메뉴 건너뛰기




Volumn 16, Issue 7, 2015, Pages 393-405

P53 in survival, death and metabolic health: A lifeguard with a licence to kill

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN P53; REACTIVE OXYGEN METABOLITE;

EID: 84934281252     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm4007     Document Type: Review
Times cited : (875)

References (176)
  • 3
    • 84866423871 scopus 로고    scopus 로고
    • MicroRNAs in the p53 network: Micromanagement of tumour suppression
    • Hermeking, H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer 12, 613-626 (2012).
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 613-626
    • Hermeking, H.1
  • 4
    • 65949083750 scopus 로고    scopus 로고
    • Cytoplasmic functions of the tumour suppressor p53
    • Green, D. R. & Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127-1130 (2009).
    • (2009) Nature , vol.458 , pp. 1127-1130
    • Green, D.R.1    Kroemer, G.2
  • 5
    • 84877574804 scopus 로고    scopus 로고
    • Another fork in the road - Life or death decisions by the tumour suppressor p53
    • Carvajal, L. A. & Manfredi, J. J. Another fork in the road - life or death decisions by the tumour suppressor p53. EMBO Rep. 14, 414-421 (2013).
    • (2013) EMBO Rep , vol.14 , pp. 414-421
    • Carvajal, L.A.1    Manfredi, J.J.2
  • 6
    • 78650018910 scopus 로고    scopus 로고
    • Regulation of tissue-and stimulus-specific cell fate decisions by p53 in vivo
    • Jackson, J. G., Post, S. M. & Lozano, G. Regulation of tissue-and stimulus-specific cell fate decisions by p53 in vivo. J. Pathol. 223, 127-136 (2011).
    • (2011) J. Pathol. , vol.223 , pp. 127-136
    • Jackson, J.G.1    Post, S.M.2    Lozano, G.3
  • 7
    • 73949117703 scopus 로고    scopus 로고
    • Massively regulated genes: The example of TP53
    • Hollstein, M. & Hainaut, P. Massively regulated genes: the example of TP53. J. Pathol. 220, 164-173 (2010).
    • (2010) J. Pathol. , vol.220 , pp. 164-173
    • Hollstein, M.1    Hainaut, P.2
  • 8
    • 84905909213 scopus 로고    scopus 로고
    • Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response
    • Marcel, V., Fernandes, K., Terrier, O., Lane, D. P. & Bourdon, J. C. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ. 21, 1377-1387 (2014).
    • (2014) Cell Death Differ , vol.21 , pp. 1377-1387
    • Marcel, V.1    Fernandes, K.2    Terrier, O.3    Lane, D.P.4    Bourdon, J.C.5
  • 9
    • 84863756423 scopus 로고    scopus 로고
    • Surf the post-translational modification network of p53 regulation
    • Gu, B. & Zhu, W. G. Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8, 672-684 (2012).
    • (2012) Int. J. Biol. Sci. , vol.8 , pp. 672-684
    • Gu, B.1    Zhu, W.G.2
  • 10
    • 65549120715 scopus 로고    scopus 로고
    • Modes of p53 regulation
    • Kruse, J. P. & Gu, W. Modes of p53 regulation. Cell 137, 609-622 (2009).
    • (2009) Cell , vol.137 , pp. 609-622
    • Kruse, J.P.1    Gu, W.2
  • 11
    • 0030905284 scopus 로고    scopus 로고
    • Mdm2 promotes the rapid degradation of p53
    • Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299 (1997).
    • (1997) Nature , vol.387 , pp. 296-299
    • Haupt, Y.1    Maya, R.2    Kazaz, A.3    Oren, M.4
  • 12
    • 0030965946 scopus 로고    scopus 로고
    • Regulation of p53 stability by Mdm2
    • Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299-303 (1997).
    • (1997) Nature , vol.387 , pp. 299-303
    • Kubbutat, M.H.1    Jones, S.N.2    Vousden, K.H.3
  • 13
    • 84890200628 scopus 로고    scopus 로고
    • The role of ubiquitin modification in the regulation of p53
    • Hock, A. K. & Vousden, K. H. The role of ubiquitin modification in the regulation of p53. Biochim. Biophys. Acta 1843, 137-149 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 137-149
    • Hock, A.K.1    Vousden, K.H.2
  • 15
    • 0037011958 scopus 로고    scopus 로고
    • P53 mutant mice that display early ageing-associated phenotypes
    • Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45-53 (2002).
