimer, R.K.2
  • 190
    • 11244255422 scopus 로고    scopus 로고
    • The DinI and RecX proteins are competing modulators of RecA function
    • Lusetti SL, Drees JC, Stohl EA, Seifert HS, Cox MM. 2004a. The DinI and RecX proteins are competing modulators of RecA function. J Biol Chem 279: 55073–55079
    • (2004) J Biol Chem , vol.279 , pp. 55073-55079
    • Lusetti, S.L.1    Drees, J.C.2    Stohl, E.A.3    Seifert, H.S.4    Cox, M.M.5
  • 192
    • 0023801207 scopus 로고
    • Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination
    • Madiraju MVVS, Templin A, Clark AJ. 1988. Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc Natl Acad Sci 85: 6592–6596
    • (1988) Proc Natl Acad Sci , vol.85 , pp. 6592-6596
    • Madiraju, M.1    Templin, A.2    Clark, A.J.3
  • 194
  • 198
    • 0037900075 scopus 로고    scopus 로고
    • A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament
    • Mazin AV, Alexeev AA, Kowalczykowski SC. 2003. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278: 14029–14036
    • (2003) J Biol Chem , vol.278 , pp. 14029-14036
    • Mazin, A.V.1    Alexeev, A.A.2    Kowalczykowski, S.C.3
  • 199
    • 10644264232 scopus 로고    scopus 로고
    • Human Rad54 protein stimulatesDNA strand exchange activity of hRad51 protein in the presence of Ca2þ
    • Mazina OM, Mazin AV. 2004. Human Rad54 protein stimulatesDNA strand exchange activity of hRad51 protein in the presence of Ca2þ. J Biol Chem 279: 52042–52051
    • (2004) J Biol Chem , vol.279 , pp. 52042-52051
    • Mazina, O.M.1    Mazin, A.V.2
  • 200
    • 57449090470 scopus 로고    scopus 로고
    • Human Rad54 protein stimulates human Mus81–Eme1 endonuclease
    • Mazina OM, Mazin AV. 2008. Human Rad54 protein stimulates human Mus81–Eme1 endonuclease. Proc Natl Acad Sci 105: 18249–18254
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 18249-18254
    • Mazina, O.M.1    Mazin, A.V.2
  • 201
    • 84859492332 scopus 로고    scopus 로고
    • Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins
    • Mazina OM, Rossi MJ, Deakyne JS, Huang F, Mazin AV. 2012. Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins. J Biol Chem 287: 11820–11832
    • (2012) J Biol Chem , vol.287 , pp. 11820-11832
    • Mazina, O.M.1    Rossi, M.J.2    Deakyne, J.S.3    Huang, F.4    Mazin, A.V.5
  • 202
    • 84885361263 scopus 로고    scopus 로고
    • Mph1 and Mus81–Mms4 prevent aberrant processing of mitotic recombination intermediates
    • Mazon G, Symington LS. 2013. Mph1 and Mus81–Mms4 prevent aberrant processing of mitotic recombination intermediates. Mol Cell 52: 63–74
    • (2013) Mol Cell , vol.52 , pp. 63-74
    • Mazon, G.1    Symington, L.S.2
  • 203
    • 0030852247 scopus 로고    scopus 로고
    • The DNA replication protein PriA and the recombination protein RecG bind D-loops
    • McGlynn P, Al-Deib AA, Liu J, Marians KJ, Lloyd RG. 1997. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270: 212–221
    • (1997) J Mol Biol , vol.270 , pp. 212-221
    • McGlynn, P.1    Al-Deib, A.A.2    Liu, J.3    Marians, K.J.4    Lloyd, R.G.5
  • 204
    • 39549114273 scopus 로고    scopus 로고
    • DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair
    • McIlwraith MJ, West SC. 2008. DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol Cell 29: 510–516.
    • (2008) Mol Cell , vol.29 , pp. 510-516
    • McIlwraith, M.J.1    West, S.C.2
  • 205
    • 84903757525 scopus 로고    scopus 로고
    • Sources of DNA double-strand breaks and models of recombinational DNA repair
    • Mehta A, Haber JE. 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6: a016428
    • (2014) Cold Spring Harb Perspect Biol , vol.6
    • Mehta, A.1    Haber, J.E.2
  • 207
    • 0028953715 scopus 로고
    • DNA helicases in recombination and repair: Construction of a DuvrD DhelD DrecQ mutant deficient in recombination and repair
    • Mendonca VM, Klepin HD, Matson SW. 1995. DNA helicases in recombination and repair: Construction of a DuvrD DhelD DrecQ mutant deficient in recombination and repair. J Bacteriol 177: 1326–1335
    • (1995) J Bacteriol , vol.177 , pp. 1326-1335
    • Mendonca, V.M.1    Klepin, H.D.2    Matson, S.W.3
  • 208
    • 0022429092 scopus 로고
    • Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors
    • Menetski JP, Kowalczykowski SC. 1985. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol 181: 281–295
    • (1985) J Mol Biol , vol.181 , pp. 281-295
    • Menetski, J.P.1    Kowalczykowski, S.C.2
  • 209
    • 0025166577 scopus 로고
    • Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis
    • Menetski JP, Bear DG, Kowalczykowski SC. 1990. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc Natl Acad Sci 87: 21–25
    • (1990) Proc Natl Acad Sci , vol.87 , pp. 21-25
    • Menetski, J.P.1    Bear, D.G.2    Kowalczykowski, S.C.3
  • 210
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770–774
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 211
    • 37549051303 scopus 로고    scopus 로고
    • Real-time measurements of the nucleation, growth and dissociation of single Rad51–DNA nucleoprotein filaments
    • Mine´ J, Disseau L, Takahashi M, Cappello G, Dutreix M, Viovy JL. 2007. Real-time measurements of the nucleation, growth and dissociation of single Rad51–DNA nucleoprotein filaments. Nucleic Acids Res 35: 7171–7187
    • (2007) Nucleic Acids Res , vol.35 , pp. 7171-7187
    • Mine´, J.1    Disseau, L.2    Takahashi, M.3    Cappello, G.4    Dutreix, M.5    Viovy, J.L.6
  • 212
    • 84860517399 scopus 로고    scopus 로고
    • Increased chromosome mobility facilitates homology search during recombination
    • Miné-Hattab J, Rothstein R. 2012. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 14: 510–517
    • (2012) Nat Cell Biol , vol.14 , pp. 510-517
    • Miné-Hattab, J.1    Rothstein, R.2
  • 213
    • 84875974599 scopus 로고    scopus 로고
    • Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes
    • Mitchel K, Lehner K, Jinks-Robertson S. 2013. Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet 9: e1003340
    • (2013) Plos Genet , vol.9
