-
1
-
-
84920502297
-
Biopharmaceutical benchmarks 2014.
-
Walsh, G., Biopharmaceutical benchmarks 2014. Nat. Biotechnol. 2014, 32, 992-1000.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 992-1000
-
-
Walsh, G.1
-
2
-
-
41849140828
-
Recombinant protein therapeutics from CHO cells - 20 years and counting.
-
Jayapal, K. P., Wlaschin, K. F., Hu, W. S., Yap, M. G., Recombinant protein therapeutics from CHO cells - 20 years and counting. Chem. Eng. Prog. 2007, 103, 40-47.
-
(2007)
Chem. Eng. Prog.
, vol.103
, pp. 40-47
-
-
Jayapal, K.P.1
Wlaschin, K.F.2
Hu, W.S.3
Yap, M.G.4
-
3
-
-
79952202624
-
Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment.
-
Huang, Y. M., Hu, W., Rustandi, E., Chang, K. et al., Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 2010, 26, 1400-1410.
-
(2010)
Biotechnol. Prog.
, vol.26
, pp. 1400-1410
-
-
Huang, Y.M.1
Hu, W.2
Rustandi, E.3
Chang, K.4
-
4
-
-
84963686465
-
From random mutagenesis to systems biology in metabolic engineering of mammalian cells.
-
Hefzi, H., Lewis, N. E., From random mutagenesis to systems biology in metabolic engineering of mammalian cells. Pharm. Bioprocess. 2014, 2, 355-358.
-
(2014)
Pharm. Bioprocess.
, vol.2
, pp. 355-358
-
-
Hefzi, H.1
Lewis, N.E.2
-
5
-
-
79961191745
-
The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line.
-
Xu, X., Nagarajan, H., Lewis, N. E., Pan, S. et al., The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 2011, 29, 735-741.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 735-741
-
-
Xu, X.1
Nagarajan, H.2
Lewis, N.E.3
Pan, S.4
-
6
-
-
84883809015
-
Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome.
-
Lewis, N. E., Liu, X., Li, Y., Nagarajan, H. et al., Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol. 2013, 31, 759-765.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 759-765
-
-
Lewis, N.E.1
Liu, X.2
Li, Y.3
Nagarajan, H.4
-
7
-
-
84883807509
-
Chinese hamster genome sequenced from sorted chromosomes.
-
Brinkrolf, K., Rupp, O., Laux, H., Kollin, F. et al., Chinese hamster genome sequenced from sorted chromosomes. Nat. Biotechnol. 2013, 31, 694-695.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 694-695
-
-
Brinkrolf, K.1
Rupp, O.2
Laux, H.3
Kollin, F.4
-
8
-
-
79251576820
-
Genomic sequencing and analysis of a Chinese hamster ovary cell line using Illumina sequencing technology.
-
Hammond, S., Swanberg, J. C., Kaplarevic, M., Lee, K. H., Genomic sequencing and analysis of a Chinese hamster ovary cell line using Illumina sequencing technology. BMC Genomics 2011, 12, 67.
-
(2011)
BMC Genomics
, vol.12
, pp. 67
-
-
Hammond, S.1
Swanberg, J.C.2
Kaplarevic, M.3
Lee, K.H.4
-
9
-
-
84859908354
-
Chinese hamster genome database: An online resource for the CHO community at www.CHOgenome.org.
-
Hammond, S., Kaplarevic, M., Borth, N., Betenbaugh, M. J., Lee, K. H., Chinese hamster genome database: An online resource for the CHO community at www.CHOgenome.org. Biotechnol. Bioeng. 2012, 109, 1353-1356.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 1353-1356
-
-
Hammond, S.1
Kaplarevic, M.2
Borth, N.3
Betenbaugh, M.J.4
Lee, K.H.5
-
10
-
-
84887620767
-
The emerging CHO systems biology era: Harnessing the 'omics revolution for biotechnology.
-
Kildegaard, H. F., Baycin-Hizal, D., Lewis, N. E., Betenbaugh, M. J., The emerging CHO systems biology era: Harnessing the 'omics revolution for biotechnology. Curr. Opin. Biotechnol. 2013, 24, 1102-1107.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 1102-1107
-
-
Kildegaard, H.F.1
Baycin-Hizal, D.2
Lewis, N.E.3
Betenbaugh, M.J.4
-
11
-
-
84963660317
-
Toward genome-scale models of the Chinese hamster ovary cells: Incentives, status and perspectives.
