메뉴 건너뛰기




Volumn 6, Issue 11, 2014, Pages 1-15

Regulation of DNA Pairing in Homologous Recombination

Author keywords

[No Author keywords available]

Indexed keywords

DNA HELICASE; DNA TOPOISOMERASE;

EID: 84906900898     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a017954     Document Type: Article
Times cited : (68)

References (124)
  • 1
    • 0037334946 scopus 로고    scopus 로고
    • Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament
    • Alexeev A, Mazin A, Kowalczykowski SC. 2003. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10: 182-186.
    • (2003) Nat Struct Biol , vol.10 , pp. 182-186
    • Alexeev, A.1    Mazin, A.2    Kowalczykowski, S.C.3
  • 2
    • 67649637509 scopus 로고    scopus 로고
    • Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA
    • Antony E, Tomko EJ, Xiao Q, Krejci L, Lohman TM, Ellenberger T. 2009. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell 35: 105-115.
    • (2009) Mol Cell , vol.35 , pp. 105-115
    • Antony, E.1    Tomko, E.J.2    Xiao, Q.3    Krejci, L.4    Lohman, T.M.5    Ellenberger, T.6
  • 3
    • 84857748099 scopus 로고    scopus 로고
    • Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2
    • Armstrong AA, Mohideen F, Lima CD. 2012. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483: 59-63.
    • (2012) Nature , vol.483 , pp. 59-63
    • Armstrong, A.A.1    Mohideen, F.2    Lima, C.D.3
  • 5
    • 0017158571 scopus 로고
    • Chromatid exchanges in ataxia telangiectasia, Bloom syndrome, Werner syndrome, and xeroderma pigmentosum
    • Bartram CR, Koske-Westphal T, Passarge E. 1976. Chromatid exchanges in ataxia telangiectasia, Bloom syndrome, Werner syndrome, and xeroderma pigmentosum. Ann Hum Genet 40: 79-86.
    • (1976) Ann Hum Genet , vol.40 , pp. 79-86
    • Bartram, C.R.1    Koske-Westphal, T.2    Passarge, E.3
  • 6
    • 37249046360 scopus 로고    scopus 로고
    • Finding a match: How do homologous sequences get together for recombination?
    • Barzel A, Kupiec M. 2008. Finding a match: How do homologous sequences get together for recombination? Nat Rev Genet 9: 27-37.
    • (2008) Nat Rev Genet , vol.9 , pp. 27-37
    • Barzel, A.1    Kupiec, M.2
  • 9
    • 4344582144 scopus 로고    scopus 로고
    • Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis
    • Borner GV, Kleckner N, Hunter N. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117: 29-45.
    • (2004) Cell , vol.117 , pp. 29-45
    • Borner, G.V.1    Kleckner, N.2    Hunter, N.3
  • 10
    • 33746715608 scopus 로고    scopus 로고
    • Rad54 protein promotes branch migration of Holliday junctions
    • Bugreev DV, Mazina OM, Mazin AV. 2006. Rad54 protein promotes branch migration of Holliday junctions. Nature 442: 590-593.
    • (2006) Nature , vol.442 , pp. 590-593
    • Bugreev, D.V.1    Mazina, O.M.2    Mazin, A.V.3
  • 11
    • 34547690736 scopus 로고    scopus 로고
    • Rad54 dissociates homologous recombination intermediates by branch migration
    • Bugreev DV, Hanaoka F, Mazin AV. 2007. Rad54 dissociates homologous recombination intermediates by branch migration. Nat Struct Mol Biol 14: 746-753.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 746-753
    • Bugreev, D.V.1    Hanaoka, F.2    Mazin, A.V.3
  • 12
    • 67449116595 scopus 로고    scopus 로고
    • Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo
    • Burgess RC, Lisby M, Altmannova V, Krejci L, Sung P, Rothstein R. 2009. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J Cell Biol 185: 969-981.
    • (2009) J Cell Biol , vol.185 , pp. 969-981
    • Burgess, R.C.1    Lisby, M.2    Altmannova, V.3    Krejci, L.4    Sung, P.5    Rothstein, R.6
  • 15
    • 84876896603 scopus 로고    scopus 로고
    • Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
    • Cannavo E, Cejka P, Kowalczykowski SC. 2013. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proc Natl Acad Sci 110: E1661-E1668.
