메뉴 건너뛰기




Volumn 32, Issue , 2015, Pages 172-179

The role of DNA base excision repair in brain homeostasis and disease

Author keywords

Base excision repair; Mitochondrial DNA; Neurodegeneration; Oxidative damage; PARP 1

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ATAXIA WITH OCULOMOTOR APRAXIA 1; ATM PROTEIN; CELL NUCLEUS DNA; COCKAYNE SYNDROME GROUP B PROTEIN; MITOCHONDRIAL DNA; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1; PHOSPHATASE; PHOSPHODIESTERASE; POLYNUCLEOTIDE KINASE PHOSPHATASE; TYROSYL DNA PHOSPHODIESTERASE 1; UNCLASSIFIED DRUG; DNA HELICASE; DNA LIGASE; ERCC6 PROTEIN, HUMAN; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; PARP1 PROTEIN, HUMAN; PHOSPHOTRANSFERASE; PNKP PROTEIN, HUMAN;

EID: 84938213781     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.04.029     Document Type: Article
Times cited : (27)

References (136)
  • 1
    • 84922902834 scopus 로고    scopus 로고
    • Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review
    • Salminen L.E., Paul R.H. Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev. Neurosci. 2014, 25:805-819.
    • (2014) Rev. Neurosci. , vol.25 , pp. 805-819
    • Salminen, L.E.1    Paul, R.H.2
  • 2
    • 77749330821 scopus 로고    scopus 로고
    • Mitochondrial DNA toxicity in forebrain neurons causes apoptosis, neurodegeneration, and impaired behavior
    • Lauritzen K.H., Moldestad O., Eide L., et al. Mitochondrial DNA toxicity in forebrain neurons causes apoptosis, neurodegeneration, and impaired behavior. Mol. Cell. Biol. 2010, 30:1357-1367.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 1357-1367
    • Lauritzen, K.H.1    Moldestad, O.2    Eide, L.3
  • 3
    • 77956257886 scopus 로고    scopus 로고
    • Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1
    • Yang J.L., Tadokoro T., Keijzers G., et al. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. J. Biol. Chem. 2010, 285:28191-28199.
    • (2010) J. Biol. Chem. , vol.285 , pp. 28191-28199
    • Yang, J.L.1    Tadokoro, T.2    Keijzers, G.3
  • 4
    • 84876940238 scopus 로고    scopus 로고
    • Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta
    • Suberbielle E., Sanchez P.E., Kravitz A.V., et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat. Neurosci. 2013, 16:613-621.
    • (2013) Nat. Neurosci. , vol.16 , pp. 613-621
    • Suberbielle, E.1    Sanchez, P.E.2    Kravitz, A.V.3
  • 5
    • 15944381621 scopus 로고    scopus 로고
    • Protein-protein interactions and posttranslational modifications in mammalian base excision repair
    • Fan J., Wilson 3rd D.M. Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radical Biol. Med. 2005, 38:1121-1138.
    • (2005) Free Radical Biol. Med. , vol.38 , pp. 1121-1138
    • Fan, J.1    Wilson 3rd, D.M.2
  • 6
    • 84875862433 scopus 로고    scopus 로고
    • Modulation of DNA base excision repair during neuronal differentiation
    • Sykora P., Yang J.L., Ferrarelli L.K., et al. Modulation of DNA base excision repair during neuronal differentiation. Neurobiol. Aging 2013, 34:1717-1727.
    • (2013) Neurobiol. Aging , vol.34 , pp. 1717-1727
    • Sykora, P.1    Yang, J.L.2    Ferrarelli, L.K.3
  • 7
    • 84877927182 scopus 로고    scopus 로고
    • MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles
    • Sjolund A.B., Senejani A.G., Sweasy J.B. MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles. Mutat. Res. 2013, 743-744:12-25.
    • (2013) Mutat. Res. , vol.743-744 , pp. 12-25
    • Sjolund, A.B.1    Senejani, A.G.2    Sweasy, J.B.3
  • 8
    • 0037108463 scopus 로고    scopus 로고
    • Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice
    • Rada C., Williams G.T., Nilsen H., et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol.: CB 2002, 12:1748-1755.
    • (2002) Curr. Biol.: CB , vol.12 , pp. 1748-1755
    • Rada, C.1    Williams, G.T.2    Nilsen, H.3
  • 9
    • 84872812804 scopus 로고    scopus 로고
    • The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control
    • Jobert L., Skjeldam H.K., Dalhus B., et al. The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Mol. Cell 2013, 49:339-345.
    • (2013) Mol. Cell , vol.49 , pp. 339-345
    • Jobert, L.1    Skjeldam, H.K.2    Dalhus, B.3
  • 10
    • 84902085841 scopus 로고    scopus 로고
    • Error-free versus mutagenic processing of genomic uracil-relevance to cancer
    • Krokan H.E., Saetrom P., Aas P.A., et al. Error-free versus mutagenic processing of genomic uracil-relevance to cancer. DNA Repair 2014, 19:38-47.
    • (2014) DNA Repair , vol.19 , pp. 38-47
    • Krokan, H.E.1    Saetrom, P.2    Aas, P.A.3
  • 11
    • 0030841051 scopus 로고    scopus 로고
    • Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene
    • Nilsen H., Otterlei M., Haug T., et al. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 1997, 25:750-755.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 750-755
    • Nilsen, H.1    Otterlei, M.2    Haug, T.3
  • 12
    • 0032960864 scopus 로고    scopus 로고
    • The human DNA ligase III gene encodes nuclear and mitochondrial proteins
    • Lakshmipathy U., Campbell C. The human DNA ligase III gene encodes nuclear and mitochondrial proteins. Mol. Cell. Biol. 1999, 19:3869-3876.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 3869-3876
    • Lakshmipathy, U.1    Campbell, C.2
  • 13
    • 77952040814 scopus 로고    scopus 로고
    • Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1
    • Li M., Zhong Z., Zhu J., et al. Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J. Biological Chem. 2010, 285:14871-14881.
    • (2010) J. Biological Chem. , vol.285 , pp. 14871-14881
    • Li, M.1    Zhong, Z.2    Zhu, J.3
  • 14
    • 0036904776 scopus 로고    scopus 로고
    • Base excision repair capacity in mitochondria and nuclei: tissue-specific variations
    • Karahalil B., Hogue B.A., de Souza-Pinto N.C., Bohr V.A. Base excision repair capacity in mitochondria and nuclei: tissue-specific variations. FASEB J. 2002, 16:1895-1902.