-
Kaas, C. S., Fan, Y., Weilguny, D., Kristensen, C., Kildegaard, H. F., Andersen, M. R., Toward genome-scale models of the Chinese hamster ovary cells: Incentives, status and perspectives. Pharm. Bioprocess. 2014, 2, 437-448.
-
(2014)
Pharm. Bioprocess.
, vol.2
, pp. 437-448
-
-
Kaas, C.S.1
Fan, Y.2
Weilguny, D.3
Kristensen, C.4
Kildegaard, H.F.5
Andersen, M.R.6
-
12
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.
-
Gaj, T., Gersbach, C. A., Barbas III, C. F., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397-405.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas, C.F.3
-
13
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering.
-
Hsu, P. D., Lander, E. S., Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262-1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
14
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
-
Doudna, J. A., Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
15
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes.
-
Sander, J. D., Joung, J. K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347-355.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
16
-
-
84898778301
-
A guide to genome engineering with programmable nucleases.
-
Kim, H., Kim, J. S., A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 2014, 15, 321-334.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.S.2
-
17
-
-
84929672850
-
Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN
-
In Print
-
Ain, Q. U., Chung, J. Y., Kim, Y. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN, J. Controlled Release 2015. In Print. DOI: 10.1016/j.jconrel.2014.12.036.
-
(2015)
J. Controlled Release
-
-
Ain, Q.U.1
Chung, J.Y.2
Kim, Y.3
-
18
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes.
-
Barrangou, R., Fremaux, C., Deveau, H., Richards, M. et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709-1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
-
19
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.
-
Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J., Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174-182.
-
(2005)
J. Mol. Evol.
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Díez-Villaseñor, C.2
García-Martínez, J.3
Soria, E.4
-
20
-
-
79960554003
-
Unification of Cas proteins families and a simple scenario for the origin and evolution of CRISPR Cas systems
-
Makarova, K. S., Aravind, L., Wolf, Y. I., Koonin, E. V., Unification of Cas proteins families and a simple scenario for the origin and evolution of CRISPR Cas systems, Biology Direct, 2011, 6, 38.
-
(2011)
Biology Direct
, vol.6
, pp. 38
-
-
Makarova, K.S.1
Aravind, L.2
Wolf, Y.I.3
Koonin, E.V.4
-
21
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes.
-
Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R. et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960-964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
-
22
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.
-
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K. et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602-607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
-
23
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.
-
Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A. et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67-71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
-
24
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.
-
Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579-E2586.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
25
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
-
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M. et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
-
26
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.
-
Marraffini, L. A., Sontheimer, E. J., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322, 1843-1845.
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
27
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R. et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli Nucleic Acids Res. 2011, 39, 9275-9282.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
-
28
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems.
-
Cong, L., Ran, F. A., Cox, D., Lin, S. et al., Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
-
29
-
-
84876567971
-
RNA-programmed genome editing in human cells.
-
Jinek, M., East, A., Cheng, A., Lin, S. et al., RNA-programmed genome editing in human cells. Elife 2013, 2, e00471.
-
(2013)
Elife
, vol.2
, pp. e00471
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
-
30
-
-
84873734105
-
RNA-guided human genome engineering via Cas9.
-
Mali, P., Yang, L., Esvelt, K. M., Aach, J. et al., RNA-guided human genome engineering via Cas9. Science 2013, 339, 823-826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
-
31
-
-
84878193178
-
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
-
Zhang, Y., Heidrich, N., Ampattu, B. J., Gunderson, C. W. et al., Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis Mol. Cell 2013, 50, 488-503.
-
(2013)
Mol. Cell
, vol.50
, pp. 488-503
-
-
Zhang, Y.1
Heidrich, N.2
Ampattu, B.J.3
Gunderson, C.W.4
-
32
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
-
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., Doudna, J. A., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014, 507, 62-67.
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
33
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.
-
Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H. et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343, 1247997.
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
-
34
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.