    • (2002) Nature , vol.415 , pp. 45-53
    • Tyner, S.D.1
  • 16
    • 84908338814 scopus 로고    scopus 로고
    • Inappropriate p53 activation during development induces features of CHARGE syndrome
    • Van Nostrand, J. L. et al. Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature 514, 228-232 (2014).
    • (2014) Nature , vol.514 , pp. 228-232
    • Van Nostrand, J.L.1
  • 17
    • 70349655709 scopus 로고    scopus 로고
    • P53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content
    • Park, J. Y. et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ. Res. 105, 705-712 (2009).
    • (2009) Circ. Res. , vol.105 , pp. 705-712
    • Park, J.Y.1
  • 19
    • 78951475020 scopus 로고    scopus 로고
    • P53 and its mutants in tumor cell migration and invasion
    • Muller, P. A., Vousden, K. H. & Norman, J. C. p53 and its mutants in tumor cell migration and invasion. J. Cell Biol. 192, 209-218 (2011).
    • (2011) J. Cell Biol , vol.192 , pp. 209-218
    • Muller, P.A.1    Vousden, K.H.2    Norman, J.C.3
  • 20
    • 34548842816 scopus 로고    scopus 로고
    • Inhibition of tumor angiogenesis by p53: A new role for the guardian of the genome
    • Teodoro, J. G., Evans, S. K. & Green, M. R. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J. Mol. Med. (Berl.) 85, 1175-1186 (2007).
    • (2007) J. Mol. Med. (Berl.) , vol.85 , pp. 1175-1186
    • Teodoro, J.G.1    Evans, S.K.2    Green, M.R.3
  • 21
    • 84871955225 scopus 로고    scopus 로고
    • Interactions between the tumor suppressor p53 and immune responses
    • Menendez, D., Shatz, M. & Resnick, M. A. Interactions between the tumor suppressor p53 and immune responses. Curr. Opin. Oncol. 25, 85-92 (2013).
    • (2013) Curr. Opin. Oncol. , vol.25 , pp. 85-92
    • Menendez, D.1    Shatz, M.2    Resnick, M.A.3
  • 22
    • 75849129107 scopus 로고    scopus 로고
    • Involvement of stromal p53 in tumor-stroma interactions
    • Bar, J., Moskovits, N. & Oren, M. Involvement of stromal p53 in tumor-stroma interactions. Semin. Cell Dev. Biol. 21, 47-54 (2010).
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 47-54
    • Bar, J.1    Moskovits, N.2    Oren, M.3
  • 23
    • 84876291823 scopus 로고    scopus 로고
    • Non-cell-autonomous tumor suppression by p53
    • Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449-460 (2013). This study demonstrates a role for p53 in the tumour microenvironment. p53-induced senescence in hepatic stellate cells is shown to suppress tumour progression by promoting the secretion of factors that stimulate antitumour functions in macrophages.
    • (2013) Cell , vol.153 , pp. 449-460
    • Lujambio, A.1
  • 24
    • 0026523778 scopus 로고
    • Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line
    • Shaw, P. et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl Acad. Sci. USA 89, 4495-4499 (1992).
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 4495-4499
    • Shaw, P.1
  • 25
    • 0025784539 scopus 로고
    • Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6
    • Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345-347 (1991).
    • (1991) Nature , vol.352 , pp. 345-347
    • Yonish-Rouach, E.1
  • 26
    • 33646756222 scopus 로고    scopus 로고
    • Dissecting p53-dependent apoptosis
    • Chipuk, J. E. & Green, D. R. Dissecting p53-dependent apoptosis. Cell Death Differ. 13, 994-1002 (2006).
    • (2006) Cell Death Differ , vol.13 , pp. 994-1002
    • Chipuk, J.E.1    Green, D.R.2
  • 27
    • 0142227023 scopus 로고    scopus 로고
    • No PUMA no death: Implications for p53-dependent apoptosis
    • Yu, J. & Zhang, L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4, 248-249 (2003).
    • (2003) Cancer Cell , vol.4 , pp. 248-249
    • Yu, J.1    Zhang, L.2
  • 28
  • 29
    • 84902009201 scopus 로고    scopus 로고
    • The DNA-binding domain mediates both nuclear and cytosolic functions of p53
    • Follis, A. V. et al. The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat. Struct. Mol. Biol. 21, 535-543 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 535-543
    • Follis, A.V.1
  • 30
    • 84874044758 scopus 로고    scopus 로고
    • PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis
    • Follis, A. V. et al. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat. Chem. Biol. 9, 163-168 (2013).
