메뉴 건너뛰기




Volumn 15, Issue 7, 2014, Pages 465-481

Understanding nucleotide excision repair and its roles in cancer and ageing

Author keywords

[No Author keywords available]

Indexed keywords

UBIQUITIN;

EID: 84904642416     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3822     Document Type: Review
Times cited : (842)

References (178)
  • 1
    • 72749086094 scopus 로고    scopus 로고
    • An overview of chemical processes that damage cellular DNA: Spontaneous hydrolysis, alkylation, and reactions with radicals
    • Gates, K. S. An overview of chemical processes that damage cellular DNA: Spontaneous hydrolysis, alkylation, and reactions with radicals. Chem. Res. Toxicol. 22, 1747-1760 (2009
    • (2009) Chem. Res. Toxicol , vol.22 , pp. 1747-1760
    • Gates, K.S.1
  • 2
    • 79952075274 scopus 로고    scopus 로고
    • Endogenous versus exogenous DNA adducts: Their role in carcinogenesis, epidemiology, and risk assessment
    • Swenberg, J. A. et al. Endogenous versus exogenous DNA adducts: Their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 120, S130-145 (2011
    • (2011) Toxicol. Sci , vol.120
    • Swenberg, J.A.1
  • 3
    • 84857411787 scopus 로고    scopus 로고
    • Y-family DNA polymerases and their role in tolerance of cellular DNA damage
    • Sale, J. E., Lehmann, A. R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Rev. Mol. Cell Biol. 13, 141-152 (2012
    • (2012) Nature Rev. Mol. Cell Biol , vol.13 , pp. 141-152
    • Sale, J.E.1    Lehmann, A.R.2    Woodgate, R.3
  • 4
    • 70350504453 scopus 로고    scopus 로고
    • The DNA-damage response in human biology and disease
    • Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078 (2009
    • (2009) Nature , vol.461 , pp. 1071-1078
    • Jackson, S.P.1    Bartek, J.2
  • 5
    • 0035902108 scopus 로고    scopus 로고
    • Genome maintenance mechanisms for preventing cancer
    • Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374 (2001
    • (2001) Nature , vol.411 , pp. 366-374
    • Hoeijmakers, J.H.1
  • 6
    • 0028269240 scopus 로고
    • Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23
    • Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13, 1831-1843 (1994
    • (1994) EMBO J. , vol.13 , pp. 1831-1843
    • Masutani, C.1
  • 7
    • 20744446570 scopus 로고    scopus 로고
    • Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein
    • Nishi, R. et al. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol. Cell. Biol. 25, 5664-5674 (2005
    • (2005) . Mol. Cell. Biol , vol.25 , pp. 5664-5674
    • Nishi, R.1
  • 8
    • 0032134423 scopus 로고    scopus 로고
    • Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair
    • Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223-232 (1998
    • (1998) Mol. Cell , vol.2 , pp. 223-232
    • Sugasawa, K.1
  • 9
    • 0035282109 scopus 로고    scopus 로고
    • A multistep damage recognition mechanism for global genomic nucleotide excision repair
    • Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15, 507-521 (2001
    • (2001) Genes Dev , vol.15 , pp. 507-521
    • Sugasawa, K.1
  • 11
    • 34948892722 scopus 로고    scopus 로고
    • Recognition of dna damage by the rad4 nucleotide excision repair protein
    • Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570-575 (2007
    • (2007) Nature , vol.449 , pp. 570-575
    • Min, J.H.1    Pavletich, N.P.2
  • 12
    • 53349128176 scopus 로고    scopus 로고
    • Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC
    • Hoogstraten, D. et al. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J. Cell Sci. 121, 2850-2859 (2008
    • (2008) J. Cell Sci , vol.121 , pp. 2850-2859
    • Hoogstraten, D.1
  • 13
    • 0142059994 scopus 로고    scopus 로고
    • Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease
    • Reardon, J. T. & Sancar, A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17, 2539-2551 (2003
    • (2003) Genes Dev , vol.17 , pp. 2539-2551
    • Reardon, J.T.1    Sancar, A.2
  • 14
    • 0023803543 scopus 로고
    • Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA
    • Chu, G. & Chang, E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564-567 (1988
    • (1988) Science , vol.242 , pp. 564-567
    • Chu, G.1    Chang, E.2
  • 15
    • 0037127293 scopus 로고    scopus 로고
    • DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair
    • Wakasugi, M. et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 277, 1637-1640 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 1637-1640
    • Wakasugi, M.1
  • 16
    • 57749198023 scopus 로고    scopus 로고
    • Structural basis of uv dna-damage recognition by the ddb1 ddb2 complex
    • Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1 DDB2 complex. Cell 135, 1213-1223 (2008
    • (2008) Cell , vol.135 , pp. 1213-1223
    • Scrima, A.1
  • 17
    • 0037509859 scopus 로고    scopus 로고
    • The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
    • Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357-367 (2003
    • (2003) Cell , vol.113 , pp. 357-367
    • Groisman, R.1
  • 18
    • 17944361949 scopus 로고    scopus 로고
    • Sequential assembly of the nucleotide excision repair factors in vivo
    • Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213-224 (2001
    • (2001) Mol. Cell , vol.8 , pp. 213-224
    • Volker, M.1
  • 19
    • 0034737426 scopus 로고    scopus 로고
    • The xeroderma pigmentosum group C protein complex XPC HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA
    • Yokoi, M. et al. The xeroderma pigmentosum group C protein complex XPC HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem. 275, 9870-9875 (2000
    • (2000) J. Biol. Chem , vol.275 , pp. 9870-9875
    • Yokoi, M.1
  • 20
    • 0141753120 scopus 로고    scopus 로고
    • The comings and goings of nucleotide excision repair factors on damaged
    • Riedl, T., Hanaoka, F. & Egly, J. M. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22, 5293-5303 (2003
    • (2003) DNA. EMBO J. , vol.22 , pp. 5293-5303
    • Riedl, T.1    Hanaoka, F.2    Egly, J.M.3
  • 21
    • 2442586630 scopus 로고    scopus 로고
    • Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors
    • Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074-19083 (2004
    • (2004) J. Biol. Chem , vol.279 , pp. 19074-19083
    • Tapias, A.1
  • 22
    • 84861457511 scopus 로고    scopus 로고
    • TFIIH: When transcription met dna repair
    • Compe, E. & Egly, J. M. TFIIH: When transcription met DNA repair. Nature Rev. Mol. Cell Biol. 13, 343-354 (2012
    • (2012) Nature Rev. Mol. Cell Biol , vol.13 , pp. 343-354
    • Compe, E.1    Egly, J.M.2
  • 23
    • 34247513888 scopus 로고    scopus 로고
    • Distinct roles for the xpb/p52 and xpd/p44 subcomplexes of tfiih in damaged dna opening during nucleotide excision repair
    • Coin, F., Oksenych, V. & Egly, J. M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26, 245-256 (2007
    • (2007) Mol. Cell , vol.26 , pp. 245-256
    • Coin, F.1    Oksenych, V.2    Egly, J.M.3