-
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M. et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013, 31, 833-838.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 833-838
-
-
Mali, P.1
Aach, J.2
Stranges, P.B.3
Esvelt, K.M.4
-
35
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.
-
Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S. et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380-1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
-
36
-
-
77449086623
-
DNA resection in eukaryotes: Deciding how to fix the break.
-
Huertas, P., DNA resection in eukaryotes: Deciding how to fix the break. Nat. Struct. Mol. Biol. 2010, 17, 11-16.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 11-16
-
-
Huertas, P.1
-
37
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.
-
Lieber, M. R., The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79, 181-211.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
38
-
-
84877321963
-
Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells.
-
Truong, L. N., Li, Y., Shi, L. Z., Hwang, P. Y. et al., Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 7720-7725.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 7720-7725
-
-
Truong, L.N.1
Li, Y.2
Shi, L.Z.3
Hwang, P.Y.4
-
39
-
-
84924232532
-
Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ.
-
Kent, T., Chandramouly, G., McDevitt, S. M., Ozdemir, A. Y., Pomerantz, R. T., Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat. Struct. Mol. Biol. 2015, 22, 230-237.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 230-237
-
-
Kent, T.1
Chandramouly, G.2
McDevitt, S.M.3
Ozdemir, A.Y.4
Pomerantz, R.T.5
-
40
-
-
84923082911
-
Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair.
-
Ceccaldi, R., Liu, J. C., Amunugama, R., Hajdu, I. et al., Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 2015, 518, 258-262.
-
(2015)
Nature
, vol.518
, pp. 258-262
-
-
Ceccaldi, R.1
Liu, J.C.2
Amunugama, R.3
Hajdu, I.4
-
41
-
-
84923090502
-
Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination.
-
Mateos-Gomez, P. A., Gong, F., Nair, N., Miller, K. M. et al., Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 2015, 518, 254-257.
-
(2015)
Nature
, vol.518
, pp. 254-257
-
-
Mateos-Gomez, P.A.1
Gong, F.2
Nair, N.3
Miller, K.M.4
-
42
-
-
84903516238
-
Microhomology-based choice of Cas9 nuclease target sites.
-
Bae, S., Kweon, J., Kim, H. S., Kim, J. S., Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods 2014, 11, 705-706.
-
(2014)
Nat. Methods
, vol.11
, pp. 705-706
-
-
Bae, S.1
Kweon, J.2
Kim, H.S.3
Kim, J.S.4
-
43
-
-
0038658494
-
Positive genetic selection for gene disruption in mammalian cells by homologous recombination.
-
Sedivy, J. M., Sharp, P. A., Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 227-231.
-
(1989)
Proc. Natl. Acad. Sci. U.S.A.
, vol.86
, pp. 227-231
-
-
Sedivy, J.M.1
Sharp, P.A.2
-
44
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.
-
Cho, S. W., Kim, S., Kim, J. M., Kim, J. S., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 230-232.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
Kim, J.S.4
-
45
-
-
84903118288
-
Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool.
-
Ronda, C., Pedersen, L. E., Hansen, H. G., Kallehauge, T. B. et al., Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol. Bioeng. 2014, 111, 1604-1616.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 1604-1616
-
-
Ronda, C.1
Pedersen, L.E.2
Hansen, H.G.3
Kallehauge, T.B.4
-
46
-
-
84922535144
-
Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.
-
Kabadi, A. M., Ousterout, D. G., Hilton, I. B., Gersbach, C. A., Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014, 42, e147.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e147
-
-
Kabadi, A.M.1
Ousterout, D.G.2
Hilton, I.B.3
Gersbach, C.A.4
-
47
-
-
84903217296
-
Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system.
-
Sakuma, T., Nishikawa, A., Kume, S., Chayama, K., Yamamoto, T., Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci. Rep. 2014, 4, 5400.
-
(2014)
Sci. Rep.
, vol.4
, pp. 5400
-
-
Sakuma, T.1
Nishikawa, A.2
Kume, S.3
Chayama, K.4
Yamamoto, T.5
-
48
-
-
84940601641
-
One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment
-
Grav, L. M., Lee, J. S., Gerling, S., Kallehauge, T. B. et al., One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol. J. 2015. DOI: 10.1002/biot.201500027.