    • (2013) Proc Natl Acad Sci , vol.110 , pp. E1661-E1668
    • Cannavo, E.1    Cejka, P.2    Kowalczykowski, S.C.3
  • 16
    • 80052675332 scopus 로고    scopus 로고
    • Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination
    • Ceballos SJ, Heyer WD. 2011. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim Biophys Acta 1809: 509-523.
    • (2011) Biochim Biophys Acta , vol.1809 , pp. 509-523
    • Ceballos, S.J.1    Heyer, W.D.2
  • 19
    • 79953127126 scopus 로고    scopus 로고
    • Homologous recombination-dependent rescue of deficiency in the structural maintenance of chromosomes (Smc) 5/6 complex
    • Chavez A, Agrawal V, Johnson FB. 2011. Homologous recombination-dependent rescue of deficiency in the structural maintenance of chromosomes (Smc) 5/6 complex. J Biol Chem 286: 5119-5125.
    • (2011) J Biol Chem , vol.286 , pp. 5119-5125
    • Chavez, A.1    Agrawal, V.2    Johnson, F.B.3
  • 21
    • 35649023709 scopus 로고    scopus 로고
    • The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles
    • Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS, Liberi G. 2007. The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27: 7439-7450.
    • (2007) Mol Cell Biol , vol.27 , pp. 7439-7450
    • Chiolo, I.1    Saponaro, M.2    Baryshnikova, A.3    Kim, J.H.4    Seo, Y.S.5    Liberi, G.6
  • 22
    • 77954186960 scopus 로고    scopus 로고
    • The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae
    • Choi K, Szakal B, Chen YH, Branzei D, Zhao X. 2010. The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae. Mol Biol Cell 21: 2306-2314.
    • (2010) Mol Biol Cell , vol.21 , pp. 2306-2314
    • Choi, K.1    Szakal, B.2    Chen, Y.H.3    Branzei, D.4    Zhao, X.5
  • 23
    • 69249209608 scopus 로고    scopus 로고
    • RecQ helicases:Multifunctional genome caretakers
    • Chu WK, Hickson ID. 2009. RecQ helicases:Multifunctional genome caretakers. Nat Rev Cancer 9: 644-654.
    • (2009) Nat Rev Cancer , vol.9 , pp. 644-654
    • Chu, W.K.1    Hickson, I.D.2
  • 26
    • 23844464546 scopus 로고    scopus 로고
    • DNA joint dependence of pol X family polymerase action in nonhomologous end joining
    • Daley JM, Laan RL, Suresh A, Wilson TE. 2005. DNA joint dependence of pol X family polymerase action in nonhomologous end joining. J Biol Chem 280: 29030-29037.
    • (2005) J Biol Chem , vol.280 , pp. 29030-29037
    • Daley, J.M.1    Laan, R.L.2    Suresh, A.3    Wilson, T.E.4
  • 27
    • 84873677484 scopus 로고    scopus 로고
    • Roles ofDNA helicases in the mediation and regulation of homologous recombination
    • Daley JM, Niu H, Sung P. 2013.Roles ofDNA helicases in the mediation and regulation of homologous recombination. Adv Exp Med Biol 767: 185-202.
    • (2013) Adv Exp Med Biol , vol.767 , pp. 185-202
    • Daley, J.M.1    Niu, H.2    Sung, P.3
  • 31
    • 0016274036 scopus 로고
    • A genetic study of x-ray sensitive mutants in yeast
    • Game JC, Mortimer RK. 1974. A genetic study of x-ray sensitive mutants in yeast. Mutat Res 24: 281-292.
    • (1974) Mutat Res , vol.24 , pp. 281-292
    • Game, J.C.1    Mortimer, R.K.2
  • 32
    • 0028033989 scopus 로고
    • The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: A potential eukaryotic reverse gyrase
    • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R. 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: A potential eukaryotic reverse gyrase. Mol Cell Biol 14: 8391-8398.
    • (1994) Mol Cell Biol , vol.14 , pp. 8391-8398
    • Gangloff, S.1    McDonald, J.P.2    Bendixen, C.3    Arthur, L.4    Rothstein, R.5
  • 33
    • 55849133052 scopus 로고    scopus 로고
    • Remodeling of DNA replication structures by the branch point translocase FANCM
    • Gari K, Decaillet C, Delannoy M, Wu L, Constantinou A. 2008. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc Natl Acad Sci 105: 16107-16112.