  • 24
    • 70350566800 scopus 로고    scopus 로고
    • Molecular insights into the recruitment of TFIIH to sites of DNA damage
    • Oksenych, V., Bernardes De Jesus, B., Zhovmer, A., Egly, J. M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28, 2971-2980 (2009
    • (2009) EMBO J. , vol.28 , pp. 2971-2980
    • Oksenych, V.1    Bernardes De Jesus, B.2    Zhovmer, A.3    Egly, J.M.4    Coin, F.5
  • 25
    • 0040435451 scopus 로고    scopus 로고
    • TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair
    • Winkler, G. S. et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J. Biol. Chem. 275, 4258-4266 (2000
    • (2000) J. Biol. Chem , vol.275 , pp. 4258-4266
    • Winkler, G.S.1
  • 26
    • 70449717367 scopus 로고    scopus 로고
    • Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning
    • Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36, 642-653 (2009
    • (2009) Mol. Cell , vol.36 , pp. 642-653
    • Sugasawa, K.1    Akagi, J.2    Nishi, R.3    Iwai, S.4    Hanaoka, F.5
  • 27
    • 44149094083 scopus 로고    scopus 로고
    • XPD helicase structures and activities: Insights into the cancer and aging phenotypes from XPD mutations
    • Fan, L. et al. XPD helicase structures and activities: Insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789-800 (2008
    • (2008) Cell , vol.133 , pp. 789-800
    • Fan, L.1
  • 28
    • 45849119445 scopus 로고    scopus 로고
    • Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD
    • Wolski, S. C. et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 6, e149 (2008
    • (2008) PLoS Biol , vol.6
    • Wolski, S.C.1
  • 29
    • 84857194573 scopus 로고    scopus 로고
    • Regulation of translocation polarity by helicase domain 1 in SF2B helicases
    • Pugh, R. A., Wu, C. G. & Spies, M. Regulation of translocation polarity by helicase domain 1 in SF2B helicases. EMBO J. 31, 503-514 (2012
    • (2012) EMBO J. , vol.31 , pp. 503-514
    • Pugh, R.A.1    Wu, C.G.2    Spies, M.3
  • 30
    • 84873408109 scopus 로고    scopus 로고
    • DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH
    • Mathieu, N., Kaczmarek, N., Ruthemann, P., Luch, A. & Naegeli, H. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr. Biol. 23, 204-212 (2013
    • (2013) Curr. Biol , vol.23 , pp. 204-212
    • Mathieu, N.1    Kaczmarek, N.2    Ruthemann, P.3    Luch, A.4    Naegeli, H.5
  • 31
    • 43949110271 scopus 로고    scopus 로고
    • Structure of the DNA repair helicase XPD
    • Liu, H. et al. Structure of the DNA repair helicase XPD. Cell 133, 801-812 (2008
    • (2008) Cell , vol.133 , pp. 801-812
    • Liu, H.1
  • 32
    • 33644812489 scopus 로고    scopus 로고
    • Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair
    • Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B. & Naegeli, H. Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nature Struct. Mol. Biol. 13, 278-284 (2006
    • (2006) Nature Struct. Mol. Biol , vol.13 , pp. 278-284
    • Camenisch, U.1    Dip, R.2    Schumacher, S.B.3    Schuler, B.4    Naegeli, H.5
  • 33
    • 18744374129 scopus 로고    scopus 로고
    • Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo
    • Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell 10, 1163-1174 (2002
    • (2002) Mol. Cell , vol.10 , pp. 1163-1174
    • Hoogstraten, D.1
  • 34
    • 46349091030 scopus 로고    scopus 로고
    • Nucleotide excision repair driven by the dissociation of CAK from TFIIH
    • Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9-20 (2008
    • (2008) Mol. Cell , vol.31 , pp. 9-20
    • Coin, F.1
  • 35
    • 3042781670 scopus 로고    scopus 로고
    • A new, tenth subunit of tfiih is responsible for the dna repair syndrome trichothiodystrophy group a
    • Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714-719 (2004
    • (2004) Nature Genet , vol.36 , pp. 714-719
    • Giglia-Mari, G.1
  • 36
    • 84876823728 scopus 로고    scopus 로고
    • Disruption of ttda results in complete nucleotide excision repair deficiency and embryonic lethality
    • Theil, A. F. et al. Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality. PLoS Genet. 9, e1003431 (2013
    • (2013) PLoS Genet , vol.9
    • Theil, A.F.1
  • 37
    • 77951819090 scopus 로고    scopus 로고
    • Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair
    • Luijsterburg, M. S. et al. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. J. Cell Biol. 189, 445-463 (2010
    • (2010) J. Cell Biol , vol.189 , pp. 445-463
    • Luijsterburg, M.S.1
  • 38
    • 79960378814 scopus 로고    scopus 로고
    • Dynamics of mammalian NER proteins
    • Vermeulen, W. Dynamics of mammalian NER proteins. DNA Repair 10, 760-771 (2011
    • (2011) DNA Repair , vol.10 , pp. 760-771
    • Vermeulen, W.1
  • 39
    • 79960343567 scopus 로고    scopus 로고
    • Regulation of endonuclease activity in human nucleotide excision repair
    • Fagbemi, A. F., Orelli, B. & Scharer, O. D. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair 10, 722-729 (2011
    • (2011) DNA Repair , vol.10 , pp. 722-729
    • Fagbemi, A.F.1    Orelli, B.2    Scharer, O.D.3
  • 40
    • 84866142231 scopus 로고    scopus 로고
    • Generation of DNA single-strand displacement by compromised nucleotide excision repair
    • Godon, C. et al. Generation of DNA single-strand displacement by compromised nucleotide excision repair. EMBO J. 31, 3550-3563 (2012
    • (2012) EMBO J. , vol.31 , pp. 3550-3563
    • Godon, C.1
  • 42
    • 0032529167 scopus 로고    scopus 로고
    • DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair
    • De Laat, W. L. et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12, 2598-2609 (1998
    • (1998) Genes Dev , vol.12 , pp. 2598-2609
    • De Laat, W.L.1
  • 43
    • 14844300809 scopus 로고    scopus 로고
    • The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity
    • Dunand-Sauthier, I. et al. The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J. Biol. Chem. 280, 7030-7037 (2005
    • (2005) J. Biol. Chem , vol.280 , pp. 7030-7037
    • Dunand-Sauthier, I.1
  • 44
    • 33845232596 scopus 로고    scopus 로고
    • Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV induced DNA damage depends on functional TFIIH
    • Zotter, A. et al. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV induced DNA damage depends on functional TFIIH. Mol. Cell. Biol. 26, 8868-8879 (2006
    • (2006) . Mol. Cell. Biol , vol.26 , pp. 8868-8879
    • Zotter, A.1
  • 45
    • 34247256517 scopus 로고    scopus 로고
    • XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP G/CS patients
    • Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP G/CS patients. Mol. Cell 26, 231-243 (2007
    • (2007) Mol. Cell , vol.26 , pp. 231-243
    • Ito, S.1
  • 46
    • 67349212889 scopus 로고    scopus 로고
    • Coordination of dual incision and repair synthesis in human nucleotide excision repair
    • Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111-1120 (2009
    • (2009) EMBO J. , vol.28 , pp. 1111-1120