    • Mitchel, K.1    Lehner, K.2    Jinks-Robertson, S.3
  • 217
    • 0038392868 scopus 로고    scopus 로고
    • RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair
    • Morimatsu K, Kowalczykowski SC. 2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol Cell 11: 1337–1347
    • (2003) Mol Cell , vol.11 , pp. 1337-1347
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 218
    • 84915746628 scopus 로고    scopus 로고
    • RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination
    • Morimatsu K, Kowalczykowski SC. 2014. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. Proc Natl Acad Sci 111: E5133–E5142
    • (2014) Proc Natl Acad Sci , vol.111 , pp. E5133-E5142
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 219
    • 84867406977 scopus 로고    scopus 로고
    • RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 50 terminus: Implication for repair of stalled replication forks
    • Morimatsu K, Wu Y, Kowalczykowski SC. 2012. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 50 terminus: Implication for repair of stalled replication forks. J Biol Chem 287: 35621–35630
    • (2012) J Biol Chem , vol.287 , pp. 35621-35630
    • Morimatsu, K.1    Wu, Y.2    Kowalczykowski, S.C.3
  • 220
    • 84922575928 scopus 로고    scopus 로고
    • DNA-pairing and annealing processes in homologous recombination and homology-directed repair
    • Morrical SW. 2015.DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 7: a016444
    • (2015) Cold Spring Harb Perspect Biol , vol.7
    • Morrical, S.W.1
  • 221
    • 0023498066 scopus 로고
    • The essential role of recombination in phage T4 growth
    • Mosig G. 1987. The essential role of recombination in phage T4 growth. Annu Rev Genet 21: 347–371
    • (1987) Annu Rev Genet , vol.21 , pp. 347-371
    • Mosig, G.1
  • 222
    • 18944395928 scopus 로고    scopus 로고
    • Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1–Top3 complex
    • Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, Brill SJ. 2005. Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1–Top3 complex. Mol Cell Biol 25: 4476–4487
    • (2005) Mol Cell Biol , vol.25 , pp. 4476-4487
    • Mullen, J.R.1    Nallaseth, F.S.2    Lan, Y.Q.3    Slagle, C.E.4    Brill, S.J.5
  • 223
    • 0021185614 scopus 로고
    • Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: Identification of a new mutation (recQ1) that blocks the recF recombination pathway
    • Nakayama H, Nakayama K, Nakayama R, Irino N, Nakayama Y, Hanawalt PC. 1984. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: Identification of a new mutation (recQ1) that blocks the recF recombination pathway. Mol Gen Genet 195: 474–480
    • (1984) Mol Gen Genet , vol.195 , pp. 474-480
    • Nakayama, H.1    Nakayama, K.2    Nakayama, R.3    Irino, N.4    Nakayama, Y.5    Hanawalt, P.C.6
  • 224
    • 0020389727 scopus 로고
    • Molecular genetics of yeast mating type
    • Nasmyth KA. 1982.Molecular genetics of yeast mating type. Annu Rev Genet 16: 439–500
    • (1982) Annu Rev Genet , vol.16 , pp. 439-500
    • Nasmyth, K.A.1
  • 225
    • 0037135538 scopus 로고    scopus 로고
    • Rad52 protein has a second stimulatory role in DNA strand exchange that complements replication protein-A function
    • New JH, Kowalczykowski SC. 2002. Rad52 protein has a second stimulatory role in DNA strand exchange that complements replication protein-A function. J Biol Chem 277: 26171–26176
    • (2002) J Biol Chem , vol.277 , pp. 26171-26176
    • New, J.H.1    Kowalczykowski, S.C.2
  • 226
    • 0032556870 scopus 로고    scopus 로고
    • Rad52 protein stimulatesDNA strand exchange by Rad51 and replication protein A
    • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. 1998. Rad52 protein stimulatesDNA strand exchange by Rad51 and replication protein A. Nature 391: 407–410
    • (1998) Nature , vol.391 , pp. 407-410
    • New, J.H.1    Sugiyama, T.2    Zaitseva, E.3    Kowalczykowski, S.C.4
  • 227
    • 35648966525 scopus 로고    scopus 로고
    • Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules
    • Nimonkar AV, Amitani I, Baskin RJ, Kowalczykowski SC. 2007. Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules. J Biol Chem 282: 30776–30784
    • (2007) J Biol Chem , vol.282 , pp. 30776-30784
    • Nimonkar, A.V.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 229
    • 62549160340 scopus 로고    scopus 로고
    • Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules
    • Nimonkar AV, Sica RA, Kowalczykowski SC. 2009. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc Natl Acad Sci 106: 3077–3082
    • (2009) Proc Natl Acad Sci , vol.106 , pp. 3077-3082
    • Nimonkar, A.V.1    Sica, R.A.2    Kowalczykowski, S.C.3
  • 231
    • 84865230072 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination
    • Nimonkar AV, Dombrowski CC, Siino JS, Stasiak AZ, Stasiak A, Kowalczykowski SC. 2012. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination. J Biol Chem 287: 28727–28737
    • (2012) J Biol Chem , vol.287 , pp. 28727-28737
    • Nimonkar, A.V.1    Dombrowski, C.C.2    Siino, J.S.3    Stasiak, A.Z.4    Stasiak, A.5    Kowalczykowski, S.C.6
  • 232
  • 233
    • 0038498093 scopus 로고    scopus 로고
    • Identification and characterization of human MUS81–MMS4 structure-specific endonuclease
    • Ogrunc M, Sancar A. 2003. Identification and characterization of human MUS81–MMS4 structure-specific endonuclease. J Biol Chem 278: 21715–21720
    • (2003) J Biol Chem , vol.278 , pp. 21715-21720
    • Ogrunc, M.1    Sancar, A.2
  • 234
    • 62849091779 scopus 로고    scopus 로고
    • TheWerner syndrome helicase/exonuclease processes mobile D-loops through branch migration and degradation
    • Opresko PL, Sowd G, Wang H. 2009. TheWerner syndrome helicase/exonuclease processes mobile D-loops through branch migration and degradation. PLoS ONE 4: e4825
    • (2009) Plos ONE , vol.4
    • Opresko, P.L.1    Sowd, G.2    Wang, H.3
  • 236
    • 0037137177 scopus 로고    scopus 로고
    • The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro
    • Orren DK, Theodore S, Machwe A. 2002. The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro. Biochemistry 41: 13483–13488
    • (2002) Biochemistry , vol.41 , pp. 13483-13488
    • Orren, D.K.1    Theodore, S.2    Machwe, A.3
  • 237
    • 84891014338 scopus 로고    scopus 로고
    • Double-strand break repair: 53BP1 comes into focus
    • Panier S, Boulton SJ. 2014. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15: 7–18
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 7-18
    • Panier, S.1    Boulton, S.J.2
  • 238
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Paˆques F, Haber JE. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 349-404
    • Paˆques, F.1    Haber, J.E.2
  • 239
    • 0032085295 scopus 로고    scopus 로고
    • The 30 to 50 exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks
    • Paull TT, Gellert M. 1998. The 30 to 50 exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1: 969–979
    • (1998) Mol Cell , vol.1 , pp. 969-979
    • Paull, T.T.1    Gellert, M.2
  • 240
    • 0033563229 scopus 로고    scopus 로고
    • Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex
    • Paull TT, Gellert M. 1999. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13: 1276–1288
    • (1999) Genes Dev , vol.13 , pp. 1276-1288
    • Paull, T.T.1    Gellert, M.2
  • 242
    • 84870532082 scopus 로고    scopus 로고
    • Structural and functional characterization of an SMC-like protein RecN: New insights into double-strand break repair
    • Pellegrino S, Radzimanowski J, de Sanctis D, Boeri Erba E, McSweeney S, Timmins J. 2012. Structural and functional characterization of an SMC-like protein RecN: New insights into double-strand break repair. Structure 20: 2076–2089
    • (2012) Structure , vol.20 , pp. 2076-2089
    • Pellegrino, S.1    Radzimanowski, J.2    De Sanctis, D.3    Boeri Erba, E.4    McSweeney, S.5    Timmins, J.6
  • 243
    • 84898965087 scopus 로고    scopus 로고
    • Substrate specificity of the MUS81–EME2 structure selective endonuclease
    • Pepe A, West SC. 2014. Substrate specificity of the MUS81–EME2 structure selective endonuclease. Nucleic Acids Res 42: 3833–3845
    • (2014) Nucleic Acids Res , vol.42 , pp. 3833-3845
    • Pepe, A.1    West, S.C.2
  • 245
    • 0032492853 scopus 로고    scopus 로고
    • Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins
    • Petukhova G, Stratton S, Sung P. 1998. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393: 91–94
    • (1998) Nature , vol.393 , pp. 91-94
    • Petukhova, G.1    Stratton, S.2    Sung, P.3
  • 246
    • 0033607640 scopus 로고    scopus 로고
    • Single strand DNA binding and annealing activities in the yeast recombination factor Rad59
    • Petukhova G, Stratton SA, Sung P. 1999. Single strand DNA binding and annealing activities in the yeast recombination factor Rad59. J Biol Chem 274: 33839–33842
    • (1999) J Biol Chem , vol.274 , pp. 33839-33842
    • Petukhova, G.1    Stratton, S.A.2    Sung, P.3
  • 247
    • 0033864250 scopus 로고    scopus 로고
    • Promotion of Rad51- dependent D-loop formation by yeast recombination factor Rdh54/Tid1
    • Petukhova G, Sung P, Klein H. 2000. Promotion of Rad51- dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev 14: 2206–2215
    • (2000) Genes Dev , vol.14 , pp. 2206-2215
    • Petukhova, G.1    Sung, P.2    Klein, H.3
  • 248
    • 0021265499 scopus 로고
    • Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product
    • Picksley SM, Attfield PV, Lloyd RG. 1984. Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet 195: 267–274
    • (1984) Mol Gen Genet , vol.195 , pp. 267-274
    • Picksley, S.M.1    Attfield, P.V.2    Lloyd, R.G.3
  • 251
    • 14844296413 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 30 to 50 DNA helicase
    • Prakash R, Krejci L, Van Komen S, Anke Schurer K, Kramer W, Sung P. 2005. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 30 to 50 DNA helicase. J Biol Chem 280: 7854–7860
    • (2005) J Biol Chem , vol.280 , pp. 7854-7860
    • Prakash, R.1    Krejci, L.2    Van Komen, S.3    Anke Schurer, K.4    Kramer, W.5    Sung, P.6
  • 253
    • 84926432359 scopus 로고    scopus 로고
    • Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins
    • Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7: a016600
    • (2015) Cold Spring Harb Perspect Biol , vol.7
    • Prakash, R.1    Zhang, Y.2    Feng, W.3    Jasin, M.4
  • 254
    • 34248512303 scopus 로고    scopus 로고
    • A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops
    • Prasad TK, Robertson RB, Visnapuu ML, Chi P, Sung P, Greene EC. 2007. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J Mol Biol 369: 940–953
    • (2007) J Mol Biol , vol.369 , pp. 940-953
    • Prasad, T.K.1    Robertson, R.B.2    Visnapuu, M.L.3    Chi, P.4    Sung, P.5    Greene, E.C.6
  • 255
    • 3142653230 scopus 로고    scopus 로고
    • Geometry of theDNA strands within the RecA nucleofilament: Role in homologous recombination
    • Prévost C, Takahashi M. 2003. Geometry of theDNA strands within the RecA nucleofilament: Role in homologous recombination. Q Rev Biophys 36: 429–453
    • (2003) Q Rev Biophys , vol.36 , pp. 429-453
    • Prévost, C.1    Takahashi, M.2
  • 257
    • 80051527439 scopus 로고    scopus 로고
    • Real-time observation of strand exchange reaction with high spatiotemporal resolution
    • Ragunathan K, Joo C, Ha T. 2011. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19: 1064–1073
    • (2011) Structure , vol.19 , pp. 1064-1073
    • Ragunathan, K.1    Joo, C.2    Ha, T.3
  • 258
    • 84881494657 scopus 로고    scopus 로고
    • RecA filament sliding on DNA facilitates homology search
    • Ragunathan K, Liu C, Ha T. 2012. RecA filament sliding on DNA facilitates homology search. eLife 1: e00067
    • (2012) Elife , vol.1
    • Ragunathan, K.1    Liu, C.2    Ha, T.3
  • 261
    • 33744927719 scopus 로고    scopus 로고
    • A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIa, and BLAP75
    • Raynard S, Bussen W, Sung P. 2006. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIa, and BLAP75. J Biol Chem 281: 13861–13864.