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 163-168
    • Follis, A.V.1
  • 31
    • 18144416611 scopus 로고    scopus 로고
    • The transcriptional targets of p53 in apoptosis control
    • Yu, J. & Zhang, L. The transcriptional targets of p53 in apoptosis control. Biochem. Biophys. Res. Commun. 331, 851-858 (2005).
    • (2005) Biochem. Biophys. Res. Commun. , vol.331 , pp. 851-858
    • Yu, J.1    Zhang, L.2
  • 32
    • 84887193301 scopus 로고    scopus 로고
    • Extracellular adenosine sensing - A metabolic cell death priming mechanism downstream of p53
    • Long, J. S. et al. Extracellular adenosine sensing - a metabolic cell death priming mechanism downstream of p53. Mol. Cell 50, 394-406 (2013).
    • (2013) Mol. Cell , vol.50 , pp. 394-406
    • Long, J.S.1
  • 34
    • 59149097561 scopus 로고    scopus 로고
    • The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage
    • Tu, H. C. et al. The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc. Natl Acad. Sci. USA 106, 1093-1098 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 1093-1098
    • Tu, H.C.1
  • 35
    • 84862675016 scopus 로고    scopus 로고
    • P53 opens the mitochondrial permeability transition pore to trigger necrosis
    • Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536-1548 (2012).
    • (2012) Cell , vol.149 , pp. 1536-1548
    • Vaseva, A.V.1
  • 37
    • 57649233085 scopus 로고    scopus 로고
    • Mitochondrial and nuclear cross talk in cell death: Parthanatos
    • Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. N. Y. Acad. Sci. 1147, 233-241 (2008).
    • (2008) Ann. N. Y. Acad. Sci. , vol.1147 , pp. 233-241
    • Andrabi, S.A.1    Dawson, T.M.2    Dawson, V.L.3
  • 38
    • 84934783188 scopus 로고    scopus 로고
    • Murine double minute-2 prevents p53-overactivation-related cell death (podoptosis) of podocytes
    • Thomasova, D. et al. Murine double minute-2 prevents p53-overactivation-related cell death (podoptosis) of podocytes. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014040345 (2014).
    • (2014) J. Am. Soc. Nephrol.
    • Thomasova, D.1
  • 39
    • 84877311822 scopus 로고    scopus 로고
    • Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
    • Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016-1031 (2013). A detailed genome-wide analysis in primary cells identified genes that were both bound to and transcriptionally regulated by p53 in response to DNA damage. Interestingly, a large number of these are autophagy genes, with p53-induced autophagy contributing to both apoptosis and transformation suppression.
    • (2013) Genes Dev , vol.27 , pp. 1016-1031
    • Kenzelmann Broz, D.1
  • 40
    • 44349136891 scopus 로고    scopus 로고
    • Telomere dysfunction and tumour suppression: The senescence connection
    • Deng, Y., Chan, S. S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nat. Rev. Cancer 8, 450-458 (2008).
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 450-458
    • Deng, Y.1    Chan, S.S.2    Chang, S.3
  • 41
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355 (2008).
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 42
    • 0030609861 scopus 로고    scopus 로고
    • Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts
    • Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831-834 (1997).
    • (1997) Science , vol.277 , pp. 831-834
    • Brown, J.P.1    Wei, W.2    Sedivy, J.M.3
  • 44
    • 33746616991 scopus 로고    scopus 로고
    • Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence
    • Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877-884 (2006).
    • (2006) Nat. Cell Biol , vol.8 , pp. 877-884
    • Kortlever, R.M.1    Higgins, P.J.2    Bernards, R.3
  • 45
    • 84891713034 scopus 로고    scopus 로고
    • Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor
    • Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868 (2008).
    • (2008) PLoS Biol , vol.6 , pp. 2853-2868
    • Coppe, J.P.1
  • 46
    • 0030791113 scopus 로고    scopus 로고
    • Involvement of p53 in cell differentiation and development
    • Almog, N. & Rotter, V. Involvement of p53 in cell differentiation and development. Biochim. Biophys. Acta 1333, F1-F27 (1997).
    • (1997) Biochim. Biophys. Acta , vol.1333 , pp. F1-F27
    • Almog, N.1    Rotter, V.2
  • 47
    • 69349100179 scopus 로고    scopus 로고
    • Suppression of induced pluripotent stem cell generation by the p53-p21 pathway
    • Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132-1135 (2009).
    • (2009) Nature , vol.460 , pp. 1132-1135
    • Hong, H.1
  • 48
    • 84905377981 scopus 로고    scopus 로고
    • P53-dependent nestin regulation links tumor suppression to cellular plasticity in liver cancer
    • Tschaharganeh, D. F. et al. p53-dependent nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 158, 579-592 (2014).