    • Staresincic, L.1
  • 47
    • 36249002305 scopus 로고    scopus 로고
    • Structural basis for the recruitment of ERCC1 XPF to nucleotide excision repair complexes by XPA
    • Tsodikov, O. V. et al. Structural basis for the recruitment of ERCC1 XPF to nucleotide excision repair complexes by XPA. EMBO J. 26, 4768-4776 (2007
    • (2007) EMBO J. , vol.26 , pp. 4768-4776
    • Tsodikov, O.V.1
  • 48
    • 77950487121 scopus 로고    scopus 로고
    • The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways
    • Orelli, B. et al. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J. Biol. Chem. 285, 3705-3712 (2010
    • (2010) J. Biol. Chem , vol.285 , pp. 3705-3712
    • Orelli, B.1
  • 49
    • 38049000832 scopus 로고    scopus 로고
    • Sequential recruitment of the repair factors during NER: The role of XPG in initiating the resynthesis step
    • Mocquet, V. et al. Sequential recruitment of the repair factors during NER: The role of XPG in initiating the resynthesis step. EMBO J. 27, 155-167 (2008
    • (2008) EMBO J. , vol.27 , pp. 155-167
    • Mocquet, V.1
  • 50
    • 79551691855 scopus 로고    scopus 로고
    • Replication protein A safeguards genome integrity by controlling NER incision events
    • Overmeer, R. M. et al. Replication protein A safeguards genome integrity by controlling NER incision events. J. Cell Biol. 192, 401-415 (2011
    • (2011) J. Cell Biol , vol.192 , pp. 401-415
    • Overmeer, R.M.1
  • 51
    • 77649242633 scopus 로고    scopus 로고
    • Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
    • Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714-727 (2010
    • (2010) Mol. Cell , vol.37 , pp. 714-727
    • Ogi, T.1
  • 52
    • 34447302016 scopus 로고    scopus 로고
    • Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III ? in a cell-cycle-specific manner
    • Moser, J. et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III ? in a cell-cycle-specific manner. Mol. Cell 27, 311-323 (2007
    • (2007) Mol. Cell , vol.27 , pp. 311-323
    • Moser, J.1
  • 53
    • 0029785723 scopus 로고    scopus 로고
    • Blockage of rna polymerase as a possible trigger for uv light-induced apoptosis
    • Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for U.V. light-induced apoptosis. Oncogene 13, 823-831 (1996
    • (1996) Oncogene , vol.13 , pp. 823-831
    • Ljungman, M.1    Zhang, F.2
  • 54
    • 34047096423 scopus 로고    scopus 로고
    • Transcriptional bypass of bulky dna lesions causes new mutant rna transcripts in human cells
    • Marietta, C. & Brooks, P. J. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep. 8, 388-393 (2007
    • (2007) EMBO Rep , vol.8 , pp. 388-393
    • Marietta, C.1    Brooks, P.J.2
  • 55
    • 74449086969 scopus 로고    scopus 로고
    • Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis
    • Hendriks, G. et al. Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr. Biol. 20, 170-175 (2010
    • (2010) Curr. Biol , vol.20 , pp. 170-175
    • Hendriks, G.1
  • 56
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: Two decades of progress and surprises
    • Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: Two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958-970 (2008
    • (2008) Nature Rev. Mol. Cell Biol , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 58
    • 33747194740 scopus 로고    scopus 로고
    • Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
    • Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 23, 471-482 (2006
    • (2006) Mol. Cell , vol.23 , pp. 471-482
    • Fousteri, M.1    Vermeulen, W.2    Van Zeeland, A.A.3    Mullenders, L.H.4
  • 59
    • 84860330462 scopus 로고    scopus 로고
    • UV sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair
    • Schwertman, P. et al. UV sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nature Genet. 44, 598-602 (2012
    • (2012) Nature Genet , vol.44 , pp. 598-602
    • Schwertman, P.1
  • 60
    • 4444332513 scopus 로고    scopus 로고
    • Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage
    • De Waard, H. et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol. Cell. Biol. 24, 7941-7948 (2004
    • (2004) . Mol. Cell. Biol , vol.24 , pp. 7941-7948
    • De Waard, H.1
  • 61
    • 45449093552 scopus 로고    scopus 로고
    • The role of cockayne syndrome group b (csb) protein in base excision repair and aging
    • Stevnsner, T., Muftuoglu, M., Aamann, M. D. & Bohr, V. A. The role of Cockayne Syndrome group B (CSB). protein in base excision repair and aging. Mech. Ageing Dev. 129, 441-448 (2008
    • (2008) Mech. Ageing Dev , vol.129 , pp. 441-448
    • Stevnsner, T.1    Muftuoglu, M.2    Aamann, M.D.3    Bohr, V.A.4
  • 62
    • 0037470158 scopus 로고    scopus 로고
    • Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis
    • Kuraoka, I. et al. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J. Biol. Chem. 278, 7294-7299 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 7294-7299
    • Kuraoka, I.1
  • 63
    • 2442504817 scopus 로고    scopus 로고
    • Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts
    • Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 279, 18511-18520 (2004
    • (2004) J. Biol. Chem , vol.279 , pp. 18511-18520
    • Kathe, S.D.1    Shen, G.P.2    Wallace, S.S.3
  • 64
    • 4544243741 scopus 로고    scopus 로고
    • Transcription activities at 8 oxoG lesions in DNA
    • Larsen, E., Kwon, K., Coin, F., Egly, J. M. & Klungland, A. Transcription activities at 8 oxoG lesions in DNA. DNA Repair 3, 1457-1468 (2004
    • (2004) DNA Repair , vol.3 , pp. 1457-1468
    • Larsen, E.1    Kwon, K.2    Coin, F.3    Egly, J.M.4    Klungland, A.5
  • 65
    • 84871959255 scopus 로고    scopus 로고
    • Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo
    • Menoni, H., Hoeijmakers, J. H. & Vermeulen, W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J. Cell Biol. 199, 1037-1046 (2012
    • (2012) J. Cell Biol , vol.199 , pp. 1037-1046
    • Menoni, H.1    Hoeijmakers, J.H.2    Vermeulen, W.3
  • 66
    • 65549153127 scopus 로고    scopus 로고
    • A UV sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage
    • Nardo, T. et al. A UV sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc. Natl Acad. Sci. USA 106, 6209-6214 (2009
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 6209-6214
    • Nardo, T.1
  • 67
    • 0033588105 scopus 로고    scopus 로고
    • Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA
    • Tornaletti, S., Reines, D. & Hanawalt, P. C. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem. 274, 24124-24130 (1999
    • (1999) J. Biol. Chem , vol.274 , pp. 24124-24130
    • Tornaletti, S.1    Reines, D.2    Hanawalt, P.C.3
  • 68
    • 84872414012 scopus 로고    scopus 로고
    • Ubiquitylation and degradation of elongating RNA polymerase II: The last resort
    • Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: The last resort. Biochim. Biophys. Acta 1829, 151-157 (2013
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 151-157