    • (2002) FASEB J. , vol.16 , pp. 1895-1902
    • Karahalil, B.1    Hogue, B.A.2    de Souza-Pinto, N.C.3    Bohr, V.A.4
  • 15
    • 0032520689 scopus 로고    scopus 로고
    • Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase
    • Haug T., Skorpen F., Aas P.A., et al. Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Nucleic Acids Res. 1998, 26:1449-1457.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 1449-1457
    • Haug, T.1    Skorpen, F.2    Aas, P.A.3
  • 16
    • 34547101263 scopus 로고    scopus 로고
    • Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2
    • Hardeland U., Kunz C., Focke F., et al. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2. Nucleic Acids Res. 2007, 35:3859-3867.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 3859-3867
    • Hardeland, U.1    Kunz, C.2    Focke, F.3
  • 17
    • 36749007778 scopus 로고    scopus 로고
    • Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury
    • Narciso L., Fortini P., Pajalunga D., et al. Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury. Proc. Natl. Acad. Sci. U. S. A 2007, 104:17010-17015.
    • (2007) Proc. Natl. Acad. Sci. U. S. A , vol.104 , pp. 17010-17015
    • Narciso, L.1    Fortini, P.2    Pajalunga, D.3
  • 18
    • 38049034968 scopus 로고    scopus 로고
    • Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA
    • Hagen L., Kavli B., Sousa M.M., et al. Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J. 2008, 27:51-61.
    • (2008) EMBO J. , vol.27 , pp. 51-61
    • Hagen, L.1    Kavli, B.2    Sousa, M.M.3
  • 19
    • 80053648571 scopus 로고    scopus 로고
    • XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage
    • Hanssen-Bauer A., Solvang-Garten K., Sundheim O., et al. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage. Environ. Mol. Mutagen. 2011, 52:623-635.
    • (2011) Environ. Mol. Mutagen. , vol.52 , pp. 623-635
    • Hanssen-Bauer, A.1    Solvang-Garten, K.2    Sundheim, O.3
  • 20
    • 77953326690 scopus 로고    scopus 로고
    • Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes
    • Akbari M., Solvang-Garten K., Hanssen-Bauer A., et al. Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes. DNA Repair 2010, 9:785-795.
    • (2010) DNA Repair , vol.9 , pp. 785-795
    • Akbari, M.1    Solvang-Garten, K.2    Hanssen-Bauer, A.3
  • 21
    • 48149114323 scopus 로고    scopus 로고
    • Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains
    • Rolseth V., Runden-Pran E., Luna L., et al. Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains. DNA Repair 2008, 7:1578-1588.
    • (2008) DNA Repair , vol.7 , pp. 1578-1588
    • Rolseth, V.1    Runden-Pran, E.2    Luna, L.3
  • 22
    • 0142092610 scopus 로고    scopus 로고
    • Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination
    • Imai K., Slupphaug G., Lee W.I., et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 2003, 4:1023-1028.
    • (2003) Nat. Immunol. , vol.4 , pp. 1023-1028
    • Imai, K.1    Slupphaug, G.2    Lee, W.I.3
  • 23
    • 0026680743 scopus 로고
    • Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents
    • Barnes D.E., Tomkinson A.E., Lehmann A.R., et al. Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 1992, 69:495-503.
    • (1992) Cell , vol.69 , pp. 495-503
    • Barnes, D.E.1    Tomkinson, A.E.2    Lehmann, A.R.3
  • 24
    • 4644335014 scopus 로고    scopus 로고
    • Colorectal cancer and inherited mutations in base-excision repair
    • Chow E., Thirlwell C., Macrae F., Lipton L. Colorectal cancer and inherited mutations in base-excision repair. The Lancet Oncol. 2004, 5:600-606.
    • (2004) The Lancet Oncol. , vol.5 , pp. 600-606
    • Chow, E.1    Thirlwell, C.2    Macrae, F.3    Lipton, L.4
  • 25
    • 79956210253 scopus 로고    scopus 로고
    • Variation in base excision repair capacity
    • Wilson 3rd D.M., Kim D., Berquist A.J. Variation in base excision repair capacity. Mutat. Res. 2011, 711:100-112.
    • (2011) Mutat. Res. , vol.711 , pp. 100-112
    • Wilson 3rd, D.M.1    Kim, D.2    Berquist, A.J.3
  • 26
    • 84867568938 scopus 로고    scopus 로고
    • Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk
    • Karahalil B., Bohr V.A., Wilson 3rd D.M. Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Hum. Exp. Toxicol. 2012, 31:981-1005.
    • (2012) Hum. Exp. Toxicol. , vol.31 , pp. 981-1005
    • Karahalil, B.1    Bohr, V.A.2    Wilson 3rd, D.M.3
  • 27
    • 84888134794 scopus 로고    scopus 로고
    • Base excision repair in the mammalian brain: implication for age related neurodegeneration
    • Sykora P., Wilson 3rd D.M., Bohr V.A. Base excision repair in the mammalian brain: implication for age related neurodegeneration. Mech. Ageing Dev. 2013, 134:440-448.
    • (2013) Mech. Ageing Dev. , vol.134 , pp. 440-448
    • Sykora, P.1    Wilson 3rd, D.M.2    Bohr, V.A.3
  • 28
    • 84902073074 scopus 로고    scopus 로고
    • Base excision repair: a critical player in many games
    • Wallace S.S. Base excision repair: a critical player in many games. DNA Repair 2014, 19:14-26.
    • (2014) DNA Repair , vol.19 , pp. 14-26
    • Wallace, S.S.1
  • 29
    • 84887135772 scopus 로고    scopus 로고
    • DNA glycosylases search for and remove oxidized DNA bases
    • Wallace S.S. DNA glycosylases search for and remove oxidized DNA bases. Environ. Mol. Mutagen. 2013, 54:691-704.
    • (2013) Environ. Mol. Mutagen. , vol.54 , pp. 691-704
    • Wallace, S.S.1
  • 30
    • 33751102395 scopus 로고    scopus 로고
    • NEIL2-initiated, APE-independent repair of oxidized bases in DNA: evidence for a repair complex in human cells
    • Das A., Wiederhold L., Leppard J.B., et al. NEIL2-initiated, APE-independent repair of oxidized bases in DNA: evidence for a repair complex in human cells. DNA Repair 2006, 5:1439-1448.