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 16107-16112
    • Gari, K.1    Decaillet, C.2    Delannoy, M.3    Wu, L.4    Constantinou, A.5
  • 34
    • 53649090109 scopus 로고    scopus 로고
    • DNA helicases Sgs1 and BLM promote DNA double-strand break resection
    • Gravel S, Chapman JR, Magill C, Jackson SP. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22: 2767-2772.
    • (2008) Genes Dev , vol.22 , pp. 2767-2772
    • Gravel, S.1    Chapman, J.R.2    Magill, C.3    Jackson, S.P.4
  • 36
    • 65849388312 scopus 로고    scopus 로고
    • An archaeal Rad54 protein remodels DNA and stimulates DNA strand exchange by RadA
    • Haseltine CA, Kowalczykowski SC. 2009. An archaeal Rad54 protein remodels DNA and stimulates DNA strand exchange by RadA. Nucleic Acids Res 37: 2757-2770.
    • (2009) Nucleic Acids Res , vol.37 , pp. 2757-2770
    • Haseltine, C.A.1    Kowalczykowski, S.C.2
  • 37
    • 36849013079 scopus 로고    scopus 로고
    • RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments
    • Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, et al. 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21: 3073-3084.
    • (2007) Genes Dev , vol.21 , pp. 3073-3084
    • Hu, Y.1    Raynard, S.2    Sehorn, M.G.3    Lu, X.4    Bussen, W.5    Zheng, L.6    Stark, J.M.7    Barnes, E.L.8    Chi, P.9    Janscak, P.10
  • 38
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira G, Malkova A, Liberi G, Foiani M, Haber JE. 2003. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115: 401-411.
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 39
    • 77951979962 scopus 로고    scopus 로고
    • RecQL5 promotes genome stabilization through two parallel mechanisms—Interacting with RNA polymerase II and acting as a helicase
    • Islam MN, Fox D III, Guo R, Enomoto T, Wang W. 2010. RecQL5 promotes genome stabilization through two parallel mechanisms—Interacting with RNA polymerase II and acting as a helicase. Mol Cell Biol 30: 2460-2472.
    • (2010) Mol Cell Biol , vol.30 , pp. 2460-2472
    • Islam, M.N.1    Fox, D.2    Guo, R.3    Enomoto, T.4    Wang, W.5
  • 40
    • 84863614596 scopus 로고    scopus 로고
    • Avariant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization
    • Islam MN, Paquet N, Fox D III, Dray E, Zheng XF, Klein H, Sung P, Wang W. 2012. Avariant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization. J Biol Chem 287: 23808-23818.
    • (2012) J Biol Chem , vol.287 , pp. 23808-23818
    • Islam, M.N.1    Paquet, N.2    Fox, D.3    Dray, E.4    Zheng, X.F.5    Klein, H.6    Sung, P.7    Wang, W.8
  • 41
    • 77957975815 scopus 로고    scopus 로고
    • Purified human BRCA2 stimulates RAD51-mediated recombination
    • Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467: 678-683.
    • (2010) Nature , vol.467 , pp. 678-683
    • Jensen, R.B.1    Carreira, A.2    Kowalczykowski, S.C.3
  • 42
    • 33749379653 scopus 로고    scopus 로고
    • Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1
    • Jessop L, Rockmill B, Roeder GS, Lichten M. 2006. Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PLoS Genet 2: e155.
    • (2006) PLoS Genet , vol.2
    • Jessop, L.1    Rockmill, B.2    Roeder, G.S.3    Lichten, M.4
  • 44
    • 33750980979 scopus 로고    scopus 로고
    • Human RECQ5b helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork
    • Kanagaraj R, Saydam N, Garcia PL, Zheng L, Janscak P. 2006. Human RECQ5b helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res 34: 5217-5231.
    • (2006) Nucleic Acids Res , vol.34 , pp. 5217-5231
    • Kanagaraj, R.1    Saydam, N.2    Garcia, P.L.3    Zheng, L.4    Janscak, P.5
  • 46
    • 0030686496 scopus 로고    scopus 로고
    • The Bloom’s syndrome gene product is a 30-50 DNA helicase
    • Karow JK, Chakraverty RK, Hickson ID. 1997. The Bloom’s syndrome gene product is a 30-50 DNA helicase. J Biol Chem 272: 30611-30614.