    • Wilson, M.D.1    Harreman, M.2    Svejstrup, J.Q.3
  • 69
    • 77950998789 scopus 로고    scopus 로고
    • Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability
    • Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202-210 (2010
    • (2010) Mol. Cell , vol.38 , pp. 202-210
    • Sigurdsson, S.1    Dirac-Svejstrup, A.B.2    Svejstrup, J.Q.3
  • 70
    • 0033806183 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
    • Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20, 7643-7653 (2000
    • (2000) . Mol. Cell. Biol , vol.20 , pp. 7643-7653
    • Citterio, E.1
  • 72
    • 79957547966 scopus 로고    scopus 로고
    • Beyond ATM: The protein kinase landscape of the DNA damage response
    • Bensimon, A., Aebersold, R. & Shiloh, Y. Beyond ATM: The protein kinase landscape of the DNA damage response. FEBS Lett. 585, 1625-1639 (2011
    • (2011) FEBS Lett , vol.585 , pp. 1625-1639
    • Bensimon, A.1    Aebersold, R.2    Shiloh, Y.3
  • 73
    • 84865313346 scopus 로고    scopus 로고
    • PARPs and the DNA damage response
    • Sousa, F. G. et al. PARPs and the DNA damage response. Carcinogenesis 33, 1433-1440 (2012
    • (2012) Carcinogenesis , vol.33 , pp. 1433-1440
    • Sousa, F.G.1
  • 74
    • 84869111403 scopus 로고    scopus 로고
    • PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1
    • Pines, A. et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 199, 235-249 (2012
    • (2012) J. Cell Biol , vol.199 , pp. 235-249
    • Pines, A.1
  • 75
    • 84876886904 scopus 로고    scopus 로고
    • Regulation of dna damage responses by ubiquitin and sumo
    • Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795-807 (2013
    • (2013) Mol. Cell , vol.49 , pp. 795-807
    • Jackson, S.P.1    Durocher, D.2
  • 76
    • 84867101049 scopus 로고    scopus 로고
    • Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass
    • Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biol. 14, 1089-1098 (2012
    • (2012) Nature Cell Biol , vol.14 , pp. 1089-1098
    • Povlsen, L.K.1
  • 77
    • 63649144413 scopus 로고    scopus 로고
    • Principles of ubiquitin and sumo modifications in dna repair
    • Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461-467 (2009
    • (2009) Nature , vol.458 , pp. 461-467
    • Bergink, S.1    Jentsch, S.2
  • 79
    • 84861783400 scopus 로고    scopus 로고
    • Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions
    • Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291-322 (2012
    • (2012) Annu. Rev. Biochem , vol.81 , pp. 291-322
    • Husnjak, K.1    Dikic, I.2
  • 81
    • 83755178234 scopus 로고    scopus 로고
    • Uncovering ubiquitin and ubiquitin-like signaling networks
    • Vertegaal, A. C. Uncovering ubiquitin and ubiquitin-like signaling networks. Chem. Rev. 111, 7923-7940 (2011
    • (2011) Chem. Rev , vol.111 , pp. 7923-7940
    • Vertegaal, A.C.1
  • 82
    • 22244478319 scopus 로고    scopus 로고
    • DNA repair factor XPC is modified by SUMO 1 and ubiquitin following UV irradiation
    • Wang, Q. E. et al. DNA repair factor XPC is modified by SUMO 1 and ubiquitin following UV irradiation. Nucleic Acids Res. 33, 4023-4034 (2005
    • (2005) Nucleic Acids Res , vol.33 , pp. 4023-4034
    • Wang, Q.E.1
  • 83
    • 84880032059 scopus 로고    scopus 로고
    • RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response
    • Poulsen, S. L. et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J. Cell Biol. 201, 797-807 (2013
    • (2013) J. Cell Biol , vol.201 , pp. 797-807
    • Poulsen, S.L.1
  • 84
    • 21044442126 scopus 로고    scopus 로고
    • UV induced ubiquitylation of XPC protein mediated by UV DDB-ubiquitin ligase complex
    • Sugasawa, K. et al. UV induced ubiquitylation of XPC protein mediated by UV DDB-ubiquitin ligase complex. Cell 121, 387-400 (2005
    • (2005) Cell , vol.121 , pp. 387-400
    • Sugasawa, K.1
  • 85
    • 63049106823 scopus 로고    scopus 로고
    • Regulation of dna damage response pathways by the cullin-ring ubiquitin ligases
    • Hannah, J. & Zhou, P. Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases. DNA Repair 8, 536-543 (2009
    • (2009) DNA Repair , vol.8 , pp. 536-543
    • Hannah, J.1    Zhou, P.2
  • 86
    • 33644536070 scopus 로고    scopus 로고
    • The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV damaged DNA sites
    • Kapetanaki, M. G. et al. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV damaged DNA sites. Proc. Natl Acad. Sci. USA 103, 2588-2593 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 2588-2593
    • Kapetanaki, M.G.1
  • 87
    • 80052743035 scopus 로고    scopus 로고
    • Detecting uv lesions in the genome: The modular crl4 ubiquitin ligase does it best!
    • Scrima, A. et al. Detecting UV lesions in the genome: The modular CRL4 ubiquitin ligase does it best! FEBS Lett. 585, 2818-2825 (2011
    • (2011) FEBS Lett , vol.585 , pp. 2818-2825
    • Scrima, A.1
  • 88
    • 16244423719 scopus 로고    scopus 로고
    • The uv damaged dna binding protein mediates efficient targeting of the nucleotide excision repair complex to uv induced photo lesions
    • Moser, J. et al. The UV damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV induced photo lesions. DNA Repair 4, 571-582 (2005
    • (2005) DNA Repair , vol.4 , pp. 571-582
    • Moser, J.1
  • 89
    • 65649105790 scopus 로고    scopus 로고
    • CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis
    • Liu, L. et al. CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol. Cell 34, 451-460 (2009
    • (2009) Mol. Cell , vol.34 , pp. 451-460
    • Liu, L.1
  • 90
    • 4444371794 scopus 로고    scopus 로고
    • Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex
    • Okuda, Y. et al. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair 3, 1285-1295 (2004
    • (2004) DNA Repair , vol.3 , pp. 1285-1295
    • Okuda, Y.1
  • 91
    • 0038339144 scopus 로고    scopus 로고
    • A novel regulation mechanism of DNA repair by damage-induced and RAD23 dependent stabilization of xeroderma pigmentosum group C protein
    • Ng, J. M. et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23 dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 17, 1630-1645 (2003
    • (2003) Genes Dev , vol.17 , pp. 1630-1645
    • Ng, J.M.1
  • 92
    • 84860339685 scopus 로고    scopus 로고
    • Recognition of DNA damage by XPC coincides with disruption of the XPC RAD23 complex
    • Bergink, S. et al. Recognition of DNA damage by XPC coincides with disruption of the XPC RAD23 complex. J. Cell Biol. 196, 681-688 (2012
    • (2012) J. Cell Biol , vol.196 , pp. 681-688
    • Bergink, S.1
  • 93
    • 33744795969 scopus 로고    scopus 로고
    • CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
    • Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 20, 1429-1434 (2006
    • (2006) Genes Dev , vol.20 , pp. 1429-1434
    • Groisman, R.1
  • 94
    • 84860330507 scopus 로고    scopus 로고
    • Mutations in UVSSA cause UV sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair
    • Nakazawa, Y. et al. Mutations in UVSSA cause UV sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nature Genet. 44, 586-592 (2012
    • (2012) Nature Genet , vol.44 , pp. 586-592
    • Nakazawa, Y.1
  • 95
    • 84860336243 scopus 로고    scopus 로고
    • Mutations in uvssa cause uv sensitive syndrome and destabilize ercc6 in transcription-coupled dna repair
    • Zhang, X. et al. Mutations in UVSSA cause UV sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nature Genet. 44, 593-597 (2012
    • (2012) Nature Genet , vol.44 , pp. 593-597
    • Zhang, X.1
  • 96
    • 84867431394 scopus 로고    scopus 로고
    • KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA). to participate in transcription-coupled repair (TCR
    • Fei, J. & Chen, J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA). to participate in transcription-coupled repair (TCR). J. Biol. Chem. 287, 35118-35126 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 35118-35126
    • Fei, J.1    Chen, J.2
  • 97
    • 77953091336 scopus 로고    scopus 로고
    • A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair
    • Anindya, R. et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 38, 637-648 (2010
    • (2010) Mol. Cell , vol.38 , pp. 637-648
    • Anindya, R.1
  • 98
    • 0037148786 scopus 로고    scopus 로고
    • A Rad26 Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
    • Woudstra, E. C. et al. A Rad26 Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929-933 (2002
    • (2002) Nature , vol.415 , pp. 929-933
    • Woudstra, E.C.1
  • 99
    • 0036166206 scopus 로고    scopus 로고
    • When repair meets chromatin. First in series on chromatin dynamics
    • Green, C. M. & Almouzni, G. When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep. 3, 28-33 (2002
    • (2002) EMBO Rep , vol.3 , pp. 28-33
    • Green, C.M.1    Almouzni, G.2
  • 100
    • 0026181844 scopus 로고
    • DNA repair and the role of chromatin structure
    • Smerdon, M. J. DNA repair and the role of chromatin structure. Curr. Opin. Cell Biol. 3, 422-428 (1991
    • (1991) Curr. Opin. Cell Biol , vol.3 , pp. 422-428
    • Smerdon, M.J.1
  • 101
    • 21844434955 scopus 로고    scopus 로고
    • Nucleotide excision repair in chromatin and the right of entry
    • Gong, F., Kwon, Y. & Smerdon, M. J. Nucleotide excision repair in chromatin and the right of entry. DNA Repair 4, 884-896 (2005
    • (2005) DNA Repair , vol.4 , pp. 884-896
    • Gong, F.1    Kwon, Y.2    Smerdon, M.J.3
  • 102
    • 84863001577 scopus 로고    scopus 로고
    • Prime, repair, restore: The active role of chromatin in the DNA damage response
    • Soria, G., Polo, S. E. & Almouzni, G. Prime, repair, restore: The active role of chromatin in the DNA damage response. Mol. Cell 46, 722-734 (2012
    • (2012) Mol. Cell , vol.46 , pp. 722-734
    • Soria, G.1    Polo, S.E.2    Almouzni, G.3
  • 103
    • 48549085044 scopus 로고    scopus 로고
    • The cullin 4B based UV damaged DNA-binding protein ligase binds to UV damaged chromatin and ubiquitinates histone H2A
    • Guerrero-Santoro, J. et al. The cullin 4B based UV damaged DNA-binding protein ligase binds to UV damaged chromatin and ubiquitinates histone H2A. Cancer Res. 68, 5014-5022 (2008
    • (2008) Cancer Res , vol.68 , pp. 5014-5022
    • Guerrero-Santoro, J.1
  • 104
    • 33744781568 scopus 로고    scopus 로고
    • Histone h3 and h4 ubiquitylation by the cul4 ddb roc1 ubiquitin ligase facilitates cellular response to dna damage
    • Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4 DDB ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22, 383-394 (2006
    • (2006) Mol. Cell , vol.22 , pp. 383-394
    • Wang, H.1
  • 105
    • 84861939507 scopus 로고    scopus 로고
    • DDB2 promotes chromatin decondensation at uv induced dna damage
    • Luijsterburg, M. S. et al. DDB2 promotes chromatin decondensation at UV induced DNA damage. J. Cell Biol. 197, 267-281 (2012
    • (2012) J. Cell Biol , vol.197 , pp. 267-281
    • Luijsterburg, M.S.1
  • 106
    • 84856278412 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling in the DNA-damage response
    • Lans, H., Marteijn, J. A. & Vermeulen, W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5, 4 (2012
    • (2012) Epigenetics Chromatin , vol.5 , pp. 4
    • Lans, H.1    Marteijn, J.A.2    Vermeulen, W.3
  • 107
    • 0036785614 scopus 로고    scopus 로고
    • The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle
    • Hara, R. & Sancar, A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol. Cell. Biol. 22, 6779-6787 (2002
    • (2002) . Mol. Cell. Biol , vol.22 , pp. 6779-6787
    • Hara, R.1    Sancar, A.2
  • 108
    • 74849120987 scopus 로고    scopus 로고
    • The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage
    • Zhang, L., Zhang, Q., Jones, K., Patel, M. & Gong, F. The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell Cycle 8, 3953-3959 (2009
    • (2009) Cell Cycle , vol.8 , pp. 3953-3959
    • Zhang, L.1    Zhang, Q.2    Jones, K.3    Patel, M.4    Gong, F.5
  • 109
    • 71049159100 scopus 로고    scopus 로고
    • Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex
    • Zhao, Q. et al. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J. Biol. Chem. 284, 30424-30432 (2009
    • (2009) J. Biol. Chem , vol.284 , pp. 30424-30432
    • Zhao, Q.1
  • 110
    • 78049241459 scopus 로고    scopus 로고
    • INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway
    • Jiang, Y. et al. INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway. Proc. Natl Acad. Sci. USA 107, 17274-17279 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 17274-17279
    • Jiang, Y.1
  • 111
    • 0035850238 scopus 로고    scopus 로고
    • The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase
    • Datta, A. et al. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat. Res. 486, 89-97 (2001
    • (2001) Mutat. Res , vol.486 , pp. 89-97
    • Datta, A.1
  • 112
    • 0036606551 scopus 로고    scopus 로고
    • Sequential binding of uv dna damage binding factor and degradation of the p48 subunit as early events after uv irradiation
    • Rapic-Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M. & Levine, A. S. Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res. 30, 2588-2598 (2002
    • (2002) Nucleic Acids Res , vol.30 , pp. 2588-2598
    • Rapic-Otrin, V.1    McLenigan, M.P.2    Bisi, D.C.3    Gonzalez, M.4    Levine, A.S.5
  • 113
    • 0034812915 scopus 로고    scopus 로고
    • Human STAGA complex is a chromatin-Acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo
    • Martinez, E. et al. Human STAGA complex is a chromatin-Acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol. Cell. Biol. 21, 6782-6795 (2001
    • (2001) Mol. Cell. Biol , vol.21 , pp. 6782-6795
    • Martinez, E.1
  • 114
    • 79959843190 scopus 로고    scopus 로고
    • How chromatin is remodelled during dna repair of uv induced dna damage in saccharomyces cerevisiae
