메뉴 건너뛰기




Volumn 9, Issue 7, 2010, Pages 785-795

Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes

Author keywords

Base excision repair; DNA repair complexes; Replication associated repair; UNG2; XRCC1

Indexed keywords

CYCLINE; UNCLASSIFIED DRUG; URACIL; URACIL DNA GLYCOSIDASE; URACIL DNA GLYCOSIDASE 2; XRCC1 PROTEIN;

EID: 77953326690     PISSN: 15687864     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dnarep.2010.04.002     Document Type: Article
Times cited : (53)

References (47)
  • 1
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl T. Instability and decay of the primary structure of DNA. Nature 362 (1993) 709-715
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 2
    • 0025156152 scopus 로고
    • The specific binding of nuclear protein(s) to the cAMP responsive element (CRE) sequence (TGACGTCA) is reduced by the misincorporation of U and increased by the deamination of C
    • Verri A., Mazzarello P., Biamonti G., Spadari S., and Focher F. The specific binding of nuclear protein(s) to the cAMP responsive element (CRE) sequence (TGACGTCA) is reduced by the misincorporation of U and increased by the deamination of C. Nucleic Acids Res. 18 (1990) 5775-5780
    • (1990) Nucleic Acids Res. , vol.18 , pp. 5775-5780
    • Verri, A.1    Mazzarello, P.2    Biamonti, G.3    Spadari, S.4    Focher, F.5
  • 3
    • 0345379628 scopus 로고    scopus 로고
    • Phenotypic change caused by transcriptional bypass of uracil in nondividing cells
    • Viswanathan A., You H.J., and Doetsch P.W. Phenotypic change caused by transcriptional bypass of uracil in nondividing cells. Science 284 (1999) 159-162
    • (1999) Science , vol.284 , pp. 159-162
    • Viswanathan, A.1    You, H.J.2    Doetsch, P.W.3
  • 4
    • 67349099614 scopus 로고    scopus 로고
    • Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity
    • Akbari M., Pena-Diaz J., Andersen S., Liabakk N.B., Otterlei M., and Krokan H.E. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity. DNA Repair (Amst.) 8 (2009) 834-843
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 834-843
    • Akbari, M.1    Pena-Diaz, J.2    Andersen, S.3    Liabakk, N.B.4    Otterlei, M.5    Krokan, H.E.6
  • 5
    • 0032544558 scopus 로고    scopus 로고
    • Fidelity and mutational specificity of uracil-initiated base excision DNA repair synthesis in human glioblastoma cell extracts
    • Sanderson R.J., and Mosbaugh D.W. Fidelity and mutational specificity of uracil-initiated base excision DNA repair synthesis in human glioblastoma cell extracts. J. Biol. Chem. 273 (1998) 24822-24831
    • (1998) J. Biol. Chem. , vol.273 , pp. 24822-24831
    • Sanderson, R.J.1    Mosbaugh, D.W.2
  • 6
    • 0037115911 scopus 로고    scopus 로고
    • Uracil in DNA-occurrence, consequences and repair
    • Krokan H.E., Drablos F., and Slupphaug G. Uracil in DNA-occurrence, consequences and repair. Oncogene 21 (2002) 8935-8948
    • (2002) Oncogene , vol.21 , pp. 8935-8948
    • Krokan, H.E.1    Drablos, F.2    Slupphaug, G.3
  • 7
    • 18644363009 scopus 로고    scopus 로고
    • hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup
    • Kavli B., Sundheim O., Akbari M., Otterlei M., Nilsen H., Skorpen F., Aas P.A., Hagen L., Krokan H.E., and Slupphaug G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 277 (2002) 39926-39936
    • (2002) J. Biol. Chem. , vol.277 , pp. 39926-39936
    • Kavli, B.1    Sundheim, O.2    Akbari, M.3    Otterlei, M.4    Nilsen, H.5    Skorpen, F.6    Aas, P.A.7    Hagen, L.8    Krokan, H.E.9    Slupphaug, G.10