    • (1997) J Biol Chem , vol.272 , pp. 30611-30614
    • Karow, J.K.1    Chakraverty, R.K.2    Hickson, I.D.3
  • 47
    • 84867197361 scopus 로고    scopus 로고
    • From yeast to mammals: Recent advances in genetic control of homologous recombination
    • Karpenshif Y, Bernstein KA. 2012. From yeast to mammals: Recent advances in genetic control of homologous recombination. DNA Repair (Amst) 11: 781-788.
    • (2012) DNA Repair (Amst) , vol.11 , pp. 781-788
    • Karpenshif, Y.1    Bernstein, K.A.2
  • 49
    • 0030778197 scopus 로고    scopus 로고
    • RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis
    • Klein HL. 1997. RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533-1543.
    • (1997) Genetics , vol.147 , pp. 1533-1543
    • Klein, H.L.1
  • 50
    • 0036698611 scopus 로고    scopus 로고
    • Novel endonuclease in Archaea cleaving DNA with various branched structure
    • Komori K, Fujikane R, Shinagawa H, Ishino Y. 2002. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet Syst 77: 227-241.
    • (2002) Genes Genet Syst , vol.77 , pp. 227-241
    • Komori, K.1    Fujikane, R.2    Shinagawa, H.3    Ishino, Y.4
  • 52
    • 44849138547 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54
    • Kwon Y, Seong C, Chi P, Greene EC, Klein H, Sung P. 2008. ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54. J Biol Chem 283: 10445-10452.
    • (2008) J Biol Chem , vol.283 , pp. 10445-10452
    • Kwon, Y.1    Seong, C.2    Chi, P.3    Greene, E.C.4    Klein, H.5    Sung, P.6
  • 53
    • 84920527784 scopus 로고    scopus 로고
    • Mechanism and regulation of meiotic recombination initiation
    • doi
    • Lam I, Keeney S. 2014. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016634.
    • (2014) Cold Spring Harb Perspect Biol
    • Lam, I.1    Keeney, S.2
  • 54
    • 0018673170 scopus 로고
    • Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants
    • Lawrence CW, Christensen RB. 1979.Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J Bacteriol 139: 866-876.
    • (1979) J Bacteriol , vol.139 , pp. 866-876
    • Lawrence, C.W.1    Christensen, R.B.2
  • 55
    • 59649102253 scopus 로고    scopus 로고
    • RAD54 controls access to the invading 30-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae
    • Li X, Heyer WD. 2009. RAD54 controls access to the invading 30-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 37: 638-646.
    • (2009) Nucleic Acids Res , vol.37 , pp. 638-646
    • Li, X.1    Heyer, W.D.2
  • 56
    • 79956140211 scopus 로고    scopus 로고
    • The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability
    • Li M, Xu X, Liu Y. 2011. The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability. Mol Cell Biol 31: 2090-2099.
    • (2011) Mol Cell Biol , vol.31 , pp. 2090-2099
    • Li, M.1    Xu, X.2    Liu, Y.3
  • 57
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79: 181-211.
    • (2010) Annu Rev Biochem , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 58
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699-713.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 59
  • 60
    • 77957804215 scopus 로고    scopus 로고
    • Human BRCA2 protein promotes RAD51 filament formation on RPAcovered single-stranded DNA
    • Liu J, Doty T, Gibson B, Heyer WD. 2010. Human BRCA2 protein promotes RAD51 filament formation on RPAcovered single-stranded DNA. Nat Struct Mol Biol 17: 1260-1262.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1260-1262
    • Liu, J.1    Doty, T.2    Gibson, B.3    Heyer, W.D.4
  • 61
    • 80855132890 scopus 로고    scopus 로고
    • Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
    • Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer WD. 2011. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479: 245-248.
    • (2011) Nature , vol.479 , pp. 245-248
    • Liu, J.1    Renault, L.2    Veaute, X.3    Fabre, F.4    Stahlberg, H.5    Heyer, W.D.6
  • 62
    • 68849127270 scopus 로고    scopus 로고
    • Fbh1 limits Rad51-dependent recombination at blocked replication forks
    • Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC. 2009. Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol Cell Biol 29: 4742-4756.
    • (2009) Mol Cell Biol , vol.29 , pp. 4742-4756
    • Lorenz, A.1    Osman, F.2    Folkyte, V.3    Sofueva, S.4    Whitby, M.C.5
  • 63
    • 84862603467 scopus 로고    scopus 로고
    • The fission yeast FANCM ortholog directs non-crossover recombination during meiosis
    • Lorenz A, Osman F, Sun W, Nandi S, Steinacher R, Whitby MC. 2012. The fission yeast FANCM ortholog directs non-crossover recombination during meiosis. Science 336: 1585-1588.