    • (2006) J Biol Chem , vol.281 , pp. 13861-13864
    • Raynard, S.1    Bussen, W.2    Sung, P.3
  • 264
    • 77952757937 scopus 로고    scopus 로고
    • RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro
    • Reyes ED, Patidar PL, Uranga LA, Bortoletto AS, Lusetti SL. 2010. RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro. J Biol Chem 285: 16521–16529
    • (2010) J Biol Chem , vol.285 , pp. 16521-16529
    • Reyes, E.D.1    Patidar, P.L.2    Uranga, L.A.3    Bortoletto, A.S.4    Lusetti, S.L.5
  • 265
    • 0035902524 scopus 로고    scopus 로고
    • The architecture of the human Rad54–DNA complex provides evidence for protein translocation along DNA
    • Ristic D, Wyman C, Paulusma C, Kanaar R. 2001. The architecture of the human Rad54–DNA complex provides evidence for protein translocation along DNA. Proc Natl Acad Sci 98: 8454–8460
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 8454-8460
    • Ristic, D.1    Wyman, C.2    Paulusma, C.3    Kanaar, R.4
  • 268
    • 55449115425 scopus 로고    scopus 로고
    • Comparative and evolutionary analysis of the bacterial homologous recombination systems
    • Rocha EP, Cornet E, Michel B. 2005. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1: e15
    • (2005) Plos Genet , vol.1
    • Rocha, E.P.1    Cornet, E.2    Michel, B.3
  • 269
    • 0024565799 scopus 로고
    • Characterization of the adenosinetriphosphatase activity of the Escherichia coli RecBCD enzyme: Relationship of ATP hydrolysis to the unwinding of duplex DNA
    • Roman LJ, Kowalczykowski SC. 1989a. Characterization of the adenosinetriphosphatase activity of the Escherichia coli RecBCD enzyme: Relationship of ATP hydrolysis to the unwinding of duplex DNA. Biochemistry 28: 2873–2881
    • (1989) Biochemistry , vol.28 , pp. 2873-2881
    • Roman, L.J.1    Kowalczykowski, S.C.2
  • 270
    • 0024512057 scopus 로고
    • Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay
    • Roman LJ, Kowalczykowski SC. 1989b. Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28: 2863–2873
    • (1989) Biochemistry , vol.28 , pp. 2863-2873
    • Roman, L.J.1    Kowalczykowski, S.C.2
  • 271
    • 54049139260 scopus 로고    scopus 로고
    • Rad51 protein stimulates the branch migration activity of Rad54 protein
    • Rossi MJ, Mazin AV. 2008. Rad51 protein stimulates the branch migration activity of Rad54 protein. J Biol Chem 283: 24698–24706
    • (2008) J Biol Chem , vol.283 , pp. 24698-24706
    • Rossi, M.J.1    Mazin, A.V.2
  • 272
    • 30744446039 scopus 로고    scopus 로고
    • Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing
    • Sanchez H, Kidane D, Castillo Cozar M, Graumann PL, Alonso JC. 2006. Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing. J Bacteriol 188: 353–360
    • (2006) J Bacteriol , vol.188 , pp. 353-360
    • Sanchez, H.1    Kidane, D.2    Castillo Cozar, M.3    Graumann, P.L.4    Alonso, J.C.5
  • 278
    • 84864592240 scopus 로고    scopus 로고
    • Mus81–Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair
    • Schwartz EK, Wright WD, Ehmsen KT, Evans JE, Stahlberg H, Heyer WD. 2012.Mus81–Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair. Mol Cell Biol 32: 3065–3080
    • (2012) Mol Cell Biol , vol.32 , pp. 3065-3080
    • Schwartz, E.K.1    Wright, W.D.2    Ehmsen, K.T.3    Evans, J.E.4    Stahlberg, H.5    Heyer, W.D.6
  • 281
    • 77956924865 scopus 로고    scopus 로고
    • Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth
    • Shah PP, Zheng X, Epshtein A, Carey JN, Bishop DK, Klein HL. 2010. Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol Cell 39: 862–872
    • (2010) Mol Cell , vol.39 , pp. 862-872
    • Shah, P.P.1    Zheng, X.2    Epshtein, A.3    Carey, J.N.4    Bishop, D.K.5    Klein, H.L.6
  • 282
    • 0028857690 scopus 로고
    • Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast
    • Sharples GJ, Leach DR. 1995. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol Microbiol 17: 1215–1217
    • (1995) Mol Microbiol , vol.17 , pp. 1215-1217
    • Sharples, G.J.1    Leach, D.R.2
  • 284
    • 0000133316 scopus 로고
    • Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and singlestranded fragments
    • Shibata T, DasGupta C, Cunningham RP, Radding CM. 1979. Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and singlestranded fragments. Proc Natl Acad Sci 76: 1638–1642
    • (1979) Proc Natl Acad Sci , vol.76 , pp. 1638-1642
    • Shibata, T.1    Dasgupta, C.2    Cunningham, R.P.3    Radding, C.M.4
  • 285
    • 3142682325 scopus 로고    scopus 로고
    • HXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51
    • Shim KS, Schmutte C, Tombline G, Heinen CD, Fishel R. 2004. hXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51. J Biol Chem 279: 30385–30394
    • (2004) J Biol Chem , vol.279 , pp. 30385-30394
    • Shim, K.S.1    Schmutte, C.2    Tombline, G.3    Heinen, C.D.4    Fishel, R.5
  • 286
    • 0032556898 scopus 로고    scopus 로고
    • Stimulation by Rad52 of yeast Rad51-mediated recombination
    • Shinohara A, Ogawa T. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404–407
    • (1998) Nature , vol.391 , pp. 404-407
    • Shinohara, A.1    Ogawa, T.2
  • 287
    • 0031902872 scopus 로고    scopus 로고
    • Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing
    • Shinohara A, Shinohara M, Ohta T, Matsuda S, Ogawa T. 1998. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3: 145–156
    • (1998) Genes Cells , vol.3 , pp. 145-156
    • Shinohara, A.1    Shinohara, M.2    Ohta, T.3    Matsuda, S.4    Ogawa, T.5
  • 288
    • 0033529216 scopus 로고    scopus 로고
    • RecA polymerization on double-stranded DNA by using single-molecule manipulation: The role of ATP hydrolysis