    • Yu, S., Teng, Y., Waters, R. & Reed, S. H. How chromatin is remodelled during DNA repair of UV induced DNA damage in Saccharomyces cerevisiae. PLoS Genet. 7, e1002124 (2011
    • (2011) PLoS Genet , vol.7
    • Yu, S.1    Teng, Y.2    Waters, R.3    Reed, S.H.4
  • 115
    • 79952342432 scopus 로고    scopus 로고
    • GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage
    • Guo, R., Chen, J., Mitchell, D. L. & Johnson, D. G. GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic Acids Res. 39, 1390-1397 (2011
    • (2011) Nucleic Acids Res , vol.39 , pp. 1390-1397
    • Guo, R.1    Chen, J.2    Mitchell, D.L.3    Johnson, D.G.4
  • 116
    • 0037450761 scopus 로고    scopus 로고
    • P53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage
    • Rubbi, C. P. & Milner, J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J. 22, 975-986 (2003
    • (2003) EMBO J. , vol.22 , pp. 975-986
    • Rubbi, C.P.1    Milner, J.2
  • 117
    • 0037160513 scopus 로고    scopus 로고
    • Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene
    • Muftuoglu, M., Selzer, R., Tuo, J., Brosh, R. M. Jr & Bohr, V. A. Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene. Gene 283, 27-40 (2002
    • (2002) Gene , vol.283 , pp. 27-40
    • Muftuoglu, M.1    Selzer, R.2    Tuo, J.3    Brosh Jr., R.M.4    Bohr, V.A.5
  • 118
    • 0032496215 scopus 로고    scopus 로고
    • Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein
    • Citterio, E. et al. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J. Biol. Chem. 273, 11844-11851 (1998
    • (1998) J. Biol. Chem , vol.273 , pp. 11844-11851
    • Citterio, E.1
  • 119
    • 0036464538 scopus 로고    scopus 로고
    • Differential requirement for the atpase domain of the cockayne syndrome group b gene in the processing of uv induced dna damage and 8 oxoguanine lesions in human cells
    • Selzer, R. R. et al. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV induced DNA damage and 8 oxoguanine lesions in human cells. Nucleic Acids Res. 30, 782-793 (2002
    • (2002) Nucleic Acids Res , vol.30 , pp. 782-793
    • Selzer, R.R.1
  • 120
    • 74749084156 scopus 로고    scopus 로고
    • UV induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N terminal autorepression
    • Lake, R. J., Geyko, A., Hemashettar, G., Zhao, Y. & Fan, H. Y. UV induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N terminal autorepression. Mol. Cell 37, 235-246 (2010
    • (2010) Mol. Cell , vol.37 , pp. 235-246
    • Lake, R.J.1    Geyko, A.2    Hemashettar, G.3    Zhao, Y.4    Fan, H.Y.5
  • 121
    • 84876875641 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1 like histone chaperones is required for efficient transcription-coupled DNA repair
    • Cho, I., Tsai, P. F., Lake, R. J., Basheer, A. & Fan, H. Y. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1 like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet. 9, e1003407 (2013
    • (2013) PLoS Genet , vol.9
    • Cho, I.1    Tsai, P.F.2    Lake, R.J.3    Basheer, A.4    Fan, H.Y.5
  • 122
    • 84882585259 scopus 로고    scopus 로고
    • Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV induced DNA damage
    • Dinant, C. et al. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV induced DNA damage. Mol. Cell 51, 469-479 (2013
    • (2013) Mol. Cell , vol.51 , pp. 469-479
    • Dinant, C.1
  • 123
    • 84880790091 scopus 로고    scopus 로고
    • Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack
    • Oksenych, V. et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet. 9, e1003611 (2013
    • (2013) PLoS Genet , vol.9
    • Oksenych, V.1
  • 124
    • 84884889017 scopus 로고    scopus 로고
    • Transcription recovery after dna damage requires chromatin priming by the h3.3 histone chaperone hira
    • Adam, S., Polo, S. E. & Almouzni, G. Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell 155, 94-106 (2013
    • (2013) Cell , vol.155 , pp. 94-106
    • Adam, S.1    Polo, S.E.2    Almouzni, G.3
  • 125
    • 0030595338 scopus 로고    scopus 로고
    • Chromatin assembly coupled to DNA repair: A new role for chromatin assembly factor I
    • Gaillard, P. H. et al. Chromatin assembly coupled to DNA repair: A new role for chromatin assembly factor I. Cell 86, 887-896 (1996
    • (1996) Cell , vol.86 , pp. 887-896
    • Gaillard, P.H.1
  • 126
    • 0141530885 scopus 로고    scopus 로고
    • Local action of the chromatin assembly factor caf 1 at sites of nucleotide excision repair in vivo
    • Green, C. M. & Almouzni, G. Local action of the chromatin assembly factor CAF 1 at sites of nucleotide excision repair in vivo. EMBO J. 22, 5163-5174 (2003
    • (2003) EMBO J. , vol.22 , pp. 5163-5174
    • Green, C.M.1    Almouzni, G.2
  • 127
    • 33750449326 scopus 로고    scopus 로고
    • New histone incorporation marks sites of UV repair in human cells
    • Polo, S. E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell 127, 481-493 (2006
    • (2006) Cell , vol.127 , pp. 481-493
    • Polo, S.E.1    Roche, D.2    Almouzni, G.3
  • 128
    • 70350518308 scopus 로고    scopus 로고
    • Differentiation driven changes in the dynamic organization of basal transcription initiation
    • Giglia-Mari, G. et al. Differentiation driven changes in the dynamic organization of basal transcription initiation. PLoS Biol. 7, e1000220 (2009
    • (2009) PLoS Biol , vol.7
    • Giglia-Mari, G.1
  • 130
    • 0031002037 scopus 로고    scopus 로고
    • Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes
    • Li, G., Ho, V. C., Mitchell, D. L., Trotter, M. J. & Tron, V. A. Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes. Am. J. Pathol. 150, 1457-1464 (1997
    • (1997) Am. J. Pathol , vol.150 , pp. 1457-1464
    • Li, G.1    Ho, V.C.2    Mitchell, D.L.3    Trotter, M.J.4    Tron, V.A.5
  • 131
    • 0033961277 scopus 로고    scopus 로고
    • Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression
    • Nouspikel, T. & Hanawalt, P. C. Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol. Cell. Biol. 20, 1562-1570 (2000
    • (2000) Mol. Cell. Biol , vol.20 , pp. 1562-1570
    • Nouspikel, T.1    Hanawalt, P.C.2
  • 132
    • 33750821636 scopus 로고    scopus 로고
    • Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-Activating enzyme
    • Nouspikel, T. & Hanawalt, P. C. Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-Activating enzyme. Proc. Natl Acad. Sci. USA 103, 16188-16193 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 16188-16193
    • Nouspikel, T.1    Hanawalt, P.C.2
  • 133
    • 0036012794 scopus 로고    scopus 로고
    • DNA repair in terminally differentiated cells
    • Nouspikel, T. & Hanawalt, P. C. DNA repair in terminally differentiated cells. DNA Repair 1, 59-75 (2002
    • (2002) DNA Repair , vol.1 , pp. 59-75
    • Nouspikel, T.1    Hanawalt, P.C.2
  • 134
    • 33845423125 scopus 로고    scopus 로고
    • Nucleotide excision repair in differentiated cells
    • van Der Wees, C. et al. Nucleotide excision repair in differentiated cells. Mutat. Res. 614, 16-23 (2007