    • (2012) Science , vol.336 , pp. 1585-1588
    • Lorenz, A.1    Osman, F.2    Sun, W.3    Nandi, S.4    Steinacher, R.5    Whitby, M.C.6
  • 64
    • 76749147879 scopus 로고    scopus 로고
    • Srs2: The “Odd-Job Man” in DNA repair
    • Marini V, Krejci L. 2010. Srs2: The “Odd-Job Man” in DNA repair. DNA Repair (Amst) 9: 268-275.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 268-275
    • Marini, V.1    Krejci, L.2
  • 66
    • 1842816528 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Mer3 helicase stimulates 30-50 heteroduplex extension by Rad51; implications for crossover control in meiotic recombination
    • Mazina OM, Mazin AV, Nakagawa T, Kolodner RD, Kowalczykowski SC. 2004. Saccharomyces cerevisiae Mer3 helicase stimulates 30-50 heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 117: 47-56.
    • (2004) Cell , vol.117 , pp. 47-56
    • Mazina, O.M.1    Mazin, A.V.2    Nakagawa, T.3    Kolodner, R.D.4    Kowalczykowski, S.C.5
  • 68
    • 84903757525 scopus 로고    scopus 로고
    • Sources of DNA double-strand breaks and models for recombinational DNA repair
    • doi
    • Mehta A, Haber JE. 2014. Sources of DNA double-strand breaks and models for recombinational DNA repair. Cold Spring Harb Perspect Biol doi: 10.1101/cshper spect.a016428.
    • (2014) Cold Spring Harb Perspect Biol
    • Mehta, A.1    Haber, J.E.2
  • 69
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770-774.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 70
    • 65549095526 scopus 로고    scopus 로고
    • Nucleases and helicases take center stage in homologous recombination
    • Mimitou EP, Symington LS. 2009. Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34: 264-272.
    • (2009) Trends Biochem Sci , vol.34 , pp. 264-272
    • Mimitou, E.P.1    Symington, L.S.2
  • 71
    • 84875974599 scopus 로고    scopus 로고
    • Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes
    • Mitchel K, Lehner K, Jinks-Robertson S. 2013. Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet 9: e1003340.
    • (2013) PLoS Genet , vol.9
    • Mitchel, K.1    Lehner, K.2    Jinks-Robertson, S.3
  • 72
    • 0027203925 scopus 로고
    • Antipairing and strand transferase activities of E. Coli helicase II (UvrD)
    • Morel P, Hejna JA, Ehrlich SD, Cassuto E. 1993. Antipairing and strand transferase activities of E. coli helicase II (UvrD). Nucleic Acids Res 21: 3205-3209.
    • (1993) Nucleic Acids Res , vol.21 , pp. 3205-3209
    • Morel, P.1    Hejna, J.A.2    Ehrlich, S.D.3    Cassuto, E.4
  • 73
    • 84922575928 scopus 로고    scopus 로고
    • DNA pairing and annealing processes in homologous recombination and homology-directed repair
    • doi
    • Morrical SW. 2014. DNA pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016444.
    • (2014) Cold Spring Harb Perspect Biol
    • Morrical, S.W.1
  • 74
    • 84868091638 scopus 로고    scopus 로고
    • The ATPase activity of Fml1 is essential for its roles in homologous recombination and DNA repair
    • Nandi S, Whitby MC. 2012. The ATPase activity of Fml1 is essential for its roles in homologous recombination and DNA repair. Nucleic Acids Res 40: 9584-9595.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9584-9595
    • Nandi, S.1    Whitby, M.C.2
  • 75
    • 35648966525 scopus 로고    scopus 로고
    • Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules
    • Nimonkar AV, Amitani I, Baskin RJ, Kowalczykowski SC. 2007. Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules. J Biol Chem 282: 30776-30784.
    • (2007) J Biol Chem , vol.282 , pp. 30776-30784
    • Nimonkar, A.V.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 77
    • 84865230072 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination
    • Nimonkar AV, Dombrowski CC, Siino JS, Stasiak AZ, Stasiak A, Kowalczykowski SC. 2012. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination. J Biol Chem 287: 28727-28737.