    • (2006) DNA Repair , vol.5 , pp. 1439-1448
    • Das, A.1    Wiederhold, L.2    Leppard, J.B.3
  • 31
    • 3242710517 scopus 로고    scopus 로고
    • AP endonuclease-independent DNA base excision repair in human cells
    • Wiederhold L., Leppard J.B., Kedar P., et al. AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell 2004, 15:209-220.
    • (2004) Mol. Cell , vol.15 , pp. 209-220
    • Wiederhold, L.1    Leppard, J.B.2    Kedar, P.3
  • 32
    • 84860379069 scopus 로고    scopus 로고
    • Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair
    • Tahbaz N., Subedi S., Weinfeld M. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res. 2012, 40:3484-3495.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 3484-3495
    • Tahbaz, N.1    Subedi, S.2    Weinfeld, M.3
  • 33
    • 84856070741 scopus 로고    scopus 로고
    • Role of human DNA glycosylase Nei-like 2 (NEIL2) and single strand break repair protein polynucleotide kinase 3'-phosphatase in maintenance of mitochondrial genome
    • Mandal S.M., Hegde M.L., Chatterjee A., et al. Role of human DNA glycosylase Nei-like 2 (NEIL2) and single strand break repair protein polynucleotide kinase 3'-phosphatase in maintenance of mitochondrial genome. J. Biol. Chem. 2012, 287:2819-2829.
    • (2012) J. Biol. Chem. , vol.287 , pp. 2819-2829
    • Mandal, S.M.1    Hegde, M.L.2    Chatterjee, A.3
  • 34
    • 77649188409 scopus 로고    scopus 로고
    • Mutations in PNKP cause microcephaly, seizures and defects in DNA repair
    • Shen J., Gilmore E.C., Marshall C.A., et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat. Genet. 2010, 42:245-249.
    • (2010) Nat. Genet. , vol.42 , pp. 245-249
    • Shen, J.1    Gilmore, E.C.2    Marshall, C.A.3
  • 35
  • 36
    • 50649116450 scopus 로고    scopus 로고
    • Eukaryotic DNA ligases: structural and functional insights
    • Ellenberger T., Tomkinson A.E. Eukaryotic DNA ligases: structural and functional insights. Annu. Rev. Biochem. 2008, 77:313-338.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 313-338
    • Ellenberger, T.1    Tomkinson, A.E.2
  • 37
    • 33749821755 scopus 로고    scopus 로고
    • The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates
    • Ahel I., Rass U., El-Khamisy S.F., et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006, 443:713-716.
    • (2006) Nature , vol.443 , pp. 713-716
    • Ahel, I.1    Rass, U.2    El-Khamisy, S.F.3
  • 38
    • 84902087226 scopus 로고    scopus 로고
    • Role of polymerase beta in complementing aprataxin deficiency during abasic-site base excision repair
    • Caglayan M., Batra V.K., Sassa A., et al. Role of polymerase beta in complementing aprataxin deficiency during abasic-site base excision repair. Nat. Struct. Mol. Biol. 2014, 21:497-499.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 497-499
    • Caglayan, M.1    Batra, V.K.2    Sassa, A.3
  • 39
    • 0034790947 scopus 로고    scopus 로고
    • Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene
    • Date H., Onodera O., Tanaka H., et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat. Genet. 2001, 29:184-188.
    • (2001) Nat. Genet. , vol.29 , pp. 184-188
    • Date, H.1    Onodera, O.2    Tanaka, H.3
  • 40
    • 0034785531 scopus 로고    scopus 로고
    • The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin
    • Moreira M.C., Barbot C., Tachi N., et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet. 2001, 29:189-193.
    • (2001) Nat. Genet. , vol.29 , pp. 189-193
    • Moreira, M.C.1    Barbot, C.2    Tachi, N.3
  • 41
    • 4544341920 scopus 로고    scopus 로고
    • The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4
    • Clements P.M., Breslin C., Deeks E.D., et al. The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair 2004, 3:1493-1502.
    • (2004) DNA Repair , vol.3 , pp. 1493-1502
    • Clements, P.M.1    Breslin, C.2    Deeks, E.D.3
  • 42
    • 67349107467 scopus 로고    scopus 로고
    • Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin
    • El-Khamisy S.F., Katyal S., Patel P., et al. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin. DNA Repair 2009, 8:760-766.
    • (2009) DNA Repair , vol.8 , pp. 760-766
    • El-Khamisy, S.F.1    Katyal, S.2    Patel, P.3
  • 44
    • 84893737510 scopus 로고    scopus 로고
    • Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity
    • Tumbale P., Williams J.S., Schellenberg M.J., et al. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity. Nature 2014, 506:111-115.
    • (2014) Nature , vol.506 , pp. 111-115
    • Tumbale, P.1    Williams, J.S.2    Schellenberg, M.J.3
  • 45
    • 18644386254 scopus 로고    scopus 로고
    • Mutation of TDP1 encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy
    • Takashima H., Boerkoel C.F., John J., et al. Mutation of TDP1 encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet. 2002, 32:267-272.
    • (2002) Nat. Genet. , vol.32 , pp. 267-272
    • Takashima, H.1    Boerkoel, C.F.2    John, J.3
  • 46
    • 84902083476 scopus 로고    scopus 로고
    • Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2)
    • Pommier Y., Huang S.Y., Gao R., et al. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 2014, 19:114-129.
    • (2014) DNA Repair , vol.19 , pp. 114-129
    • Pommier, Y.1    Huang, S.Y.2    Gao, R.3
  • 47
    • 14544268980 scopus 로고    scopus 로고
    • Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1
    • El-Khamisy S.F., Saifi G.M., Weinfeld M., et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 2005, 434:108-113.
    • (2005) Nature , vol.434 , pp. 108-113
    • El-Khamisy, S.F.1    Saifi, G.M.2    Weinfeld, M.3
  • 49
    • 36248984333 scopus 로고    scopus 로고
    • TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo
    • Katyal S., el-Khamisy S.F., Russell H.R., et al. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 2007, 26:4720-4731.