-
(2015)
Biotechnol. J.
-
-
Grav, L.M.1
Lee, J.S.2
Gerling, S.3
Kallehauge, T.B.4
-
49
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
-
Cho, S. W., Kim, S., Kim, Y., Kweon, J. et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014, 24, 132-141.
-
(2014)
Genome Res.
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
Kim, S.2
Kim, Y.3
Kweon, J.4
-
50
-
-
84905388288
-
Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells.
-
Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y. et al., Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 2014, 289, 21312-21324.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 21312-21324
-
-
Canver, M.C.1
Bauer, D.E.2
Dass, A.3
Yien, Y.Y.4
-
51
-
-
84913530543
-
Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line.
-
Essletzbichler, P., Konopka, T., Santoro, F., Chen, D. et al., Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 2014, 24, 2059-2065.
-
(2014)
Genome Res.
, vol.24
, pp. 2059-2065
-
-
Essletzbichler, P.1
Konopka, T.2
Santoro, F.3
Chen, D.4
-
52
-
-
84899490344
-
Targeted genomic rearrangements using CRISPR/Cas technology.
-
Choi, P. S., Meyerson, M., Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 2014, 5, 3728.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3728
-
-
Choi, P.S.1
Meyerson, M.2
-
53
-
-
24944583478
-
Targeted modification of mammalian genomes.
-
Sorrell, D. A., Kolb, A. F., Targeted modification of mammalian genomes. Biotechnol. Adv. 2005, 23, 431-469.
-
(2005)
Biotechnol. Adv.
, vol.23
, pp. 431-469
-
-
Sorrell, D.A.1
Kolb, A.F.2
-
54
-
-
0035902445
-
Manipulating the mammalian genome by homologous recombination.
-
Vasquez, K. M., Marburger, K., Intody, Z., Wilson, J. H., Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 8403-8410.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 8403-8410
-
-
Vasquez, K.M.1
Marburger, K.2
Intody, Z.3
Wilson, J.H.4
-
55
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system.
-
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V. et al., Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281-2308.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
-
56
-
-
84923667065
-
Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway.
-
Lee, J. S., Kallehauge, T. B., Pedersen, L. E., Kildegaard, H. F., Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci. Rep. 2015, 5, 8572.
-
(2015)
Sci. Rep.
, vol.5
, pp. 8572
-
-
Lee, J.S.1
Kallehauge, T.B.2
Pedersen, L.E.3
Kildegaard, H.F.4
-
57
-
-
84923105032
-
Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9.
-
Nakade, S., Tsubota, T., Sakane, Y., Kume, S. et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 2014, 5, 5560.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5560
-
-
Nakade, S.1
Tsubota, T.2
Sakane, Y.3
Kume, S.4
-
58
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
-
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A. et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173-1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
-
59
-
-
84884907424
-
CRISPR RNA-guided activation of endogenous human genes.
-
Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y. et al., CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 2013, 10, 977-979.
-
(2013)
Nat. Methods
, vol.10
, pp. 977-979
-
-
Maeder, M.L.1
Linder, S.J.2
Cascio, V.M.3
Fu, Y.4
-
60
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
-
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z. et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154, 442-451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
-
61
-
-
84882976110
-
Optical control of mammalian endogenous transcription and epigenetic states.
-
Konermann, S., Brigham, M. D., Trevino, A. E., Hsu, P. D. et al., Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013, 500, 472-476.
-
(2013)
Nature
, vol.500
, pp. 472-476
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Hsu, P.D.4
-
62
-
-
0020574233
-
Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells.
-
Urlaub, G., Käs, E., Carothers, A. M., Chasin, L. A., Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 1983, 33, 405-412.
-
(1983)
Cell
, vol.33
, pp. 405-412
-
-
Urlaub, G.1
Käs, E.2
Carothers, A.M.3
Chasin, L.A.4
-
63
-
-
84899696363
-
Large-scale de novo DNA synthesis: Technologies and applications.
-
Kosuri, S., Church, G. M., Large-scale de novo DNA synthesis: Technologies and applications. Nat. Methods 2014, 11, 499-507.
-
(2014)
Nat. Methods
, vol.11
, pp. 499-507
-
-
Kosuri, S.1
Church, G.M.2
-
64
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system.