    • (2014) Cell , vol.158 , pp. 579-592
    • Tschaharganeh, D.F.1
  • 49
    • 79955971134 scopus 로고    scopus 로고
    • Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals
    • Zwang, Y. et al. Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals. Mol. Cell 42, 524-535 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 524-535
    • Zwang, Y.1
  • 50
    • 0027359827 scopus 로고
    • WAF1, a potential mediator of p53 tumor suppression
    • el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825 (1993).
    • (1993) Cell , vol.75 , pp. 817-825
    • El-Deiry, W.S.1
  • 51
    • 0028978183 scopus 로고
    • Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control
    • Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675-684 (1995).
    • (1995) Cell , vol.82 , pp. 675-684
    • Deng, C.1    Zhang, P.2    Harper, J.W.3    Elledge, S.J.4    Leder, P.5
  • 52
    • 0029097759 scopus 로고
    • Radiation-induced cell cycle arrest compromised by p21 deficiency
    • Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552-557 (1995).
    • (1995) Nature , vol.377 , pp. 552-557
    • Brugarolas, J.1
  • 53
    • 11244344381 scopus 로고    scopus 로고
    • P53: Traffic cop at the crossroads of DNA repair and recombination
    • Sengupta, S. & Harris, C. C. p53: traffic cop at the crossroads of DNA repair and recombination. Nat. Rev. Mol. Cell Biol. 6, 44-55 (2005).
    • (2005) Nat. Rev. Mol. Cell Biol , vol.6 , pp. 44-55
    • Sengupta, S.1    Harris, C.C.2
  • 54
    • 84871935248 scopus 로고    scopus 로고
    • Centrosomes chromosome instability (CIN) and aneuploidy
    • Vitre, B. D. & Cleveland, D. W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 24, 809-815 (2012).
    • (2012) Curr. Opin. Cell Biol , vol.24 , pp. 809-815
    • Vitre, B.D.1    Cleveland, D.W.2
  • 55
    • 84901751841 scopus 로고    scopus 로고
    • A centrosomal route for cancer genome instability
    • de Carcer, G. & Malumbres, M. A centrosomal route for cancer genome instability. Nat. Cell Biol. 16, 504-506 (2014).
    • (2014) Nat. Cell Biol , vol.16 , pp. 504-506
    • De Carcer, G.1    Malumbres, M.2
  • 57
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283-293 (2005).
    • (2005) Mol. Cell , vol.18 , pp. 283-293
    • Jones, R.G.1
  • 58
    • 84865793242 scopus 로고    scopus 로고
    • AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells
    • Lee, C. W. et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 72, 4394-4404 (2012).
    • (2012) Cancer Res , vol.72 , pp. 4394-4404
    • Lee, C.W.1
  • 59
    • 84891382131 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity
    • He, G. et al. AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol. Cell. Biol. 34, 148-157 (2014).
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 148-157
    • He, G.1
  • 60
    • 67349272249 scopus 로고    scopus 로고
    • A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress
    • Lee, S. M., Kim, J. H., Cho, E. J. & Youn, H. D. A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ. 16, 738-748 (2009).
    • (2009) Cell Death Differ , vol.16 , pp. 738-748
    • Lee, S.M.1    Kim, J.H.2    Cho, E.J.3    Youn, H.D.4
  • 61
    • 84897406530 scopus 로고    scopus 로고
    • Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability
    • Kim, T. H., Leslie, P. & Zhang, Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 5, 860-871 (2014).
    • (2014) Oncotarget , vol.5 , pp. 860-871
    • Kim, T.H.1    Leslie, P.2    Zhang, Y.3
  • 62
    • 84902131086 scopus 로고    scopus 로고
    • Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation
    • Liu, Y. et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proc. Natl Acad. Sci. USA 111, E2414-E2422 (2014). Using mice engineered to express MDM2 that is deficient in binding to ribosomal proteins, this study shows that the ribosomal protein-MDM2-p53 signalling pathway senses nutrient deprivation and is crucial for maintaining lipid homeostasis in the liver.
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E2414-E2422
    • Liu, Y.1
  • 63
    • 84877139062 scopus 로고    scopus 로고
    • Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6
    • Hoeferlin, L. A., Fekry, B., Ogretmen, B., Krupenko, S. A. & Krupenko, N. I. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J. Biol. Chem. 288, 12880-12890 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 12880-12890
    • Hoeferlin, L.A.1    Fekry, B.2    Ogretmen, B.3    Krupenko, S.A.4    Krupenko, N.I.5
  • 64
    • 84900332195 scopus 로고    scopus 로고
    • Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells
    • Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780-794 (2014).