  • 10
    • 0037108463 scopus 로고    scopus 로고
    • Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice
    • Rada C., Williams G.T., Nilsen H., Barnes D.E., Lindahl T., and Neuberger M.S. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12 (2002) 1748-1755
    • (2002) Curr. Biol. , vol.12 , pp. 1748-1755
    • Rada, C.1    Williams, G.T.2    Nilsen, H.3    Barnes, D.E.4    Lindahl, T.5    Neuberger, M.S.6
  • 11
    • 21844464297 scopus 로고    scopus 로고
    • C→T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases
    • An Q., Robins P., Lindahl T., and Barnes D.E. C→T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases. EMBO J. 24 (2005) 2205-2213
    • (2005) EMBO J. , vol.24 , pp. 2205-2213
    • An, Q.1    Robins, P.2    Lindahl, T.3    Barnes, D.E.4
  • 12
    • 15944381621 scopus 로고    scopus 로고
    • Protein-protein interactions and posttranslational modifications in mammalian base excision repair
    • Fan J., and Wilson III D.M. Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radic. Biol. Med. 38 (2005) 1121-1138
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 1121-1138
    • Fan, J.1    Wilson III, D.M.2
  • 13
    • 0025202114 scopus 로고
    • Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange
    • Thompson L.H., Brookman K.W., Jones N.J., Allen S.A., and Carrano A.V. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell Biol. 10 (1990) 6160-6171
    • (1990) Mol. Cell Biol. , vol.10 , pp. 6160-6171
    • Thompson, L.H.1    Brookman, K.W.2    Jones, N.J.3    Allen, S.A.4    Carrano, A.V.5
  • 14
    • 0035890069 scopus 로고    scopus 로고
    • XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions
    • Vidal A.E., Boiteux S., Hickson I.D., and Radicella J.P. XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. EMBO J. 20 (2001) 6530-6539
    • (2001) EMBO J. , vol.20 , pp. 6530-6539
    • Vidal, A.E.1    Boiteux, S.2    Hickson, I.D.3    Radicella, J.P.4
  • 15
    • 0029957245 scopus 로고    scopus 로고
    • XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro
    • Caldecott K.W., Aoufouchi S., Johnson P., and Shall S. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res. 24 (1996) 4387-4394
    • (1996) Nucleic Acids Res. , vol.24 , pp. 4387-4394
    • Caldecott, K.W.1    Aoufouchi, S.2    Johnson, P.3    Shall, S.4
  • 18
    • 0031844311 scopus 로고    scopus 로고
    • XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage
    • Masson M., Niedergang C., Schreiber V., Muller S., Menissier-de Murcia J., and de Murcia G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell Biol. 18 (1998) 3563-3571
    • (1998) Mol. Cell Biol. , vol.18 , pp. 3563-3571
    • Masson, M.1    Niedergang, C.2    Schreiber, V.3    Muller, S.4    Menissier-de Murcia, J.5    de Murcia, G.6
  • 19
    • 0037151051 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1
    • Schreiber V., Ame J.C., Dolle P., Schultz I., Rinaldi B., Fraulob V., Menissier-de Murcia J., and de Murcia G. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277 (2002) 23028-23036
    • (2002) J. Biol. Chem. , vol.277 , pp. 23028-23036
    • Schreiber, V.1    Ame, J.C.2    Dolle, P.3    Schultz, I.4    Rinaldi, B.5    Fraulob, V.6    Menissier-de Murcia, J.7    de Murcia, G.8
  • 22
  • 23
    • 0035393812 scopus 로고    scopus 로고
    • hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs
    • Boldogh I., Milligan D., Lee M.S., Bassett H., Lloyd R.S., and McCullough A.K. hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs. Nucleic Acids Res. 29 (2001) 2802-2809
    • (2001) Nucleic Acids Res. , vol.29 , pp. 2802-2809
    • Boldogh, I.1    Milligan, D.2    Lee, M.S.3    Bassett, H.4    Lloyd, R.S.5    McCullough, A.K.6
  • 24
    • 13844280351 scopus 로고    scopus 로고
    • Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease
    • Xia L., Zheng L., Lee H.W., Bates S.E., Federico L., Shen B., and O'Connor T.R. Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. J. Mol. Biol. 346 (2005) 1259-1274
    • (2005) J. Mol. Biol. , vol.346 , pp. 1259-1274
    • Xia, L.1    Zheng, L.2    Lee, H.W.3    Bates, S.E.4    Federico, L.5    Shen, B.6    O'Connor, T.R.7
  • 25
    • 34249066085 scopus 로고    scopus 로고
    • PCNA, the maestro of the replication fork
    • Moldovan G.L., Pfander B., and Jentsch S. PCNA, the maestro of the replication fork. Cell 129 (2007) 665-679
    • (2007) Cell , vol.129 , pp. 665-679
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 26
    • 0035937102 scopus 로고    scopus 로고
    • Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair
    • Parker A., Gu Y., Mahoney W., Lee S.H., Singh K.K., and Lu A.L. Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J. Biol. Chem. 276 (2001) 5547-5555
    • (2001) J. Biol. Chem. , vol.276 , pp. 5547-5555
    • Parker, A.1    Gu, Y.2    Mahoney, W.3    Lee, S.H.4    Singh, K.K.5    Lu, A.L.6
  • 27
  • 28
    • 0028933306 scopus 로고
    • Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase
    • Slupphaug G., Eftedal I., Kavli B., Bharati S., Helle N.M., Haug T., Levine D.W., and Krokan H.E. Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 34 (1995) 128-138
    • (1995) Biochemistry , vol.34 , pp. 128-138
    • Slupphaug, G.1    Eftedal, I.2    Kavli, B.3    Bharati, S.4    Helle, N.M.5    Haug, T.6    Levine, D.W.7    Krokan, H.E.8
  • 30
    • 2942637828 scopus 로고    scopus 로고
    • The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2
    • Opresko P.L., Otterlei M., Graakjaer J., Bruheim P., Dawut L., Kolvraa S., May A., Seidman M.M., and Bohr V.A. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol. Cell 14 (2004) 763-774
    • (2004) Mol. Cell , vol.14 , pp. 763-774
    • Opresko, P.L.1    Otterlei, M.2    Graakjaer, J.3    Bruheim, P.4    Dawut, L.5    Kolvraa, S.6    May, A.7    Seidman, M.M.8    Bohr, V.A.9
  • 34
    • 0032604883 scopus 로고    scopus 로고
    • In vitro base excision repair assay using mammalian cell extracts
    • Frosina G., Cappelli E., Fortini P., and Dogliotti E. In vitro base excision repair assay using mammalian cell extracts. Methods Mol. Biol. 113 (1999) 301-315
    • (1999) Methods Mol. Biol. , vol.113 , pp. 301-315
    • Frosina, G.1    Cappelli, E.2    Fortini, P.3    Dogliotti, E.4
  • 35
    • 0019878052 scopus 로고
    • Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs
    • Krokan H., and Wittwer C.U. Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res. 9 (1981) 2599-2613
    • (1981) Nucleic Acids Res. , vol.9 , pp. 2599-2613
    • Krokan, H.1    Wittwer, C.U.2
  • 36
    • 0034691185 scopus 로고    scopus 로고
    • True optical resolution beyond the Rayleigh limit achieved by standing wave illumination
    • Frohn J.T., Knapp H.F., and Stemmer A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 7232-7236
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 7232-7236
    • Frohn, J.T.1    Knapp, H.F.2    Stemmer, A.3
  • 37
    • 0032520689 scopus 로고    scopus 로고
    • Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase
    • Haug T., Skorpen F., Aas P.A., Malm V., Skjelbred C., and Krokan H.E. Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Nucleic Acids Res. 26 (1998) 1449-1457
    • (1998) Nucleic Acids Res. , vol.26 , pp. 1449-1457
    • Haug, T.1    Skorpen, F.2    Aas, P.A.3    Malm, V.4    Skjelbred, C.5    Krokan, H.E.6
  • 38
    • 0024414264 scopus 로고
    • Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme
    • Olsen L.C., Aasland R., Wittwer C.U., Krokan H.E., and Helland D.E. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J. 8 (1989) 3121-3125
    • (1989) EMBO J. , vol.8 , pp. 3121-3125
    • Olsen, L.C.1    Aasland, R.2    Wittwer, C.U.3    Krokan, H.E.4    Helland, D.E.5
  • 39
    • 0024587232 scopus 로고
    • Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase
    • Wang Z., and Mosbaugh D.W. Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264 (1989) 1163-1171
    • (1989) J. Biol. Chem. , vol.264 , pp. 1163-1171
    • Wang, Z.1    Mosbaugh, D.W.2
  • 41
    • 40649109989 scopus 로고    scopus 로고
    • Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis
    • Akbari M., Visnes T., Krokan H.E., and Otterlei M. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst.) 7 (2008) 605-616
    • (2008) DNA Repair (Amst.) , vol.7 , pp. 605-616
    • Akbari, M.1    Visnes, T.2    Krokan, H.E.3    Otterlei, M.4
  • 42
    • 33847621554 scopus 로고    scopus 로고
    • Uracil in DNA-general mutagen, but normal intermediate in acquired immunity
    • Kavli B., Otterlei M., Slupphaug G., and Krokan H.E. Uracil in DNA-general mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst.) 6 (2007) 505-516
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 505-516
    • Kavli, B.1    Otterlei, M.2    Slupphaug, G.3    Krokan, H.E.4
  • 43
    • 53149103171 scopus 로고    scopus 로고
    • The rate of base excision repair of uracil is controlled by the initiating glycosylase
    • Visnes T., Akbari M., Hagen L., Slupphaug G., and Krokan H.E. The rate of base excision repair of uracil is controlled by the initiating glycosylase. DNA Repair (Amst.) 7 (2008) 1869-1881
    • (2008) DNA Repair (Amst.) , vol.7 , pp. 1869-1881
    • Visnes, T.1    Akbari, M.2    Hagen, L.3    Slupphaug, G.4    Krokan, H.E.5
  • 44
    • 0031260117 scopus 로고    scopus 로고
    • Mammalian DNA ligases
    • Tomkinson A.E., and Levin D.S. Mammalian DNA ligases. Bioessays 19 (1997) 893-901
    • (1997) Bioessays , vol.19 , pp. 893-901
    • Tomkinson, A.E.1    Levin, D.S.2
  • 45
    • 39549106043 scopus 로고    scopus 로고
    • CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins
    • Parsons J.L., Tait P.S., Finch D., Dianova I.I., Allinson S.L., and Dianov G.L. CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol. Cell 29 (2008) 477-487
    • (2008) Mol. Cell , vol.29 , pp. 477-487
    • Parsons, J.L.1    Tait, P.S.2    Finch, D.3    Dianova, I.I.4    Allinson, S.L.5    Dianov, G.L.6
  • 47
    • 0019956767 scopus 로고
    • A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange
    • Thompson L.H., Brookman K.W., Dillehay L.E., Carrano A.V., Mazrimas J.A., Mooney C.L., and Minkler J.L. A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Mutat. Res. 95 (1982) 427-440
    • (1982) Mutat. Res. , vol.95 , pp. 427-440
    • Thompson, L.H.1    Brookman, K.W.2    Dillehay, L.E.3    Carrano, A.V.4    Mazrimas, J.A.5    Mooney, C.L.6    Minkler, J.L.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.