    • (2007) EMBO J. , vol.26 , pp. 4720-4731
    • Katyal, S.1    el-Khamisy, S.F.2    Russell, H.R.3
  • 50
    • 84914680518 scopus 로고    scopus 로고
    • Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1)
    • Guo D., Dexheimer T.S., Pommier Y., Nash H.A. Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1). Proc. Natl. Acad. Sci. U. S. A. 2014, 111:15816-15820.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 15816-15820
    • Guo, D.1    Dexheimer, T.S.2    Pommier, Y.3    Nash, H.A.4
  • 51
    • 84917739517 scopus 로고    scopus 로고
    • ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death
    • Fouquerel E., Sobol R.W. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair 2014, 23:27-32.
    • (2014) DNA Repair , vol.23 , pp. 27-32
    • Fouquerel, E.1    Sobol, R.W.2
  • 52
    • 0038583869 scopus 로고    scopus 로고
    • Spatial and temporal cellular responses to single-strand breaks in human cells
    • Okano S., Lan L., Caldecott K.W., et al. Spatial and temporal cellular responses to single-strand breaks in human cells. Mol. Cell. Biol. 2003, 23:3974-3981.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3974-3981
    • Okano, S.1    Lan, L.2    Caldecott, K.W.3
  • 53
    • 84910141322 scopus 로고    scopus 로고
    • Linking DNA Damage, NAD(+)/SIRT1, and Aging
    • Guarente L. Linking DNA Damage, NAD(+)/SIRT1, and Aging. Cell Metab. 2014, 20:706-707.
    • (2014) Cell Metab. , vol.20 , pp. 706-707
    • Guarente, L.1
  • 54
    • 84904751060 scopus 로고    scopus 로고
    • NAD+ and sirtuins in aging and disease
    • Imai S., Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014, 24:464-471.
    • (2014) Trends Cell Biol. , vol.24 , pp. 464-471
    • Imai, S.1    Guarente, L.2
  • 55
    • 57649217303 scopus 로고    scopus 로고
    • Preventing NAD(+) depletion protects neurons against excitotoxicity: bioenergetic effects of mild mitochondrial uncoupling and caloric restriction
    • Liu D., Pitta M., Mattson M.P. Preventing NAD(+) depletion protects neurons against excitotoxicity: bioenergetic effects of mild mitochondrial uncoupling and caloric restriction. Annu. N. Y. Acad. Sci. 2008, 1147:275-282.
    • (2008) Annu. N. Y. Acad. Sci. , vol.1147 , pp. 275-282
    • Liu, D.1    Pitta, M.2    Mattson, M.P.3
  • 56
    • 65249173918 scopus 로고    scopus 로고
    • Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons
    • Liu D., Gharavi R., Pitta M., et al. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol. Med. 2009, 11:28-42.
    • (2009) Neuromol. Med. , vol.11 , pp. 28-42
    • Liu, D.1    Gharavi, R.2    Pitta, M.3
  • 57
    • 38549153790 scopus 로고    scopus 로고
    • Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs
    • Oka S., Ohno M., Tsuchimoto D., et al. Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. EMBO J. 2008, 27:421-432.
    • (2008) EMBO J. , vol.27 , pp. 421-432
    • Oka, S.1    Ohno, M.2    Tsuchimoto, D.3
  • 58
    • 84870491613 scopus 로고    scopus 로고
    • 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair
    • Sheng Z., Oka S., Tsuchimoto D., et al. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. J. Clin. Invest. 2012, 122:4344-4361.
    • (2012) J. Clin. Invest. , vol.122 , pp. 4344-4361
    • Sheng, Z.1    Oka, S.2    Tsuchimoto, D.3
  • 59
    • 84900344357 scopus 로고    scopus 로고
    • Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction
    • Fang E.F., Scheibye-Knudsen M., Brace L.E., et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 2014, 157:882-896.
    • (2014) Cell , vol.157 , pp. 882-896
    • Fang, E.F.1    Scheibye-Knudsen, M.2    Brace, L.E.3
  • 60
    • 84910132320 scopus 로고    scopus 로고
    • A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in Cockayne syndrome
    • Scheibye-Knudsen M., Mitchell S.J., Fang E.F., et al. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in Cockayne syndrome. Cell Metab. 2014, 20:840-855.
    • (2014) Cell Metab. , vol.20 , pp. 840-855
    • Scheibye-Knudsen, M.1    Mitchell, S.J.2    Fang, E.F.3
  • 61
    • 84878011723 scopus 로고    scopus 로고
    • Mitochondrial CSA and CSB: protein interactions and protection from ageing associated DNA mutations
    • Kamenisch Y., Berneburg M. Mitochondrial CSA and CSB: protein interactions and protection from ageing associated DNA mutations. Mech. Ageing Dev. 2013, 134:270-274.
    • (2013) Mech. Ageing Dev. , vol.134 , pp. 270-274
    • Kamenisch, Y.1    Berneburg, M.2
  • 62
    • 84878020795 scopus 로고    scopus 로고
    • Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance
    • Aamann M.D., Muftuoglu M., Bohr V.A., Stevnsner T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech. Ageing Dev. 2013, 134:212-224.
    • (2013) Mech. Ageing Dev. , vol.134 , pp. 212-224
    • Aamann, M.D.1    Muftuoglu, M.2    Bohr, V.A.3    Stevnsner, T.4
  • 63
    • 84879309393 scopus 로고    scopus 로고
    • Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress
    • Kristensen U., Epanchintsev A., Rauschendorf M.A., et al. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:E2261-2270.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. E2261-2270
    • Kristensen, U.1    Epanchintsev, A.2    Rauschendorf, M.A.3
  • 64
    • 84866918113 scopus 로고    scopus 로고
    • Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation
    • Berquist B.R., Canugovi C., Sykora P., et al. Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation. Nucleic Acids Res. 2012, 40:8392-8405.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8392-8405
    • Berquist, B.R.1    Canugovi, C.2    Sykora, P.3
  • 65
    • 84863488336 scopus 로고    scopus 로고
    • Interaction between the Cockayne syndrome B and p53 proteins: implications for aging
    • Frontini M., Proietti-De-Santis L. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging. Aging 2012, 4:89-97.
    • (2012) Aging , vol.4 , pp. 89-97
    • Frontini, M.1    Proietti-De-Santis, L.2
  • 67
    • 34250024325 scopus 로고    scopus 로고
    • Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice
    • Trapp C., Reite K., Klungland A., Epe B. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice. Oncogene 2007, 26:4044-4048.