    • Shivashankar GV, Feingold M, Krichevsky O, Libchaber A. 1999. RecA polymerization on double-stranded DNA by using single-molecule manipulation: the role of ATP hydrolysis. Proc Natl Acad Sci 96: 7916–7921
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 7916-7921
    • Shivashankar, G.V.1    Feingold, M.2    Krichevsky, O.3    Libchaber, A.4
  • 289
    • 17444391598 scopus 로고    scopus 로고
    • A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: Four genes involved in error-free DNA repair
    • Shor E, Weinstein J, Rothstein R. 2005. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: Four genes involved in error-free DNA repair. Genetics 169: 1275–1289
    • (2005) Genetics , vol.169 , pp. 1275-1289
    • Shor, E.1    Weinstein, J.2    Rothstein, R.3
  • 290
    • 0035893241 scopus 로고    scopus 로고
    • Mediator function of the human Rad51B–Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange
    • Sigurdsson S, Van Komen S, Bussen W, Schild D, Albala JS, Sung P. 2001.Mediator function of the human Rad51B–Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15: 3308–3318
    • (2001) Genes Dev , vol.15 , pp. 3308-3318
    • Sigurdsson, S.1    Van Komen, S.2    Bussen, W.3    Schild, D.4    Albala, J.S.5    Sung, P.6
  • 292
    • 54349114671 scopus 로고    scopus 로고
    • BLAP18/ RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome
    • Singh TR, Ali AM, Busygina V, Raynard S, Fan Q, Du CH, Andreassen PR, Sung P, Meetei AR. 2008. BLAP18/ RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes Dev 22: 2856–2868
    • (2008) Genes Dev , vol.22 , pp. 2856-2868
    • Singh, T.R.1    Ali, A.M.2    Busygina, V.3    Raynard, S.4    Fan, Q.5    Du, C.H.6    Reassen, P.R.7    Sung, P.8    Meetei, A.R.9
  • 294
    • 0025967320 scopus 로고
    • Conjugational recombination in Escherichia coli: Myths and mechanisms
    • Smith GR. 1991. Conjugational recombination in Escherichia coli: Myths and mechanisms. Cell 64: 19–27
    • (1991) Cell , vol.64 , pp. 19-27
    • Smith, G.R.1
  • 295
    • 0035902510 scopus 로고    scopus 로고
    • Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange
    • Solinger JA, Heyer WD. 2001. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. ProcNatl Acad Sci 98: 8447–8453
    • (2001) Procnatl Acad Sci , vol.98 , pp. 8447-8453
    • Solinger, J.A.1    Heyer, W.D.2
  • 296
    • 0036864703 scopus 로고    scopus 로고
    • Rad54, a Swi2/ Snf2-like recombinational repair protein, disassembles Rad51:DsDNA filaments
    • Solinger JA, Kiianitsa K, Heyer WD. 2002. Rad54, a Swi2/ Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10: 1175–1188
    • (2002) Mol Cell , vol.10 , pp. 1175-1188
    • Solinger, J.A.1    Kiianitsa, K.2    Heyer, W.D.3
  • 297
    • 65549113446 scopus 로고    scopus 로고
    • FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange
    • Sommers JA, Rawtani N, Gupta R, Bugreev DV, Mazin AV, Cantor SB, Brosh RM Jr, 2009. FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J Biol Chem 284: 7505–7517
    • (2009) J Biol Chem , vol.284 , pp. 7505-7517
    • Sommers, J.A.1    Rawtani, N.2    Gupta, R.3    Bugreev, D.V.4    Mazin, A.V.5    Cantor, S.B.6    Brosh, R.M.7
  • 298
    • 78649778694 scopus 로고    scopus 로고
    • RAD51C: A novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer
    • Somyajit K, Subramanya S, Nagaraju G. 2010. RAD51C: A novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 31: 2031–2038
    • (2010) Carcinogenesis , vol.31 , pp. 2031-2038
    • Somyajit, K.1    Subramanya, S.2    Nagaraju, G.3
  • 299
    • 27744535816 scopus 로고    scopus 로고
    • Homologous recombination by RecBCD and RecF pathways
    • (ed. Higgins NP, ASM Press, Washington, DC
    • Spies M, Kowalczykowski SC. 2005. Homologous recombination by RecBCD and RecF pathways. In The bacterial chromosome (ed. Higgins NP), pp. 389–403. ASM Press, Washington, DC
    • (2005) The Bacterial Chromosome , pp. 389-403
    • Spies, M.1    Kowalczykowski, S.C.2
  • 300
    • 32444451553 scopus 로고    scopus 로고
    • The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins
    • Spies M, Kowalczykowski SC. 2006. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol Cell 21: 573–580.
    • (2006) Mol Cell , vol.21 , pp. 573-580
    • Spies, M.1    Kowalczykowski, S.C.2
  • 301
    • 84924787370 scopus 로고    scopus 로고
    • Mismatch repair during homologous and homeologous recombination
    • Spies M, Fishel R. 2015. Mismatch repair during homologous and homeologous recombination. Cold Spring Harb Perspect Biol 7: a022657
    • (2015) Cold Spring Harb Perspect Biol , vol.7
    • Spies, M.1    Fishel, R.2
  • 302
    • 0141540814 scopus 로고    scopus 로고
    • A molecular throttle: The recombination hotspot x controls DNA translocation by the RecBCD helicase
    • Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. 2003. A molecular throttle: The recombination hotspot x controls DNA translocation by the RecBCD helicase. Cell 114: 647–654
    • (2003) Cell , vol.114 , pp. 647-654
    • Spies, M.1    Bianco, P.R.2    Dillingham, M.S.3    Handa, N.4    Baskin, R.J.5    Kowalczykowski, S.C.6
  • 303
    • 27744497422 scopus 로고    scopus 로고
    • Translocation by the RecB motor is an absolute requirement for x—recognition and RecA protein loading by RecBCD enzyme
    • Spies M, Dillingham MS, Kowalczykowski SC. 2005. Translocation by the RecB motor is an absolute requirement for x—recognition and RecA protein loading by RecBCD enzyme. J Biol Chem 280: 37078–37087
    • (2005) J Biol Chem , vol.280 , pp. 37078-37087
    • Spies, M.1    Dillingham, M.S.2    Kowalczykowski, S.C.3
  • 304
    • 36049052525 scopus 로고    scopus 로고