    • (2012) J Biol Chem , vol.287 , pp. 28727-28737
    • Nimonkar, A.V.1    Dombrowski, C.C.2    Siino, J.S.3    Stasiak, A.Z.4    Stasiak, A.5    Kowalczykowski, S.C.6
  • 78
    • 12444336898 scopus 로고    scopus 로고
    • X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: Similarity between its endonuclease domain and restriction enzymes
    • Nishino T, Komori K, Ishino Y, Morikawa K. 2003. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: Similarity between its endonuclease domain and restriction enzymes. Structure 11: 445-457.
    • (2003) Structure , vol.11 , pp. 445-457
    • Nishino, T.1    Komori, K.2    Ishino, Y.3    Morikawa, K.4
  • 80
  • 81
    • 34447536139 scopus 로고    scopus 로고
    • BLM ortholog, Sgs1, prevents aberrant crossingover by suppressing formation of multichromatid joint molecules
    • Oh SD, Lao JP, Hwang PY, Taylor AF, Smith GR, Hunter N. 2007. BLM ortholog, Sgs1, prevents aberrant crossingover by suppressing formation of multichromatid joint molecules. Cell 130: 259-272.
    • (2007) Cell , vol.130 , pp. 259-272
    • Oh, S.D.1    Lao, J.P.2    Hwang, P.Y.3    Taylor, A.F.4    Smith, G.R.5    Hunter, N.6
  • 82
    • 24344440628 scopus 로고    scopus 로고
    • The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins
    • Osman F, Dixon J, Barr AR, Whitby MC. 2005. The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins. Mol Cell Biol 25: 8084-8096.
    • (2005) Mol Cell Biol , vol.25 , pp. 8084-8096
    • Osman, F.1    Dixon, J.2    Barr, A.R.3    Whitby, M.C.4
  • 83
    • 0032492853 scopus 로고    scopus 로고
    • Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins
    • Petukhova G, Stratton S, Sung P. 1998. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393: 91-94.
    • (1998) Nature , vol.393 , pp. 91-94
    • Petukhova, G.1    Stratton, S.2    Sung, P.3
  • 84
    • 0033864250 scopus 로고    scopus 로고
    • Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1
    • Petukhova G, Sung P, Klein H. 2000. Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev 14: 2206-2215.
    • (2000) Genes Dev , vol.14 , pp. 2206-2215
    • Petukhova, G.1    Sung, P.2    Klein, H.3
  • 85
    • 14844296413 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 30 to 50 DNA helicase
    • Prakash R, Krejci L, Van Komen S, Anke Schurer K, Kramer W, Sung P. 2005. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 30 to 50 DNA helicase. J Biol Chem 280: 7854-7860.
    • (2005) J Biol Chem , vol.280 , pp. 7854-7860
    • Prakash, R.1    Krejci, L.2    Van Komen, S.3    Anke Schurer, K.4    Kramer, W.5    Sung, P.6
  • 87
    • 0033514993 scopus 로고    scopus 로고
    • Nuclear foci of mammalian recombination proteins are located at singlestranded DNA regions formed after DNA damage
    • Raderschall E, Golub EI, Haaf T. 1999.Nuclear foci of mammalian recombination proteins are located at singlestranded DNA regions formed after DNA damage. Proc Natl Acad Sci 96: 1921-1926.
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 1921-1926
    • Raderschall, E.1    Golub, E.I.2    Haaf, T.3
  • 88
    • 33744927719 scopus 로고    scopus 로고
    • A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIa, and BLAP75
    • Raynard S, Bussen W, Sung P. 2006. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIa, and BLAP75. J Biol Chem 281: 13861-13864.
    • (2006) J Biol Chem , vol.281 , pp. 13861-13864
    • Raynard, S.1    Bussen, W.2    Sung, P.3
  • 89
    • 0026089250 scopus 로고
    • The hypergene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene
    • Rong L, Palladino F, Aguilera A, Klein HL. 1991. The hypergene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127: 75-85.
    • (1991) Genetics , vol.127 , pp. 75-85
    • Rong, L.1    Palladino, F.2    Aguilera, A.3    Klein, H.L.4
  • 90
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo J, Sung P, Klein H. 2008.Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77: 229-257.
    • (2008) Annu Rev Biochem , vol.77 , pp. 229-257
    • San Filippo, J.1    Sung, P.2    Klein, H.3
  • 91
    • 17344391705 scopus 로고    scopus 로고
    • MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage
    • Scheller J, Schurer A, Rudolph C, Hettwer S, Kramer W. 2000. MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage. Genetics 155: 1069-1081.