-
Wang, T., Wei, J. J., Sabatini, D. M., Lander, E. S., Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014, 343, 80-84.
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
65
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells.
-
Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X. et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343, 84-87.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
-
66
-
-
84898665052
-
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
-
Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera, M. D. C., Yusa, K., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 2014, 32, 267-273.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 267-273
-
-
Koike-Yusa, H.1
Li, Y.2
Tan, E.P.3
Velasco-Herrera, M.D.C.4
Yusa, K.5
-
67
-
-
84905262730
-
Improved vectors and genome-wide libraries for CRISPR screening.
-
Sanjana, N. E., Shalem, O., Zhang, F., Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 2014, 11, 783-784.
-
(2014)
Nat. Methods
, vol.11
, pp. 783-784
-
-
Sanjana, N.E.1
Shalem, O.2
Zhang, F.3
-
68
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation.
-
Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E. et al., Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014, 159, 647-661.
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
Villalta, J.E.4
-
69
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
-
Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J. et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015, 517, 583-588.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Joung, J.4
-
70
-
-
84900861730
-
High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.
-
Zhou, Y., Zhu, S., Cai, C., Yuan, P. et al., High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014, 509, 487-491.
-
(2014)
Nature
, vol.509
, pp. 487-491
-
-
Zhou, Y.1
Zhu, S.2
Cai, C.3
Yuan, P.4
-
71
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system.
-
Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L. et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 227-229.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
-
72
-
-
84893287073
-
E-CRISP: fast CRISPR target site identification.
-
Heigwer, F., Kerr, G., Boutros, M., E-CRISP: fast CRISPR target site identification. Nat. Methods 2014, 11, 122-123.
-
(2014)
Nat. Methods
, vol.11
, pp. 122-123
-
-
Heigwer, F.1
Kerr, G.2
Boutros, M.3
-
73
-
-
84961288301
-
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo.
-
Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P. et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2015, 33, 73-80.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 73-80
-
-
Zuris, J.A.1
Thompson, D.B.2
Shu, Y.3
Guilinger, J.P.4
-
74
-
-
84903147858
-
High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs.
-
Duda, K., Lonowski, L. A., Kofoed-Nielsen, M., Ibarra, A. et al., High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Res. 2014, 42, e84.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e84
-
-
Duda, K.1
Lonowski, L.A.2
Kofoed-Nielsen, M.3
Ibarra, A.4
-
75
-
-
80052292973
-
High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases.
-
Chen, F., Pruett-Miller, S. M., Huang, Y., Gjoka, M. et al., High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 2011, 8, 753-755.
-
(2011)
Nat. Methods
, vol.8
, pp. 753-755
-
-
Chen, F.1
Pruett-Miller, S.M.2
Huang, Y.3
Gjoka, M.4
-
76
-
-
77957754251
-
A rapid and general assay for monitoring endogenous gene modification.
-
Guschin, D. Y., Waite, A. J., Katibah, G. E., Miller, J. C. et al., A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 2010, 649, 247-256.
-
(2010)
Methods Mol. Biol.
, vol.649
, pp. 247-256
-
-
Guschin, D.Y.1
Waite, A.J.2
Katibah, G.E.3
Miller, J.C.4
-
77
-
-
0028876575
-
Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases.
-
Mashal, R. D., Koontz, J., Sklar, J., Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. 1995, 9, 177-183.
-
(1995)
Nat. Genet.
, vol.9
, pp. 177-183
-
-
Mashal, R.D.1
Koontz, J.2
Sklar, J.3
-
78
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.
-
Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M. et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153, 910-918.
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
-
79
-
-
67650045497
-
Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.
-
Kim, H. J., Lee, H. J., Kim, H., Cho, S. W., Kim, J. S., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 2009, 19, 1279-1288.
-
(2009)
Genome Res.
, vol.19
, pp. 1279-1288
-
-
Kim, H.J.1
Lee, H.J.2
Kim, H.3
Cho, S.W.4
Kim, J.S.5
-
80
-
-
67649757162
-
Chromosomal translocations induced at specified loci in human stem cells.