    • (2007) Mutat. Res , vol.614 , pp. 16-23
    • Van Der Wees, C.1
  • 135
  • 136
    • 77953193047 scopus 로고    scopus 로고
    • Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development
    • Lans, H. et al. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet. 6, e1000941 (2010
    • (2010) PLoS Genet , vol.6
    • Lans, H.1
  • 137
    • 0035870586 scopus 로고    scopus 로고
    • Nucleotide excision repair in rat male germ cells: Low level of repair in intact cells contrasts with high dual incision activity in vitro
    • Jansen, J. et al. Nucleotide excision repair in rat male germ cells: Low level of repair in intact cells contrasts with high dual incision activity in vitro. Nucleic Acids Res. 29, 1791-1800 (2001
    • (2001) Nucleic Acids Res , vol.29 , pp. 1791-1800
    • Jansen, J.1
  • 138
    • 20844435984 scopus 로고    scopus 로고
    • Nucleotide excision repair activity varies among murine spermatogenic cell types
    • Xu, G. et al. Nucleotide excision repair activity varies among murine spermatogenic cell types. Biol. Reprod. 73, 123-130 (2005
    • (2005) Biol. Reprod , vol.73 , pp. 123-130
    • Xu, G.1
  • 139
    • 84864057454 scopus 로고    scopus 로고
    • A broad requirement for TLS polymerases and interacting sumoylation and nuclear pore proteins, in lesion bypass during C elegans embryogenesis
    • Roerink, S. F., Koole, W., Stapel, L. C., Romeijn, R. J. & Tijsterman, M. A broad requirement for TLS polymerases ? and ?, and interacting sumoylation and nuclear pore proteins, in lesion bypass during C. elegans embryogenesis. PLoS Genet. 8, e1002800 (2012
    • (2012) PLoS Genet , vol.8
    • Roerink, S.F.1    Koole, W.2    Stapel, L.C.3    Romeijn, R.J.4    Tijsterman, M.5
  • 140
    • 52049121267 scopus 로고    scopus 로고
    • Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts
    • De Waard, H. et al. Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts. DNA Repair 7, 1659-1669 (2008
    • (2008) DNA Repair , vol.7 , pp. 1659-1669
    • De Waard, H.1
  • 141
    • 84857041145 scopus 로고    scopus 로고
    • Shining a light on xeroderma pigmentosum
    • DiGiovanna, J. J. & Kraemer, K. H. Shining a light on xeroderma pigmentosum. J. Invest. Dermatol. 132, 785-796 (2012
    • (2012) J. Invest. Dermatol , vol.132 , pp. 785-796
    • Di Giovanna, J.J.1    Kraemer, K.H.2
  • 142
    • 10944251591 scopus 로고    scopus 로고
    • Repair and genetic consequences of endogenous dna base damage in mammalian cells
    • Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445-476 (2004
    • (2004) Annu. Rev. Genet , vol.38 , pp. 445-476
    • Barnes, D.E.1    Lindahl, T.2
  • 143
    • 44949263779 scopus 로고    scopus 로고
    • The 8,5 cyclopurine-2 deoxynucleosides: Candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair
    • Brooks, P. J. The 8,5? cyclopurine-2? deoxynucleosides: Candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair 7, 1168-1179 (2008
    • (2008) DNA Repair , vol.7 , pp. 1168-1179
    • Brooks, P.J.1
  • 144
    • 34247169028 scopus 로고    scopus 로고
    • Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: A complex genotype-phenotype relationship
    • Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: A complex genotype-phenotype relationship. Neuroscience 145, 1388-1396 (2007
    • (2007) Neuroscience , vol.145 , pp. 1388-1396
    • Kraemer, K.H.1
  • 145
    • 79961208665 scopus 로고    scopus 로고
    • Xeroderma pigmentosum and other diseases of human premature aging and dna repair: Molecules to patients
    • Niedernhofer, L. J., Bohr, V. A., Sander, M. & Kraemer, K. H. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: Molecules to patients. Mech. Ageing Dev. 132, 340-347 (2011
    • (2011) Mech. Ageing Dev , vol.132 , pp. 340-347
    • Niedernhofer, L.J.1    Bohr, V.A.2    Sander, M.3    Kraemer, K.H.4
  • 146
    • 0037027835 scopus 로고    scopus 로고
    • Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription-And replication-coupled repair pathways
    • Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription-And replication-coupled repair pathways. DNA Repair 1, 1027-1038 (2002
    • (2002) DNA Repair , vol.1 , pp. 1027-1038
    • Jaspers, N.G.1
  • 147
    • 4544259868 scopus 로고    scopus 로고
    • Transcription - guarding the genome by sensing DNA damage
    • Ljungman, M. & Lane, D. P. Transcription - guarding the genome by sensing DNA damage. Nature Rev. Cancer 4, 727-737 (2004
    • (2004) Nature Rev. Cancer , vol.4 , pp. 727-737
    • Ljungman, M.1    Lane, D.P.2
  • 148
    • 70349859881 scopus 로고    scopus 로고
    • DNA damage, aging, and cancer
    • Hoeijmakers, J. H. DNA damage, aging, and cancer. New Engl. J. Med. 361, 1475-1485 (2009
    • (2009) New Engl. J. Med , vol.361 , pp. 1475-1485
    • Hoeijmakers, J.H.1
  • 149
    • 84878016439 scopus 로고    scopus 로고
    • Cockayne syndrome: The expanding clinical and mutational spectrum
    • Laugel, V. Cockayne syndrome: The expanding clinical and mutational spectrum. Mech. Ageing Dev. 134, 161-170 (2013
    • (2013) Mech. Ageing Dev , vol.134 , pp. 161-170
    • Laugel, V.1
  • 150
    • 33645980992 scopus 로고    scopus 로고
    • Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice
    • Dolle, M. E. et al. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat. Res. 596, 22-35 (2006
    • (2006) Mutat. Res , vol.596 , pp. 22-35
    • Dolle, M.E.1
  • 151
    • 33845914051 scopus 로고    scopus 로고
    • A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis
    • Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038-1043 (2006
    • (2006) Nature , vol.444 , pp. 1038-1043
    • Niedernhofer, L.J.1
  • 153
    • 61749093727 scopus 로고    scopus 로고
    • An Xpb mouse model for combined xeroderma pigmentosum and Cockayne syndrome reveals progeroid features upon further attenuation of DNA repair
    • Andressoo, J. O. et al. An Xpb mouse model for combined xeroderma pigmentosum and Cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol. Cell. Biol. 29, 1276-1290 (2009
    • (2009) Mol. Cell. Biol , vol.29 , pp. 1276-1290
    • Andressoo, J.O.1
  • 154
    • 49949152164 scopus 로고    scopus 로고
    • Nucleotide excision repair deficient mouse models and neurological disease
    • Niedernhofer, L. J. Nucleotide excision repair deficient mouse models and neurological disease. DNA Repair 7, 1180-1189 (2008
    • (2008) DNA Repair , vol.7 , pp. 1180-1189
    • Niedernhofer, L.J.1
  • 155
    • 0037123638 scopus 로고    scopus 로고
    • Premature aging in mice deficient in DNA repair and transcription
    • De Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276-1279 (2002
    • (2002) Science , vol.296 , pp. 1276-1279
    • De Boer, J.1
  • 156
    • 0035093786 scopus 로고    scopus 로고
    • A temperature-sensitive disorder in basal transcription and DNA repair in humans
    • Vermeulen, W. et al. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nature Genet. 27, 299-303 (2001