    • (2007) Oncogene , vol.26 , pp. 4044-4048
    • Trapp, C.1    Reite, K.2    Klungland, A.3    Epe, B.4
  • 68
    • 0141869885 scopus 로고    scopus 로고
    • Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress
    • Tuo J., Jaruga P., Rodriguez H., et al. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J. 2003, 17:668-674.
    • (2003) FASEB J. , vol.17 , pp. 668-674
    • Tuo, J.1    Jaruga, P.2    Rodriguez, H.3
  • 69
    • 84893538206 scopus 로고    scopus 로고
    • Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity
    • Aamann M.D., Hvitby C., Popuri V., et al. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity. Mech. Ageing Dev. 2014, 135:1-14.
    • (2014) Mech. Ageing Dev. , vol.135 , pp. 1-14
    • Aamann, M.D.1    Hvitby, C.2    Popuri, V.3
  • 70
    • 66149114804 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase
    • Muftuoglu M., de Souza-Pinto N.C., Dogan A., et al. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. J. Biol. Chem. 2009, 284:9270-9279.
    • (2009) J. Biol. Chem. , vol.284 , pp. 9270-9279
    • Muftuoglu, M.1    de Souza-Pinto, N.C.2    Dogan, A.3
  • 71
    • 34547627642 scopus 로고    scopus 로고
    • Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates
    • Wong H.K., Muftuoglu M., Beck G., et al. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 2007, 35:4103-4113.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 4103-4113
    • Wong, H.K.1    Muftuoglu, M.2    Beck, G.3
  • 72
    • 79953176665 scopus 로고    scopus 로고
    • Preferential repair of oxidized base damage in the transcribed genes of mammalian cells
    • Banerjee D., Mandal S.M., Das A., et al. Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J. Biol. Chem. 2011, 286:6006-6016.
    • (2011) J. Biol. Chem. , vol.286 , pp. 6006-6016
    • Banerjee, D.1    Mandal, S.M.2    Das, A.3
  • 73
    • 23844483200 scopus 로고    scopus 로고
    • Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress
    • Thorslund T., von Kobbe C., Harrigan J.A., et al. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol. Cell. Biol. 2005, 25:7625-7636.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 7625-7636
    • Thorslund, T.1    von Kobbe, C.2    Harrigan, J.A.3
  • 74
    • 77958191599 scopus 로고    scopus 로고
    • ATM activation by oxidative stress
    • Guo Z., Kozlov S., Lavin M.F., et al. ATM activation by oxidative stress. Science 2010, 330:517-521.
    • (2010) Science , vol.330 , pp. 517-521
    • Guo, Z.1    Kozlov, S.2    Lavin, M.F.3
  • 75
    • 34848835736 scopus 로고    scopus 로고
    • Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis
    • Eaton J.S., Lin Z.P., Sartorelli A.C., et al. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J. Clin. Invest. 2007, 117:2723-2734.
    • (2007) J. Clin. Invest. , vol.117 , pp. 2723-2734
    • Eaton, J.S.1    Lin, Z.P.2    Sartorelli, A.C.3
  • 76
    • 34548430918 scopus 로고    scopus 로고
    • Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells
    • Ambrose M., Goldstine J.V., Gatti R.A. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum. Mol. Genet. 2007, 16:2154-2164.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 2154-2164
    • Ambrose, M.1    Goldstine, J.V.2    Gatti, R.A.3
  • 77
    • 84856893251 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in ataxia-telangiectasia
    • Valentin-Vega Y.A., Maclean K.H., Tait-Mulder J., et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 2012, 119:1490-1500.
    • (2012) Blood , vol.119 , pp. 1490-1500
    • Valentin-Vega, Y.A.1    Maclean, K.H.2    Tait-Mulder, J.3
  • 78
    • 84891142463 scopus 로고    scopus 로고
    • Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia
    • Sharma N.K., Lebedeva M., Thomas T., et al. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia. DNA Repair 2014, 13:22-31.
    • (2014) DNA Repair , vol.13 , pp. 22-31
    • Sharma, N.K.1    Lebedeva, M.2    Thomas, T.3
  • 79
    • 84896286702 scopus 로고    scopus 로고
    • Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair
    • Akbari M., Keijzers G., Maynard S., et al. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair 2014, 16:44-53.
    • (2014) DNA Repair , vol.16 , pp. 44-53
    • Akbari, M.1    Keijzers, G.2    Maynard, S.3
  • 80
    • 84855819016 scopus 로고    scopus 로고
    • The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE
    • Guerreiro R.J., Gustafson D.R., Hardy J. The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiol. Aging 2012, 33:437-456.
    • (2012) Neurobiol. Aging , vol.33 , pp. 437-456
    • Guerreiro, R.J.1    Gustafson, D.R.2    Hardy, J.3
  • 81
    • 84897386660 scopus 로고    scopus 로고
    • REST and stress resistance in ageing and Alzheimer's disease
    • Lu T., Aron L., Zullo J., et al. REST and stress resistance in ageing and Alzheimer's disease. Nature 2014, 507:448-454.
    • (2014) Nature , vol.507 , pp. 448-454
    • Lu, T.1    Aron, L.2    Zullo, J.3
  • 82
    • 84903304059 scopus 로고    scopus 로고
    • Oxidative stress and mitochondrial dysfunction in Alzheimer's disease
    • Wang X., Wang W., Li L., et al. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim. Biophys. Acta 2014, 1842:1240-1247.
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 1240-1247
    • Wang, X.1    Wang, W.2    Li, L.3
  • 83
    • 84865404331 scopus 로고    scopus 로고
    • Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype
    • Ramamoorthy M., Sykora P., Scheibye-Knudsen M., et al. Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. Free Radical Biol. Med. 2012, 53:1371-1380.
    • (2012) Free Radical Biol. Med. , vol.53 , pp. 1371-1380
    • Ramamoorthy, M.1    Sykora, P.2    Scheibye-Knudsen, M.3
  • 84
    • 80053110019 scopus 로고    scopus 로고
    • Oxidatively modified nucleic acids in preclinical Alzheimer's disease (PCAD) brain
    • Lovell M.A., Soman S., Bradley M.A. Oxidatively modified nucleic acids in preclinical Alzheimer's disease (PCAD) brain. Mech. Ageing Dev. 2011, 132:443-448.