-
Brunet, E., Simsek, D., Tomishima, M., DeKelver, R. et al., Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10602-10625.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 10602-10625
-
-
Brunet, E.1
Simsek, D.2
Tomishima, M.3
DeKelver, R.4
-
81
-
-
74949133880
-
Targeted chromosomal deletions in human cells using zinc finger nucleases.
-
Lee, H. J., Kim, E., Kim, J. S., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 2010, 20, 81-89.
-
(2010)
Genome Res.
, vol.20
, pp. 81-89
-
-
Lee, H.J.1
Kim, E.2
Kim, J.S.3
-
82
-
-
84863275797
-
Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases.
-
Lee, H. J., Kweon, J., Kim, E., Kim, S., Kim, J. S., Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 2012, 22, 539-548.
-
(2012)
Genome Res.
, vol.22
, pp. 539-548
-
-
Lee, H.J.1
Kweon, J.2
Kim, E.3
Kim, S.4
Kim, J.S.5
-
83
-
-
84875157258
-
A library of TAL effector nucleases spanning the human genome.
-
Kim, Y., Kweon, J., Kim, A., Chon, J. K. et al., A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 2013, 31, 251-258.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 251-258
-
-
Kim, Y.1
Kweon, J.2
Kim, A.3
Chon, J.K.4
-
84
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
-
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L. et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013, 31, 822-826.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
-
85
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases.
-
Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A. et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013, 31, 827-832.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
-
86
-
-
84902095352
-
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.
-
Wu, X., Scott, D. A., Kriz, A. J., Chiu, A. C. et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 2014, 32, 670-676.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 670-676
-
-
Wu, X.1
Scott, D.A.2
Kriz, A.J.3
Chiu, A.C.4
-
87
-
-
84903138336
-
CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences.
-
Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H. et al., CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014, 42, 7473-7485.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 7473-7485
-
-
Lin, Y.1
Cradick, T.J.2
Brown, M.T.3
Deshmukh, H.4
-
88
-
-
84903545084
-
Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.
-
Kuscu, C., Arslan, S., Singh, R., Thorpe, J., Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 2014, 32, 677-683.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 677-683
-
-
Kuscu, C.1
Arslan, S.2
Singh, R.3
Thorpe, J.4
-
89
-
-
84923221641
-
Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors.
-
Wang, X., Wang, Y., Wu, X., Wang, J. et al., Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol. 2015, 33, 175-178.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 175-178
-
-
Wang, X.1
Wang, Y.2
Wu, X.3
Wang, J.4
-
90
-
-
84884155038
-
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.
-
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 2013, 31, 839-843.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 839-843
-
-
Pattanayak, V.1
Lin, S.2
Guilinger, J.P.3
Ma, E.4
Doudna, J.A.5
-
91
-
-
84923846574
-
Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells.
-
Kim, D., Bae, S., Park, J., Kim, E. et al., Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 2015, 12, 237-243.
-
(2015)
Nat. Methods
, vol.12
, pp. 237-243
-
-
Kim, D.1
Bae, S.2
Park, J.3
Kim, E.4
-
92
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.
-
Frock, R. L., Hu, J., Meyers, R. M., Ho, Y. J. et al., Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 2015, 33, 179-186.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 179-186
-
-
Frock, R.L.1
Hu, J.2
Meyers, R.M.3
Ho, Y.J.4
-
93
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
-
Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M. et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33, 187-197.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
Liebers, M.4
-
94
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
-
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., Joung, J. K., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014, 32, 279-284.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
95
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.
-
Guilinger, J. P., Thompson, D. B., Liu, D. R., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014, 32, 577-582.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
96
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing.
-
Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A. et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 2014, 32, 569-576.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
-
97
-
-
77956230926
-
Methods in mammalian cell line engineering: From random mutagenesis to sequence-specific approaches.
-
Krämer, O., Klausing, S., Noll, T., Methods in mammalian cell line engineering: From random mutagenesis to sequence-specific approaches. Appl. Microbiol. Biotechnol. 2010, 88, 425-436.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.88
, pp. 425-436
-
-
Krämer, O.1
Klausing, S.2
Noll, T.3
-
98
-
-
84856389498
-
CHO cells in biotechnology for production of recombinant proteins: Current state and further potential.