    • RecBCD enzyme switches lead motor subunits in response to x recognition
    • Spies M, Amitani I, Baskin RJ, Kowalczykowski SC. 2007. RecBCD enzyme switches lead motor subunits in response to x recognition. Cell 131: 694–705
    • (2007) Cell , vol.131 , pp. 694-705
    • Spies, M.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 305
    • 0028345621 scopus 로고
    • Structure and function of RecA-DNA complexes
    • Stasiak A, Egelman EH. 1994. Structure and function of RecA-DNA complexes. Experientia 50: 192–203
    • (1994) Experientia , vol.50 , pp. 192-203
    • Stasiak, A.1    Egelman, E.H.2
  • 307
    • 84907584670 scopus 로고    scopus 로고
    • DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells
    • Sturzenegger A, Burdova K, Kanagaraj R, Levikova M, Pinto C, Cejka P, Janscak P. 2014. DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells. J Biol Chem 289: 27314–27326
    • (2014) J Biol Chem , vol.289 , pp. 27314-27326
    • Sturzenegger, A.1    Burdova, K.2    Kanagaraj, R.3    Levikova, M.4    Pinto, C.5    Cejka, P.6    Janscak, P.7
  • 309
    • 84907495211 scopus 로고    scopus 로고
    • The meiotic checkpoint network: Step-by-step through meiotic prophase
    • Subramanian VV, Hochwagen A. 2014. The meiotic checkpoint network: Step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 6: a016675
    • (2014) Cold Spring Harb Perspect Biol , vol.6
    • Subramanian, V.V.1    Hochwagen, A.2
  • 310
    • 0033946617 scopus 로고    scopus 로고
    • DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair
    • Sugawara N, Ira G, Haber JE. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20: 5300–5309
    • (2000) Mol Cell Biol , vol.20 , pp. 5300-5309
    • Sugawara, N.1    Ira, G.2    Haber, J.E.3
  • 311
    • 0031004885 scopus 로고    scopus 로고
    • A single-stranded DNA-binding protein is needed for effi- cient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein
    • Sugiyama T, Zaitseva EM, Kowalczykowski SC. 1997. A single-stranded DNA-binding protein is needed for effi- cient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272: 7940–7945
    • (1997) J Biol Chem , vol.272 , pp. 7940-7945
    • Sugiyama, T.1    Zaitseva, E.M.2    Kowalczykowski, S.C.3
  • 312
    • 0032568595 scopus 로고    scopus 로고
    • DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA
    • Sugiyama T, New JH, Kowalczykowski SC. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci 95: 6049–6054
    • (1998) Proc Natl Acad Sci , vol.95 , pp. 6049-6054
    • Sugiyama, T.1    New, J.H.2    Kowalczykowski, S.C.3
  • 313
    • 33751560821 scopus 로고    scopus 로고
    • Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture
    • Sugiyama T, Kantake N, Wu Y, Kowalczykowski SC. 2006. Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J 25: 5539–5548
    • (2006) EMBO J , vol.25 , pp. 5539-5548
    • Sugiyama, T.1    Kantake, N.2    Wu, Y.3    Kowalczykowski, S.C.4
  • 314
    • 0027978039 scopus 로고
    • Catalysis ofATP-dependent homologousDNA pairing and strand exchange by yeast RAD51 protein
    • Sung P. 1994. Catalysis ofATP-dependent homologousDNA pairing and strand exchange by yeast RAD51 protein. Science 265: 1241–1243
    • (1994) Science , vol.265 , pp. 1241-1243
    • Sung, P.1
  • 315
    • 0030995362 scopus 로고    scopus 로고
    • Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase
    • Sung P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11: 1111–1121
    • (1997) Genes Dev , vol.11 , pp. 1111-1121
    • Sung, P.1
  • 316
    • 0029112483 scopus 로고
    • DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA
    • Sung P, Robberson DL. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82: 453–461
    • (1995) Cell , vol.82 , pp. 453-461
    • Sung, P.1    Robberson, D.L.2
  • 319
    • 0036900120 scopus 로고    scopus 로고
    • Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
    • Symington LS. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66: 630–670.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 630-670
    • Symington, L.S.1
  • 320
    • 84905493192 scopus 로고    scopus 로고
    • End resection at double-strand breaks: Mechanism and regulation
    • Symington LS. 2014. End resection at double-strand breaks: Mechanism and regulation. Cold Spring Harb Perspect Biol 6: a016436
    • (2014) Cold Spring Harb Perspect Biol , vol.6
    • Symington, L.S.1
  • 321
    • 0026744690 scopus 로고
    • A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe
    • Szankasi P, Smith GR. 1992. A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J Biol Chem 267: 3014–3023.
    • (1992) J Biol Chem , vol.267 , pp. 3014-3023
    • Szankasi, P.1    Smith, G.R.2
  • 322
    • 84930423588 scopus 로고    scopus 로고
    • Initiation of meiotic homologous recombination: Flexibility, impact of histone modifications, and chromatin remodeling
    • Székvölgyi L, Ohta K, Nicolas A. 2015. Initiation of meiotic homologous recombination: Flexibility, impact of histone modifications, and chromatin remodeling. Cold Spring Harb Perspect Biol 6: a016527
    • (2015) Cold Spring Harb Perspect Biol , vol.6
    • Székvölgyi, L.1    Ohta, K.2    Nicolas, A.3
  • 324
    • 0037085744 scopus 로고    scopus 로고
    • Human Rad54B is a double-stranded DNA-dependent ATPase and has biochemical properties different from its structural homolog in yeast, Tid1/ Rdh54
    • Tanaka K, Kagawa W, Kinebuchi T, Kurumizaka H, Miyagawa K. 2002. Human Rad54B is a double-stranded DNA-dependent ATPase and has biochemical properties different from its structural homolog in yeast, Tid1/ Rdh54. Nucleic Acids Res 30: 1346–1353
    • (2002) Nucleic Acids Res , vol.30 , pp. 1346-1353