    • (2011) Mech. Ageing Dev. , vol.132 , pp. 443-448
    • Lovell, M.A.1    Soman, S.2    Bradley, M.A.3
  • 85
    • 0031754202 scopus 로고    scopus 로고
    • Increased nuclear DNA oxidation in the brain in Alzheimer's disease
    • Gabbita S.P., Lovell M.A., Markesbery W.R. Increased nuclear DNA oxidation in the brain in Alzheimer's disease. J. Neurochem. 1998, 71:2034-2040.
    • (1998) J. Neurochem. , vol.71 , pp. 2034-2040
    • Gabbita, S.P.1    Lovell, M.A.2    Markesbery, W.R.3
  • 86
    • 34548802393 scopus 로고    scopus 로고
    • Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment
    • Weissman L., Jo D.G., Sorensen M.M., et al. Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Res. 2007, 35:5545-5555.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 5545-5555
    • Weissman, L.1    Jo, D.G.2    Sorensen, M.M.3
  • 87
    • 84903370950 scopus 로고    scopus 로고
    • Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease
    • Canugovi C., Shamanna R.A., Croteau D.L., Bohr V.A. Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease. Neurobiol. Aging 2014, 35:1293-1300.
    • (2014) Neurobiol. Aging , vol.35 , pp. 1293-1300
    • Canugovi, C.1    Shamanna, R.A.2    Croteau, D.L.3    Bohr, V.A.4
  • 88
    • 0033984570 scopus 로고    scopus 로고
    • Decreased base excision repair and increased helicase activity in Alzheimer's disease brain
    • Lovell M.A., Xie C., Markesbery W.R. Decreased base excision repair and increased helicase activity in Alzheimer's disease brain. Brain Res. 2000, 855:116-123.
    • (2000) Brain Res. , vol.855 , pp. 116-123
    • Lovell, M.A.1    Xie, C.2    Markesbery, W.R.3
  • 89
    • 84859421209 scopus 로고    scopus 로고
    • A mitochondrial etiology of Alzheimer and Parkinson disease
    • Coskun P., Wyrembak J., Schriner S.E., et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta 2012, 1820:553-564.
    • (2012) Biochim. Biophys. Acta , vol.1820 , pp. 553-564
    • Coskun, P.1    Wyrembak, J.2    Schriner, S.E.3
  • 90
    • 84863229887 scopus 로고    scopus 로고
    • Nuclear and mitochondrial DNA oxidation in Alzheimer's disease
    • Santos R.X., Correia S.C., Zhu X., et al. Nuclear and mitochondrial DNA oxidation in Alzheimer's disease. Free Radical Res. 2012, 46:565-576.
    • (2012) Free Radical Res. , vol.46 , pp. 565-576
    • Santos, R.X.1    Correia, S.C.2    Zhu, X.3
  • 91
    • 18844462415 scopus 로고    scopus 로고
    • Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease
    • Wang J., Xiong S., Xie C., et al. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J. Neurochem. 2005, 93:953-962.
    • (2005) J. Neurochem. , vol.93 , pp. 953-962
    • Wang, J.1    Xiong, S.2    Xie, C.3
  • 92
    • 70350492497 scopus 로고    scopus 로고
    • Mutational spectrum at GATA1 provides insights into mutagenesis and leukemogenesis in Down syndrome
    • Cabelof D.C., Patel H.V., Chen Q., et al. Mutational spectrum at GATA1 provides insights into mutagenesis and leukemogenesis in Down syndrome. Blood 2009, 114:2753-2763.
    • (2009) Blood , vol.114 , pp. 2753-2763
    • Cabelof, D.C.1    Patel, H.V.2    Chen, Q.3
  • 93
    • 0029417023 scopus 로고
    • Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro
    • Busciglio J., Yankner B.A. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature 1995, 378:776-779.
    • (1995) Nature , vol.378 , pp. 776-779
    • Busciglio, J.1    Yankner, B.A.2
  • 94
    • 84938200139 scopus 로고    scopus 로고
    • DNA polymerase beta deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes
    • Sykora P., Misiak M., Wang Y., et al. DNA polymerase beta deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2014.
    • (2014) Nucleic Acids Res.
    • Sykora, P.1    Misiak, M.2    Wang, Y.3
  • 95
    • 78649866553 scopus 로고    scopus 로고
    • Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1
    • Guzman J.N., Sanchez-Padilla J., Wokosin D., et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010, 468:696-700.
    • (2010) Nature , vol.468 , pp. 696-700
    • Guzman, J.N.1    Sanchez-Padilla, J.2    Wokosin, D.3
  • 96
    • 0024390719 scopus 로고
    • Mitochondrial complex I deficiency in Parkinson's disease
    • Schapira A.H., Cooper J.M., Dexter D., et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1989, 1:1269.
    • (1989) Lancet , vol.1 , pp. 1269
    • Schapira, A.H.1    Cooper, J.M.2    Dexter, D.3
  • 97
    • 33646375711 scopus 로고    scopus 로고
    • High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
    • Bender A., Krishnan K.J., Morris C.M., et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 2006, 38:515-517.
    • (2006) Nat. Genet. , vol.38 , pp. 515-517
    • Bender, A.1    Krishnan, K.J.2    Morris, C.M.3
  • 98
    • 10744231633 scopus 로고    scopus 로고
    • Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease
    • Simon D.K., Lin M.T., Zheng L., et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol. Aging 2004, 25:71-81.
    • (2004) Neurobiol. Aging , vol.25 , pp. 71-81
    • Simon, D.K.1    Lin, M.T.2    Zheng, L.3
  • 99
    • 84904754260 scopus 로고    scopus 로고
    • Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease
    • Sanders L.H., McCoy J., Hu X., et al. Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol. Dis. 2014, 70:214-223.
    • (2014) Neurobiol. Dis. , vol.70 , pp. 214-223
    • Sanders, L.H.1    McCoy, J.2    Hu, X.3
  • 100
    • 84862742683 scopus 로고    scopus 로고
    • Somatic mitochondrial DNA mutations in early Parkinson and incidental Lewy body disease
    • Lin M.T., Cantuti-Castelvetri I., Zheng K., et al. Somatic mitochondrial DNA mutations in early Parkinson and incidental Lewy body disease. Ann. Neurol. 2012, 71:850-854.
    • (2012) Ann. Neurol. , vol.71 , pp. 850-854
    • Lin, M.T.1    Cantuti-Castelvetri, I.2    Zheng, K.3
  • 101
    • 0029082383 scopus 로고
    • Inactivation of the mouse Huntington's disease gene homolog Hdh
    • Duyao M.P., Auerbach A.B., Ryan A., et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 1995, 269:407-410.