-
Kim, J. Y., Kim, Y. G., Lee, G. M., CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Appl. Microbiol. Biotechnol. 2012, 93, 917-930.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.93
, pp. 917-930
-
-
Kim, J.Y.1
Kim, Y.G.2
Lee, G.M.3
-
99
-
-
4644245850
-
Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.
-
Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M. et al., Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 2004, 87, 614-622.
-
(2004)
Biotechnol. Bioeng.
, vol.87
, pp. 614-622
-
-
Yamane-Ohnuki, N.1
Kinoshita, S.2
Inoue-Urakubo, M.3
Kusunoki, M.4
-
100
-
-
44449120801
-
Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases.
-
Santiago, Y., Chan, E., Liu, P. Q., Orlando, S. et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 5809-5814.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 5809-5814
-
-
Santiago, Y.1
Chan, E.2
Liu, P.Q.3
Orlando, S.4
-
101
-
-
77951599072
-
Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases.
-
Liu, P. Q., Chan, E. M., Cost, G. J., Zhang, L. et al., Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol. Bioeng. 2010, 106, 97-105.
-
(2010)
Biotechnol. Bioeng.
, vol.106
, pp. 97-105
-
-
Liu, P.Q.1
Chan, E.M.2
Cost, G.J.3
Zhang, L.4
-
102
-
-
74849089122
-
BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells.
-
Cost, G. J., Freyvert, Y., Vafiadis, A., Santiago, Y. et al., BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol. Bioeng. 2010, 105, 330-340.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, pp. 330-340
-
-
Cost, G.J.1
Freyvert, Y.2
Vafiadis, A.3
Santiago, Y.4
-
103
-
-
34147179033
-
An efficient and targeted gene integration system for high-level antibody expression.
-
Huang, Y., Li, Y., Wang, Y. G., Gu, X. et al., An efficient and targeted gene integration system for high-level antibody expression. J. Immunol. Methods 2007, 322, 28-39.
-
(2007)
J. Immunol. Methods
, vol.322
, pp. 28-39
-
-
Huang, Y.1
Li, Y.2
Wang, Y.G.3
Gu, X.4
-
104
-
-
0037212982
-
Construction of engineered CHO strains for high-level production of recombinant proteins.
-
Kito, M., Itami, S., Fukano, Y., Yamana, K., Shibui, T., Construction of engineered CHO strains for high-level production of recombinant proteins. Appl. Microbiol. Biotechnol. 2002, 60, 442-448.
-
(2002)
Appl. Microbiol. Biotechnol.
, vol.60
, pp. 442-448
-
-
Kito, M.1
Itami, S.2
Fukano, Y.3
Yamana, K.4
Shibui, T.5
-
105
-
-
71949123243
-
Generation of site-specific retargeting platform cell lines for drug discovery using phiC31 and R4 integrases.
-
Lieu, P. T., Machleidt, T., Thyagarajan, B., Fontes, A. et al., Generation of site-specific retargeting platform cell lines for drug discovery using phiC31 and R4 integrases. J. Biomol. Screen. 2009, 14, 1207-1215.
-
(2009)
J. Biomol. Screen.
, vol.14
, pp. 1207-1215
-
-
Lieu, P.T.1
Machleidt, T.2
Thyagarajan, B.3
Fontes, A.4
-
106
-
-
77955126358
-
Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology.
-
Orlando, S. J., Santiago, Y., DeKelver, R. C., Freyvert, Y. et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 2010, 38, e152.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. e152
-
-
Orlando, S.J.1
Santiago, Y.2
DeKelver, R.C.3
Freyvert, Y.4
-
107
-
-
84872669342
-
In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration.
-
Cristea, S., Freyvert, Y., Santiago, Y., Holmes, M. C. et al., In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioeng. 2013, 110, 871-880.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 871-880
-
-
Cristea, S.1
Freyvert, Y.2
Santiago, Y.3
Holmes, M.C.4
-
108
-
-
84874608929
-
Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
-
Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 2013, 31, 233-239.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
-
109
-
-
84925355124
-
Multigene editing in the Escherichia coli genome using the CRISPR-Cas9 system.