    • Tanaka, K.1    Kagawa, W.2    Kinebuchi, T.3    Kurumizaka, H.4    Miyagawa, K.5
  • 325
    • 84862006681 scopus 로고    scopus 로고
    • Structural analysis of Shu proteins reveals aDNA binding role essential for resisting damage
    • Tao Y, Li X, Liu Y, Ruan J, Qi S, Niu L, Teng M. 2012. Structural analysis of Shu proteins reveals aDNA binding role essential for resisting damage. J Biol Chem 287: 20231–20239
    • (2012) J Biol Chem , vol.287 , pp. 20231-20239
    • Tao, Y.1    Li, X.2    Liu, Y.3    Ruan, J.4    Qi, S.5    Niu, L.6    Teng, M.7
  • 326
    • 0019158176 scopus 로고
    • Unwinding and rewinding of DNA by the RecBC enzyme
    • Taylor A, Smith GR. 1980. Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22: 447–457
    • (1980) Cell , vol.22 , pp. 447-457
    • Taylor, A.1    Smith, G.R.2
  • 327
    • 0037698985 scopus 로고    scopus 로고
    • RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity
    • Taylor AF, Smith GR. 2003. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423: 889–893
    • (2003) Nature , vol.423 , pp. 889-893
    • Taylor, A.F.1    Smith, G.R.2
  • 328
    • 0020048680 scopus 로고
    • A unified mechanism for the nuclease and unwinding activities of the recBC enzyme of Escherichia coli
    • Telander Muskavitch KM, Linn S. 1982. A unified mechanism for the nuclease and unwinding activities of the recBC enzyme of Escherichia coli. J Biol Chem 257: 2641–2648
    • (1982) J Biol Chem , vol.257 , pp. 2641-2648
    • Telander Muskavitch, K.M.1    Linn, S.2
  • 329
    • 0023726274 scopus 로고
    • Suppression of the UVsensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJþ
    • Thoms B, Wackernagel W. 1988. Suppression of the UVsensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJþ. J Bacteriol 170: 3675–3681
    • (1988) J Bacteriol , vol.170 , pp. 3675-3681
    • Thoms, B.1    Wackernagel, W.2
  • 330
    • 0032533518 scopus 로고    scopus 로고
    • Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination
    • Tishkoff DX, Amin NS, Viars CS, Arden KC, Kolodner RD. 1998. Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58: 5027–5031
    • (1998) Cancer Res , vol.58 , pp. 5027-5031
    • Tishkoff, D.X.1    Amin, N.S.2    Viars, C.S.3    Arden, K.C.4    Kolodner, R.D.5
  • 331
    • 84859004905 scopus 로고    scopus 로고
    • Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions
    • Tomimatsu N, Mukherjee B, Deland K, Kurimasa A, Bolderson E, Khanna KK, Burma S. 2012. Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions. DNA Repair (Amst) 11: 441–448
    • (2012) DNA Repair (Amst) , vol.11 , pp. 441-448
    • Tomimatsu, N.1    Mukherjee, B.2    Deland, K.3    Kurimasa, A.4    Bolderson, E.5    Khanna, K.K.6    Burma, S.7
  • 333
    • 0026444104 scopus 로고
    • Purification and properties of the RuvA and RuvB proteins of Escherichia coli
    • Tsaneva IR, Illing G, Lloyd RG, West SC. 1992. Purification and properties of the RuvA and RuvB proteins of Escherichia coli. Mol Gen Genet 235: 1–10
    • (1992) Mol Gen Genet , vol.235 , pp. 1-10
    • Tsaneva, I.R.1    Illing, G.2    Lloyd, R.G.3    West, S.C.4
  • 334
    • 0028034452 scopus 로고
    • Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein
    • Umezu K, Kolodner RD. 1994. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem 269: 30005–30013
    • (1994) J Biol Chem , vol.269 , pp. 30005-30013
    • Umezu, K.1    Kolodner, R.D.2
  • 335
    • 0027238208 scopus 로고
    • Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein
    • Umezu K, Chi NW, Kolodner RD. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci 90: 3875–3879
    • (1993) Proc Natl Acad Sci , vol.90 , pp. 3875-3879
    • Umezu, K.1    Chi, N.W.2    Kolodner, R.D.3
  • 338
    • 59649116344 scopus 로고    scopus 로고
    • Counting RAD51 proteins disassembling from nucleoprotein filaments under tension
    • vanMameren J, Modesti M, Kanaar R, Wyman C, Peterman EJ, Wuite GJ. 2009. Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457: 745–748
    • (2009) Nature , vol.457 , pp. 745-748
    • Vanmameren, J.1    Modesti, M.2    Kanaar, R.3    Wyman, C.4    Peterman, E.J.5    Wuite, G.J.6
  • 339
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423: 309–312
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 340
    • 13244252309 scopus 로고    scopus 로고
    • UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
    • Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA. 2005. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24: 180–189
    • (2005) EMBO J , vol.24 , pp. 180-189
    • Veaute, X.1    Delmas, S.2    Selva, M.3    Jeusset, J.4    Le Cam, E.5    Matic, I.6    Fabre, F.7    Petit, M.A.8
  • 341
    • 0034703487 scopus 로고    scopus 로고
    • A novel mutational hotspot in a natural quasipalindrome in Escherichia coli
    • Viswanathan M, Lacirignola JJ, Hurley RL, Lovett ST. 2000. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. J Mol Biol 302: 553–564
    • (2000) J Mol Biol , vol.302 , pp. 553-564
    • Viswanathan, M.1    Lacirignola, J.J.2    Hurley, R.L.3    Lovett, S.T.4
  • 342
    • 0035112201 scopus 로고    scopus 로고
    • A model for the abrogation of the SOS response by an SOS protein: A negatively charged helix in DinI mimics DNA in its interaction with RecA
    • Voloshin ON, Ramirez BE, Bax A, Camerini-Otero RD. 2001. A model for the abrogation of the SOS response by an SOS protein: A negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev 15: 415–427
    • (2001) Genes Dev , vol.15 , pp. 415-427
    • Voloshin, O.N.1    Ramirez, B.E.2    Bax, A.3    Camerini-Otero, R.D.4
  • 343
    • 0024997668 scopus 로고
    • The role of DNA topoisomerases in recombination and genome stability: A double-edged sword?