    • (1995) Science , vol.269 , pp. 407-410
    • Duyao, M.P.1    Auerbach, A.B.2    Ryan, A.3
  • 102
    • 77958109197 scopus 로고    scopus 로고
    • Mechanisms of trinucleotide repeat instability during human development
    • McMurray C.T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 2010, 11:786-799.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 786-799
    • McMurray, C.T.1
  • 103
    • 34249337762 scopus 로고    scopus 로고
    • OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells
    • Kovtun I.V., Liu Y., Bjoras M., et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007, 447:447-452.
    • (2007) Nature , vol.447 , pp. 447-452
    • Kovtun, I.V.1    Liu, Y.2    Bjoras, M.3
  • 105
    • 84901592715 scopus 로고    scopus 로고
    • Inhibition of mitochondrial protein import by mutant huntingtin
    • Yano H., Baranov S.V., Baranova O.V., et al. Inhibition of mitochondrial protein import by mutant huntingtin. Nat. Neurosci. 2014, 17:822-831.
    • (2014) Nat. Neurosci. , vol.17 , pp. 822-831
    • Yano, H.1    Baranov, S.V.2    Baranova, O.V.3
  • 106
    • 79551518229 scopus 로고    scopus 로고
    • Energy deficit in Huntington disease: why it matters?
    • Mochel F., Haller R.G. Energy deficit in Huntington disease: why it matters?. J. Clin. Invest. 2011, 121:493-499.
    • (2011) J. Clin. Invest. , vol.121 , pp. 493-499
    • Mochel, F.1    Haller, R.G.2
  • 107
    • 84866395321 scopus 로고    scopus 로고
    • Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease
    • Siddiqui A., Rivera-Sanchez S., Castro Mdel R., et al. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease. Free Radical Biol. Med. 2012, 53:1478-1488.
    • (2012) Free Radical Biol. Med. , vol.53 , pp. 1478-1488
    • Siddiqui, A.1    Rivera-Sanchez, S.2    Castro Mdel, R.3
  • 108
    • 57649171133 scopus 로고    scopus 로고
    • Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants
    • Stack E.C., Matson W.R., Ferrante R.J. Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants. Annu. N. Y. Acad. Sci. 2008, 1147:79-92.
    • (2008) Annu. N. Y. Acad. Sci. , vol.1147 , pp. 79-92
    • Stack, E.C.1    Matson, W.R.2    Ferrante, R.J.3
  • 109
    • 84859904873 scopus 로고    scopus 로고
    • Shaping the role of mitochondria in the pathogenesis of Huntington's disease
    • Costa V., Scorrano L. Shaping the role of mitochondria in the pathogenesis of Huntington's disease. EMBO J. 2012, 31:1853-1864.
    • (2012) EMBO J. , vol.31 , pp. 1853-1864
    • Costa, V.1    Scorrano, L.2
  • 110
    • 84884910504 scopus 로고    scopus 로고
    • Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis
    • Ayala-Pena S. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis. Free Radical Biol. Med. 2013, 62:102-110.
    • (2013) Free Radical Biol. Med. , vol.62 , pp. 102-110
    • Ayala-Pena, S.1
  • 111
    • 84870468673 scopus 로고    scopus 로고
    • Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease
    • Xun Z., Rivera-Sanchez S., Ayala-Pena S., et al. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease. Cell Rep. 2012, 2:1137-1142.
    • (2012) Cell Rep. , vol.2 , pp. 1137-1142
    • Xun, Z.1    Rivera-Sanchez, S.2    Ayala-Pena, S.3
  • 112
    • 84909592573 scopus 로고    scopus 로고
    • Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney
    • Ebrahimkhani M.R., Daneshmand A., Mazumder A., et al. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:E4878-4886.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. E4878-4886
    • Ebrahimkhani, M.R.1    Daneshmand, A.2    Mazumder, A.3
  • 113
    • 0037216491 scopus 로고    scopus 로고
    • Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia
    • Chen D., Minami M., Henshall D.C., et al. Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia. J. Cereb. Blood Flow and Metab. 2003, 23:88-98.
    • (2003) J. Cereb. Blood Flow and Metab. , vol.23 , pp. 88-98
    • Chen, D.1    Minami, M.2    Henshall, D.C.3
  • 114
    • 0242490147 scopus 로고    scopus 로고
    • Inducible repair of oxidative DNA lesions in the rat brain after transient focal ischemia and reperfusion
    • Lan J., Li W., Zhang F., et al. Inducible repair of oxidative DNA lesions in the rat brain after transient focal ischemia and reperfusion. J. Cereb. Blood Flow and Metab. 2003, 23:1324-1339.
    • (2003) J. Cereb. Blood Flow and Metab. , vol.23 , pp. 1324-1339
    • Lan, J.1    Li, W.2    Zhang, F.3
  • 115
    • 0037415380 scopus 로고    scopus 로고
    • Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGG1 expression during ischemia-reperfusion injury in the rat kidney
    • Tsuruya K., Furuichi M., Tominaga Y., et al. Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGG1 expression during ischemia-reperfusion injury in the rat kidney. DNA Repair 2003, 2:211-229.
    • (2003) DNA Repair , vol.2 , pp. 211-229
    • Tsuruya, K.1    Furuichi, M.2    Tominaga, Y.3
  • 116
    • 3042766227 scopus 로고    scopus 로고
    • Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase
    • Endres M., Biniszkiewicz D., Sobol R.W., et al. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J. Clin. Invest. 2004, 113:1711-1721.
    • (2004) J. Clin. Invest. , vol.113 , pp. 1711-1721
    • Endres, M.1    Biniszkiewicz, D.2    Sobol, R.W.3
  • 117
    • 79551649906 scopus 로고    scopus 로고
    • Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions
    • Liu D., Croteau D.L., Souza-Pinto N., et al. Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions. J. Cereb. Blood Flow and Metab. 2011, 31:680-692.