-
Jiang, Y., Chen, B., Duan, C., Sun, B. et al., Multigene editing in the Escherichia coli genome using the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2015, 81, 2506-2514.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
-
110
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
-
DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X. et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336-4343.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
-
111
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
-
Jakociunas, T., Bonde, I., Herrgård, M., Harrison, S. J. et al., Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae Metab. Eng. 2015, 28, 213-222.
-
(2015)
Metab. Eng.
, vol.28
, pp. 213-222
-
-
Jakociunas, T.1
Bonde, I.2
Herrgård, M.3
Harrison, S.J.4
-
112
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation.
-
Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z. et al., Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 2014, 32, 1262-1267.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
Hartenian, E.2
Graham, D.B.3
Tothova, Z.4
-
113
-
-
84925437370
-
Protein engineering of Cas9 for enhanced function.
-
Oakes, B. L., Nadler, D. C., Savage, D. F., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014, 546, 491-511.
-
(2014)
Methods Enzymol.
, vol.546
, pp. 491-511
-
-
Oakes, B.L.1
Nadler, D.C.2
Savage, D.F.3
-
114
-
-
84903692370
-
Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations.
-
Ramakrishna, S., Cho, S. W., Kim, S., Song, M. et al., Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat. Commun. 2014, 5, 3378.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3378
-
-
Ramakrishna, S.1
Cho, S.W.2
Kim, S.3
Song, M.4
-
115
-
-
84983792922
-
Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.
-
Lin, S., Staahl, B. T., Alla, R. K., Doudna, J. A., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 2014, 3, e04766.
-
(2014)
Elife
, vol.3
, pp. e04766
-
-
Lin, S.1
Staahl, B.T.2
Alla, R.K.3
Doudna, J.A.4
-
116
-
-
84901346520
-
Toward product attribute control: Developments from genome sequencing.
-
Baik, J. Y., Lee, K. H., Toward product attribute control: Developments from genome sequencing. Curr. Opin. Biotechnol. 2014, 30, 40-44.
-
(2014)
Curr. Opin. Biotechnol.
, vol.30
, pp. 40-44
-
-
Baik, J.Y.1
Lee, K.H.2
-
117
-
-
84872093417
-
Analysis of omics data with genome-scale models of metabolism.
-
Hyduke, D. R., Lewis, N. E., Palsson, B. Ø., Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst. 2013, 9, 167-174.
-
(2013)
Mol. Biosyst.
, vol.9
, pp. 167-174
-
-
Hyduke, D.R.1
Lewis, N.E.2
Palsson, B.Ø.3
-
118
-
-
84907274931
-
Systems glycobiology for glycoengineering.
-
Spahn, P. N., Lewis, N. E., Systems glycobiology for glycoengineering. Curr. Opin. Biotechnol. 2014, 30, 218-224.
-
(2014)
Curr. Opin. Biotechnol.
, vol.30
, pp. 218-224
-
-
Spahn, P.N.1
Lewis, N.E.2
-
119
-
-
77949773550
-
Towards genome-scale signalling network reconstructions.
-
Hyduke, D. R., Palsson, B. Ø., Towards genome-scale signalling network reconstructions. Nat. Rev. Genet. 2010, 11, 297-307.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 297-307
-
-
Hyduke, D.R.1
Palsson, B.Ø.2
-
120
-
-
33646748283
-
A systems approach to mapping DNA damage response pathways.
-
Workman, C. T., Mak, H. C., McCuine, S., Tagne, J. B. et al., A systems approach to mapping DNA damage response pathways. Science 2006, 312, 1054-1059.
-
(2006)
Science
, vol.312
, pp. 1054-1059
-
-
Workman, C.T.1
Mak, H.C.2
McCuine, S.3
Tagne, J.B.4
-
121
-
-
84923687677
-
Quantitative and logic modelling of molecular and gene networks.
-
Le Novère, N., Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 2015, 16, 146-158.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 146-158
-
-
Le Novère, N.1
-
122
-
-
84884565153
-
The evolution of genome-scale models of cancer metabolism.
-
Lewis, N. E., Abdel-Haleem, A. M., The evolution of genome-scale models of cancer metabolism. Front. Physiol. 2013, 4, 237.
-
(2013)
Front. Physiol.
, vol.4
, pp. 237
-
-
Lewis, N.E.1
Abdel-Haleem, A.M.2
|