    • (2000) Genetics , vol.155 , pp. 1069-1081
    • Scheller, J.1    Schurer, A.2    Rudolph, C.3    Hettwer, S.4    Kramer, W.5
  • 92
    • 0025232659 scopus 로고
    • The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway
    • Schiestl RH, Prakash S, Prakash L. 1990. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124: 817-831.
    • (1990) Genetics , vol.124 , pp. 817-831
    • Schiestl, R.H.1    Prakash, S.2    Prakash, L.3
  • 93
    • 2442572065 scopus 로고    scopus 로고
    • Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair
    • Schurer KA, Rudolph C, Ulrich HD, Kramer W. 2004. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair. Genetics 166: 1673-1686.
    • (2004) Genetics , vol.166 , pp. 1673-1686
    • Schurer, K.A.1    Rudolph, C.2    Ulrich, H.D.3    Kramer, W.4
  • 94
    • 79955522790 scopus 로고    scopus 로고
    • Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes
    • Schwartz EK, Heyer WD. 2011. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 120: 109-127.
    • (2011) Chromosoma , vol.120 , pp. 109-127
    • Schwartz, E.K.1    Heyer, W.D.2
  • 96
    • 79957830017 scopus 로고    scopus 로고
    • Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities
    • Sebesta M, Burkovics P, Haracska L, Krejci L. 2011. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst) 10: 567-576.
    • (2011) DNA Repair (Amst) , vol.10 , pp. 567-576
    • Sebesta, M.1    Burkovics, P.2    Haracska, L.3    Krejci, L.4
  • 97
    • 77956924865 scopus 로고    scopus 로고
    • Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth
    • Shah PP, Zheng X, Epshtein A, Carey JN, Bishop DK, Klein HL. 2010. Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol Cell 39: 862-872.
    • (2010) Mol Cell , vol.39 , pp. 862-872
    • Shah, P.P.1    Zheng, X.2    Epshtein, A.3    Carey, J.N.4    Bishop, D.K.5    Klein, H.L.6
  • 98
    • 0032526583 scopus 로고    scopus 로고
    • Characterization of Werner syndrome protein DNA helicase activity: Directionality, substrate dependence and stimulation by replication protein A
    • Shen JC, Gray MD, Oshima J, Loeb LA. 1998. Characterization of Werner syndrome protein DNA helicase activity: Directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res 26: 2879-2885.
    • (1998) Nucleic Acids Res , vol.26 , pp. 2879-2885
    • Shen, J.C.1    Gray, M.D.2    Oshima, J.3    Loeb, L.A.4
  • 99
    • 0030786807 scopus 로고    scopus 로고
    • Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis
    • Shinohara M, Shita-Yamaguchi E, Buerstedde JM, Shinagawa H, Ogawa H, Shinohara A. 1997. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147: 1545-1556.
    • (1997) Genetics , vol.147 , pp. 1545-1556
    • Shinohara, M.1    Shita-Yamaguchi, E.2    Buerstedde, J.M.3    Shinagawa, H.4    Ogawa, H.5    Shinohara, A.6
  • 100
    • 44949091416 scopus 로고    scopus 로고
    • A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break
    • Sinha M, Peterson CL. 2008. A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol Cell 30: 803-810.
    • (2008) Mol Cell , vol.30 , pp. 803-810
    • Sinha, M.1    Peterson, C.L.2
  • 101
    • 0036864703 scopus 로고    scopus 로고
    • Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:DsDNA filaments
    • Solinger JA, Kiianitsa K, Heyer WD. 2002. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10: 1175-1188.
    • (2002) Mol Cell , vol.10 , pp. 1175-1188
    • Solinger, J.A.1    Kiianitsa, K.2    Heyer, W.D.3
  • 102
    • 65549113446 scopus 로고    scopus 로고
    • FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange
    • Sommers JA, Rawtani N, Gupta R, Bugreev DV, Mazin AV, Cantor SB, Brosh RM Jr. 2009. FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J Biol Chem 284: 7505-7517.
    • (2009) J Biol Chem , vol.284 , pp. 7505-7517
    • Sommers, J.A.1    Rawtani, N.2    Gupta, R.3    Bugreev, D.V.4    Mazin, A.V.5    Cantor, S.B.6    Brosh, R.M.7
  • 103
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • Sugawara N, Wang X, Haber JE. 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12: 209-219.
    • (2003) Mol Cell , vol.12 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 104
    • 0037199924 scopus 로고    scopus 로고
    • Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation
    • Sugiyama T, Kowalczykowski SC. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 277: 31663-31672.