    • (2001) Nature Genet , vol.27 , pp. 299-303
    • Vermeulen, W.1
  • 157
    • 60549092333 scopus 로고    scopus 로고
    • XPG: Its products and biological roles
    • Scharer, O. D. XPG: Its products and biological roles. Adv. Exp. Med. Biol. 637, 83-92 (2008
    • (2008) Adv. Exp. Med. Biol , vol.637 , pp. 83-92
    • Scharer, O.D.1
  • 158
    • 79959189301 scopus 로고    scopus 로고
    • The dna repair endonuclease xpg interacts directly and functionally with the wrn helicase defective in werner syndrome
    • Trego, K. S. et al. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10, 1998-2007 (2011
    • (2011) Cell Cycle , vol.10 , pp. 1998-2007
    • Trego, K.S.1
  • 159
    • 79960394750 scopus 로고    scopus 로고
    • Physiological consequences of defects in ERCC1 XPF DNA repair endonuclease
    • Gregg, S. Q., Robinson, A. R. & Niedernhofer, L. J. Physiological consequences of defects in ERCC1 XPF DNA repair endonuclease. DNA Repair 10, 781-791 (2011
    • (2011) DNA Repair , vol.10 , pp. 781-791
    • Gregg, S.Q.1    Robinson, A.R.2    Niedernhofer, L.J.3
  • 160
    • 33847056347 scopus 로고    scopus 로고
    • First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure
    • Jaspers, N. G. et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am. J. Hum. Genet. 80, 457-466 (2007
    • (2007) Am. J. Hum. Genet , vol.80 , pp. 457-466
    • Jaspers, N.G.1
  • 161
    • 84877584276 scopus 로고    scopus 로고
    • Mutations in ercc4, encoding the dna-repair endonuclease xpf, cause fanconi anemia
    • Bogliolo, M. et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92, 800-806 (2013
    • (2013) Am. J. Hum. Genet , vol.92 , pp. 800-806
    • Bogliolo, M.1
  • 162
    • 84877580404 scopus 로고    scopus 로고
    • Malfunction of nuclease ERCC1 XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia
    • Kashiyama, K. et al. Malfunction of nuclease ERCC1 XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92, 807-819 (2013
    • (2013) Am. J. Hum. Genet , vol.92 , pp. 807-819
    • Kashiyama, K.1
  • 163
    • 84856388318 scopus 로고    scopus 로고
    • Broad segmental progeroid changes in short-lived Ercc1-/?7 mice
    • Dolle, M. E. et al. Broad segmental progeroid changes in short-lived Ercc1-/?7 mice. Pathobiol. Aging Age Relat. Dis. 1, 7219 (2011
    • (2011) Pathobiol. Aging Age Relat. Dis , vol.1 , pp. 7219
    • Dolle, M.E.1
  • 164
    • 50849100719 scopus 로고    scopus 로고
    • Delayed and accelerated aging share common longevity assurance mechanisms
    • Schumacher, B. et al. Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet. 4, e1000161 (2008
    • (2008) PLoS Genet , vol.4
    • Schumacher, B.1
  • 165
    • 24044522541 scopus 로고    scopus 로고
    • UV sensitive syndrome
    • Spivak, G. UV sensitive syndrome. Mutat. Res. 577, 162-169 (2005
    • (2005) Mutat. Res , vol.577 , pp. 162-169
    • Spivak, G.1
  • 166
    • 7444226812 scopus 로고    scopus 로고
    • Complete absence of cockayne syndrome group b gene product gives rise to uv sensitive syndrome but not cockayne syndrome
    • Horibata, K. et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV sensitive syndrome but not Cockayne syndrome. Proc. Natl Acad. Sci. USA 101, 15410-15415 (2004
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 15410-15415
    • Horibata, K.1
  • 167
    • 80053555789 scopus 로고    scopus 로고
    • More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance
    • Lukas, J., Lukas, C. & Bartek, J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nature Cell Biol. 13, 1161-1169 (2011
    • (2011) Nature Cell Biol , vol.13 , pp. 1161-1169
    • Lukas, J.1    Lukas, C.2    Bartek, J.3
  • 168
    • 33847737716 scopus 로고    scopus 로고
    • DNA damage checkpoints: From initiation to recovery or adaptation
    • Bartek, J. & Lukas, J. DNA damage checkpoints: From initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238-245 (2007
    • (2007) Curr. Opin. Cell Biol , vol.19 , pp. 238-245
    • Bartek, J.1    Lukas, J.2
  • 169
    • 79957690359 scopus 로고    scopus 로고
    • ATR signalling: More than meeting at the fork
    • Nam, E. A. & Cortez, D. ATR signalling: More than meeting at the fork. Biochem. J. 436, 527-536 (2011
    • (2011) Biochem. J. , vol.436 , pp. 527-536
    • Nam, E.A.1    Cortez, D.2
  • 170
    • 33751256575 scopus 로고    scopus 로고
    • Dna nucleotide excision repair-dependent signaling to checkpoint activation
    • Marini, F. et al. DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc. Natl Acad. Sci. USA 103, 17325-17330 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 17325-17330
    • Marini, F.1
  • 171
    • 70349944658 scopus 로고    scopus 로고
    • Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response
    • Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186, 835-847 (2009
    • (2009) J. Cell Biol , vol.186 , pp. 835-847
    • Marteijn, J.A.1
  • 172
    • 36148951013 scopus 로고    scopus 로고
    • H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase
    • Hanasoge, S. & Ljungman, M. H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis 28, 2298-2304 (2007
    • (2007) Carcinogenesis , vol.28 , pp. 2298-2304
    • Hanasoge, S.1    Ljungman, M.2
  • 174
    • 77957375149 scopus 로고    scopus 로고
    • Exo1 competes with repair syn thesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation
    • Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50-62 (2010
    • (2010) Mol. Cell , vol.40 , pp. 50-62
    • Giannattasio, M.1
  • 175
    • 80051961183 scopus 로고    scopus 로고
    • Human exonuclease 1 connects nucleotide excision repair (NER). Processing with checkpoint activation in response to UV irradiation
    • Sertic, S. et al. Human exonuclease 1 connects nucleotide excision repair (NER). processing with checkpoint activation in response to UV irradiation. Proc. Natl Acad. Sci. USA 108, 13647-13652 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 13647-13652
    • Sertic, S.1
  • 176
    • 33646584518 scopus 로고    scopus 로고
    • DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A
    • Bergink, S. et al. DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev. 20, 1343-1352 (2006
    • (2006) Genes Dev , vol.20 , pp. 1343-1352
    • Bergink, S.1
  • 177
    • 84866388311 scopus 로고    scopus 로고
    • RNF168 ubiquitinates K13 15 on H2A/H2AX to drive DNA damage signaling
    • Mattiroli, F. et al. RNF168 ubiquitinates K13 15 on H2A/H2AX to drive DNA damage signaling. Cell 150, 1182-1195 (2012
    • (2012) Cell , vol.150 , pp. 1182-1195
    • Mattiroli, F.1
  • 178
    • 79959326643 scopus 로고    scopus 로고
    • Critical roles of ring finger protein RNF8 in replication stress responses
    • Sy, S. M. et al. Critical roles of ring finger protein RNF8 in replication stress responses. J. Biol. Chem. 286, 22355-22361 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 22355-22361
    • Sy, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.