    • (2011) J. Cereb. Blood Flow and Metab. , vol.31 , pp. 680-692
    • Liu, D.1    Croteau, D.L.2    Souza-Pinto, N.3
  • 118
    • 81755172871 scopus 로고    scopus 로고
    • Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia
    • Sejersted Y., Hildrestrand G.A., Kunke D., et al. Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:18802-18807.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 18802-18807
    • Sejersted, Y.1    Hildrestrand, G.A.2    Kunke, D.3
  • 119
    • 84866284780 scopus 로고    scopus 로고
    • Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice
    • Canugovi C., Yoon J.S., Feldman N.H., et al. Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:14948-14953.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 14948-14953
    • Canugovi, C.1    Yoon, J.S.2    Feldman, N.H.3
  • 120
    • 84896737366 scopus 로고    scopus 로고
    • Alzheimer's disease and CADASIL are heritable, adult-onset dementias that both involve damaged small blood vessels
    • Marchesi V.T. Alzheimer's disease and CADASIL are heritable, adult-onset dementias that both involve damaged small blood vessels. Cell. Mol. Life Sci.: CMLS 2014, 71:949-955.
    • (2014) Cell. Mol. Life Sci.: CMLS , vol.71 , pp. 949-955
    • Marchesi, V.T.1
  • 123
    • 84925958949 scopus 로고    scopus 로고
    • Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community
    • Devanand S., et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. Neurology,. 2014.
    • (2014) Neurology,.
    • Devanand, S.1
  • 124
    • 84856956771 scopus 로고    scopus 로고
    • Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells
    • Israel M.A., Yuan S.H., Bardy C., et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 2012, 482:216-220.
    • (2012) Nature , vol.482 , pp. 216-220
    • Israel, M.A.1    Yuan, S.H.2    Bardy, C.3
  • 125
    • 3042631024 scopus 로고    scopus 로고
    • Gene regulation and DNA damage in the ageing human brain
    • Lu T., Pan Y., Kao S.Y., et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004, 429:883-891.
    • (2004) Nature , vol.429 , pp. 883-891
    • Lu, T.1    Pan, Y.2    Kao, S.Y.3
  • 126
    • 0037413370 scopus 로고    scopus 로고
    • Hypersensitivity of DNA polymerase beta null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions
    • Horton J.K., Joyce-Gray D.F., Pachkowski B.F., et al. Hypersensitivity of DNA polymerase beta null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions. DNA Repair 2003, 2:27-48.
    • (2003) DNA Repair , vol.2 , pp. 27-48
    • Horton, J.K.1    Joyce-Gray, D.F.2    Pachkowski, B.F.3
  • 127
    • 23844439393 scopus 로고    scopus 로고
    • Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance
    • Harrison J.F., Hollensworth S.B., Spitz D.R., et al. Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance. Nucleic Acids Res. 2005, 33:4660-4671.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 4660-4671
    • Harrison, J.F.1    Hollensworth, S.B.2    Spitz, D.R.3
  • 128
    • 0345379628 scopus 로고    scopus 로고
    • Phenotypic change caused by transcriptional bypass of uracil in nondividing cells
    • Viswanathan A., You H.J., Doetsch P.W. Phenotypic change caused by transcriptional bypass of uracil in nondividing cells. Science 1999, 284:159-162.
    • (1999) Science , vol.284 , pp. 159-162
    • Viswanathan, A.1    You, H.J.2    Doetsch, P.W.3
  • 129
    • 84880951449 scopus 로고    scopus 로고
    • A robust, sensitive assay for genomic uracil determination by LC/MS/MS reveals lower levels than previously reported
    • Galashevskaya A., Sarno A., Vagbo C.B., et al. A robust, sensitive assay for genomic uracil determination by LC/MS/MS reveals lower levels than previously reported. DNA Repair 2013, 12:699-706.
    • (2013) DNA Repair , vol.12 , pp. 699-706
    • Galashevskaya, A.1    Sarno, A.2    Vagbo, C.B.3
  • 130
    • 84861749572 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy
    • Scheibye-Knudsen M., Ramamoorthy M., Sykora P., et al. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. J. Exp. Med. 2012, 209:855-869.
    • (2012) J. Exp. Med. , vol.209 , pp. 855-869
    • Scheibye-Knudsen, M.1    Ramamoorthy, M.2    Sykora, P.3
  • 131
    • 84903947419 scopus 로고    scopus 로고
    • Alzheimer's disease drug-development pipeline: few candidates, frequent failures
    • Cummings J.L., Morstorf T., Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther. 2014, 6:37.
    • (2014) Alzheimers Res. Ther. , vol.6 , pp. 37
    • Cummings, J.L.1    Morstorf, T.2    Zhong, K.3
  • 132
    • 84918576232 scopus 로고    scopus 로고
    • Connecting the dots between tau dysfunction and neurodegeneration
    • Frost B., Gotz J., Feany M.B. Connecting the dots between tau dysfunction and neurodegeneration. Trends Cell Biol. 2015, 25:46-53.
    • (2015) Trends Cell Biol. , vol.25 , pp. 46-53
    • Frost, B.1    Gotz, J.2    Feany, M.B.3
  • 133
    • 84856233300 scopus 로고    scopus 로고
    • Balancing repair and tolerance of DNA damage caused by alkylating agents
    • Fu D., Calvo J.A., Samson L.D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 2012, 12:104-120.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 104-120
    • Fu, D.1    Calvo, J.A.2    Samson, L.D.3
  • 134
    • 39549106043 scopus 로고    scopus 로고
    • CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins
    • Parsons J.L., Tait P.S., Finch D., et al. CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol. Cell 2008, 29:477-487.
    • (2008) Mol. Cell , vol.29 , pp. 477-487
    • Parsons, J.L.1    Tait, P.S.2    Finch, D.3
  • 135
    • 79951997444 scopus 로고    scopus 로고
    • USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta
    • Parsons J.L., Dianova I.I., Khoronenkova S.V., et al. USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta. Mol. Cell 2011, 41:609-615.
    • (2011) Mol. Cell , vol.41 , pp. 609-615
    • Parsons, J.L.1    Dianova, I.I.2    Khoronenkova, S.V.3
  • 136
    • 84871711830 scopus 로고    scopus 로고
    • Multiple microRNAs may regulate the DNA repair enzyme uracil-DNA glycosylase
    • Hegre S.A., Saetrom P., Aas P.A., et al. Multiple microRNAs may regulate the DNA repair enzyme uracil-DNA glycosylase. DNA Repair 2013, 12:80-86.
    • (2013) DNA Repair , vol.12 , pp. 80-86
    • Hegre, S.A.1    Saetrom, P.2    Aas, P.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.