    • Wang JC, Caron PR, Kim RA. 1990. The role of DNA topoisomerases in recombination and genome stability: A double-edged sword? Cell 62: 403–406
    • (1990) Cell , vol.62 , pp. 403-406
    • Wang, J.C.1    Caron, P.R.2    Kim, R.A.3
  • 344
    • 0031453378 scopus 로고    scopus 로고
    • Processing of recombination intermediates by the RuvABC proteins
    • West SC. 1997. Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31: 213–244
    • (1997) Annu Rev Genet , vol.31 , pp. 213-244
    • West, S.C.1
  • 345
    • 0027438781 scopus 로고
    • Reverse branch migration of Holliday junctions by RecG protein: A new mechanism for resolution of intermediates in recombination and DNA repair
    • Whitby MC, Ryder L, Lloyd RG. 1993. Reverse branch migration of Holliday junctions by RecG protein: A new mechanism for resolution of intermediates in recombination and DNA repair. Cell 75: 341–350
    • (1993) Cell , vol.75 , pp. 341-350
    • Whitby, M.C.1    Ryder, L.2    Lloyd, R.G.3
  • 347
    • 0030908093 scopus 로고    scopus 로고
    • Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism
    • Wold MS. 1997. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66: 61–92
    • (1997) Annu Rev Biochem , vol.66 , pp. 61-92
    • Wold, M.S.1
  • 348
    • 84893749175 scopus 로고    scopus 로고
    • Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation
    • Wright WD, Heyer WD. 2014. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol Cell 53: 420–432
    • (2014) Mol Cell , vol.53 , pp. 420-432
    • Wright, W.D.1    Heyer, W.D.2
  • 349
    • 0347987856 scopus 로고    scopus 로고
    • The Bloom’s syndrome helicase suppresses crossing over during homologous recombination
    • Wu L, Hickson ID. 2003. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426: 870–874
    • (2003) Nature , vol.426 , pp. 870-874
    • Wu, L.1    Hickson, I.D.2
  • 350
    • 33751426143 scopus 로고    scopus 로고
    • DNA helicases required for homologous recombination and repair of damaged replication forks
    • Wu L, Hickson ID. 2006. DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 40: 279–306
    • (2006) Annu Rev Genet , vol.40 , pp. 279-306
    • Wu, L.1    Hickson, I.D.2
  • 352
    • 0035377356 scopus 로고    scopus 로고
    • Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51
    • Wu L, Davies SL, Levitt NC, Hickson ID. 2001. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276: 19375–19381
    • (2001) J Biol Chem , vol.276 , pp. 19375-19381
    • Wu, L.1    Davies, S.L.2    Levitt, N.C.3    Hickson, I.D.4
  • 354
    • 33744962417 scopus 로고    scopus 로고
    • DNAannealing mediated by Rad52 and Rad59 proteins
    • Wu Y, Sugiyama T, Kowalczykowski SC. 2006b.DNAannealing mediated by Rad52 and Rad59 proteins. J Biol Chem 281: 15441–15449
    • (2006) J Biol Chem , vol.281 , pp. 15441-15449
    • Wu, Y.1    Sugiyama, T.2    Kowalczykowski, S.C.3
  • 356
    • 84886241606 scopus 로고    scopus 로고
    • Coordinated actions of SLX1–SLX4 and MUS81–EME1 for Holliday junction resolution in human cells
    • Wyatt HDM, Sarbajna S, Matos J, West SC. 2013. Coordinated actions of SLX1–SLX4 and MUS81–EME1 for Holliday junction resolution in human cells. Mol Cell 52: 234–247
    • (2013) Mol Cell , vol.52 , pp. 234-247
    • Wyatt, H.1    Sarbajna, S.2    Matos, J.3    West, S.C.4
  • 360
    • 84861860703 scopus 로고    scopus 로고
    • Alteration of x recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control
    • Yang L, Handa N, Liu B, Dillingham MS, Wigley DB, Kowalczykowski SC. 2012. Alteration of x recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control. Proc Natl Acad Sci 109: 8907–8912
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 8907-8912
    • Yang, L.1    Handa, N.2    Liu, B.3    Dillingham, M.S.4    Wigley, D.B.5    Kowalczykowski, S.C.6
  • 361
    • 76749090482 scopus 로고    scopus 로고
    • The processing of doublestranded DNA breaks for recombinational repair by helicase- nuclease complexes
    • Yeeles JT, Dillingham MS. 2010. The processing of doublestranded DNA breaks for recombinational repair by helicase- nuclease complexes. DNA Repair (Amst) 9: 276–285
    • (2010) DNA Repair (Amst) , vol.9 , pp. 276-285
    • Yeeles, J.T.1    Dillingham, M.S.2
  • 362
    • 65549136266 scopus 로고    scopus 로고
    • An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases
    • Yeeles JT, Cammack R, Dillingham MS. 2009. An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases. J Biol Chem 284: 7746–7755
    • (2009) J Biol Chem , vol.284 , pp. 7746-7755
    • Yeeles, J.T.1    Cammack, R.2    Dillingham, M.S.3
  • 363
    • 17844386117 scopus 로고    scopus 로고
    • BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity
    • Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, Wang W. 2005. BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. EMBO J 24: 1465–1476
    • (2005) EMBO J , vol.24 , pp. 1465-1476
    • Yin, J.1    Sobeck, A.2    Xu, C.3    Meetei, A.R.4    Hoatlin, M.5    Li, L.6    Wang, W.7
  • 364
    • 0024394537 scopus 로고
    • Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins
    • Yonesaki T, Minagawa T. 1989. Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins. J Biol Chem 264: 7814–7820
    • (1989) J Biol Chem , vol.264 , pp. 7814-7820
    • Yonesaki, T.1    Minagawa, T.2
  • 365
    • 0032566753 scopus 로고    scopus 로고
    • The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression
    • Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R. 1998. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273: 25388–25392
    • (1998) J Biol Chem , vol.273 , pp. 25388-25392
    • Yu, X.1    Wu, L.C.2    Bowcock, A.M.3    Aronheim, A.4    Baer, R.5
  • 366
    • 79953232004 scopus 로고    scopus 로고
    • The role of the human SWI5–MEI5 complex in homologous recombination repair
    • Yuan J, Chen J. 2011. The role of the human SWI5–MEI5 complex in homologous recombination repair. J Biol Chem 286: 9888–9893.
    • (2011) J Biol Chem , vol.286 , pp. 9888-9893
    • Yuan, J.1    Chen, J.2
  • 368
    • 67651166786 scopus 로고    scopus 로고
    • PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2
    • Zhang F, Fan Q, Ren K, Andreassen PR. 2009. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7: 1110–1118
    • (2009) Mol Cancer Res , vol.7 , pp. 1110-1118
    • Zhang, F.1    Fan, Q.2    Ren, K.3    Reassen, P.R.4
  • 369
    • 80053325573 scopus 로고    scopus 로고
    • Processing of DNA structures via DNA unwinding and branch migration by the S. Cerevisiae Mph1 protein
    • Zheng XF, Prakash R, Saro D, Longerich S, Niu H, Sung P. 2011. Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein. DNA Repair (Amst) 10: 1034–1043
    • (2011) DNA Repair (Amst) , vol.10 , pp. 1034-1043
    • Zheng, X.F.1    Prakash, R.2    Saro, D.3    Longerich, S.4    Niu, H.5    Sung, P.6
  • 370
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
    • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981–994.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 371
    • 84922517270 scopus 로고    scopus 로고
    • Recombination, pairing, and synapsis of homologs during meiosis
    • Zickler D, Kleckner N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 7: a016626
    • (2015) Cold Spring Harb Perspect Biol , vol.7
    • Zickler, D.1    Kleckner, N.2
  • 372


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.