    • (2002) J Biol Chem , vol.277 , pp. 31663-31672
    • Sugiyama, T.1    Kowalczykowski, S.C.2
  • 105
    • 53149087431 scopus 로고    scopus 로고
    • The FANCMortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair
    • Sun W, Nandi S, Osman F, Ahn JS, Jakovleska J, Lorenz A, Whitby MC. 2008. The FANCMortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol Cell 32: 118-128.
    • (2008) Mol Cell , vol.32 , pp. 118-128
    • Sun, W.1    Nandi, S.2    Osman, F.3    Ahn, J.S.4    Jakovleska, J.5    Lorenz, A.6    Whitby, M.C.7
  • 106
    • 84905493192 scopus 로고    scopus 로고
    • Processing ofDNA breaks:Mechanism and regulation
    • doi
    • Symington LS. 2014. Processing ofDNA breaks:Mechanism and regulation. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016436.
    • (2014) Cold Spring Harb Perspect Biol
    • Symington, L.S.1
  • 108
    • 0033635247 scopus 로고    scopus 로고
    • Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54
    • Van Komen S, Petukhova G, Sigurdsson S, Stratton S, Sung P. 2000. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol Cell 6: 563-572.
    • (2000) Mol Cell , vol.6 , pp. 563-572
    • Van Komen, S.1    Petukhova, G.2    Sigurdsson, S.3    Stratton, S.4    Sung, P.5
  • 109
    • 84860854071 scopus 로고    scopus 로고
    • RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity
    • Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ. 2012. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149: 795-806.
    • (2012) Cell , vol.149 , pp. 795-806
    • Vannier, J.B.1    Pavicic-Kaltenbrunner, V.2    Petalcorin, M.I.3    Ding, H.4    Boulton, S.J.5
  • 110
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423: 309-312.
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 111
    • 13244252309 scopus 로고    scopus 로고
    • UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
    • Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA. 2005. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24: 180-189.
    • (2005) EMBO J , vol.24 , pp. 180-189
    • Veaute, X.1    Delmas, S.2    Selva, M.3    Jeusset, J.4    Le Cam, E.5    Matic, I.6    Fabre, F.7    Petit, M.A.8
  • 112
    • 0029657781 scopus 로고    scopus 로고
    • SGS1, a homologue of the Bloom’s andWerner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae
    • Watt PM, Hickson ID, Borts RH, Louis EJ. 1996. SGS1, a homologue of the Bloom’s andWerner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144: 935-945.
    • (1996) Genetics , vol.144 , pp. 935-945
    • Watt, P.M.1    Hickson, I.D.2    Borts, R.H.3    Louis, E.J.4
  • 113
    • 76749123854 scopus 로고    scopus 로고
    • The FANCM family of DNA helicases/translocases
    • Whitby MC. 2010. The FANCM family of DNA helicases/translocases. DNA Repair (Amst) 9: 224-236.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 224-236
    • Whitby, M.C.1
  • 114
    • 0347987856 scopus 로고    scopus 로고
    • The Bloom’s syndrome helicase suppresses crossing over during homologous recombination
    • Wu L, Hickson ID. 2003. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426: 870-874.
    • (2003) Nature , vol.426 , pp. 870-874
    • Wu, L.1    Hickson, I.D.2
  • 119
    • 17844386117 scopus 로고    scopus 로고
    • BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity
    • Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, Wang W. 2005. BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. EMBO J 24: 1465-1476.
    • (2005) EMBO J , vol.24 , pp. 1465-1476
    • Yin, J.1    Sobeck, A.2    Xu, C.3    Meetei, A.R.4    Hoatlin, M.5    Li, L.6    Wang, W.7
  • 121
    • 0035902614 scopus 로고    scopus 로고
    • Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA
    • Yu X, Jacobs SA, West SC, Ogawa T, Egelman EH. 2001. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc Natl Acad Sci 98: 8419-8424.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 8419-8424
    • Yu, X.1    Jacobs, S.A.2    West, S.C.3    Ogawa, T.4    Egelman, E.H.5
  • 123
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
    • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981-994.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 124
    • 84922517270 scopus 로고    scopus 로고
    • Recombination, pairing, and synapsis of homologs during meiosis
    • doi
    • Zickler D, Kleckner N. 2014. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016626.
    • (2014) Cold Spring Harb Perspect Biol
    • Zickler, D.1    Kleckner, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.