    • (2014) Cell Metab , vol.19 , pp. 780-794
    • Shiraki, N.1
  • 65
    • 84890695935 scopus 로고    scopus 로고
    • Tumour-associated mutant p53 drives the Warburg effect
    • Zhang, C. et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 4, 2935 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2935
    • Zhang, C.1
  • 66
    • 43049139541 scopus 로고    scopus 로고
    • P53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation
    • Kawauchi, K. Araki, K., Tobiume, K. & Tanaka, N. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat. Cell Biol. 10, 611-618 (2008).
    • (2008) Nat. Cell Biol , vol.10 , pp. 611-618
    • Kawauchi Araki K, K.1    Tobiume, K.2    Tanaka, N.3
  • 67
    • 70350575440 scopus 로고    scopus 로고
    • Modulation of intracellular ROS levels by TIGAR controls autophagy
    • Bensaad, K., Cheung, E. C. & Vousden, K. H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 28, 3015-3026 (2009).
    • (2009) EMBO J. , vol.28 , pp. 3015-3026
    • Bensaad, K.1    Cheung, E.C.2    Vousden, K.H.3
  • 68
    • 33745918951 scopus 로고    scopus 로고
    • TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    • Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-120 (2006).
    • (2006) Cell , vol.126 , pp. 107-120
    • Bensaad, K.1
  • 69
    • 11244347171 scopus 로고    scopus 로고
    • Glycolytic enzymes can modulate cellular life span
    • Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177-185 (2005).
    • (2005) Cancer Res , vol.65 , pp. 177-185
    • Kondoh, H.1
  • 71
    • 84855878565 scopus 로고    scopus 로고
    • P53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2
    • Contractor, T. & Harris, C. R. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 72, 560-567 (2012).
    • (2012) Cancer Res , vol.72 , pp. 560-567
    • Contractor, T.1    Harris, C.R.2
  • 72
    • 80053635472 scopus 로고    scopus 로고
    • Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect
    • Zhang, C. et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl Acad. Sci. USA 108, 16259-16264 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 16259-16264
    • Zhang, C.1
  • 73
    • 77952212178 scopus 로고    scopus 로고
    • Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
    • Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl Acad. Sci. USA 107, 7455-7460 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 7455-7460
    • Hu, W.1
  • 74
    • 77952227625 scopus 로고    scopus 로고
    • Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
    • Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl Acad. Sci. USA 107, 7461-7466 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 7461-7466
    • Suzuki, S.1
  • 75
    • 33745149291 scopus 로고    scopus 로고
    • P53 regulates mitochondrial respiration
    • Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650-1653 (2006).
    • (2006) Science , vol.312 , pp. 1650-1653
    • Matoba, S.1
  • 76
    • 84875738463 scopus 로고    scopus 로고
    • AIF reactive oxygen species and neurodegeneration: A "complex" problem
    • Polster, B. M. AIF, reactive oxygen species, and neurodegeneration: a "complex" problem. Neurochem Int. 62, 695-702 (2013).
    • (2013) Neurochem Int , vol.62 , pp. 695-702
    • Polster, B.M.1
  • 77
    • 33751009381 scopus 로고    scopus 로고
    • Regulation of AIF expression by p53
    • Stambolsky, P. et al. Regulation of AIF expression by p53. Cell Death Differ. 13, 2140-2149 (2006).
    • (2006) Cell Death Differ , vol.13 , pp. 2140-2149
    • Stambolsky, P.1
  • 79
    • 65449137587 scopus 로고    scopus 로고
    • Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis
    • Lebedeva, M. A., Eaton, J. S. & Shadel, G. S. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim. Biophys. Acta 1787, 328-334 (2009).
    • (2009) Biochim. Biophys. Acta , vol.1787 , pp. 328-334
    • Lebedeva, M.A.1    Eaton, J.S.2    Shadel, G.S.3
  • 80
    • 84893362301 scopus 로고    scopus 로고
    • P53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise
    • Saleem, A., Carter, H. N. & Hood, D. A. p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise. Am. J. Physiol. Cell Physiol. 306, C241-C249 (2014).
    • (2014) Am. J. Physiol. Cell Physiol , vol.306 , pp. C241-C249
    • Saleem, A.1    Carter, H.N.2    Hood, D.A.3
  • 82
    • 0032975551 scopus 로고    scopus 로고
    • P53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression
    • Ruiz-Lozano, P. et al. p53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. Cell Growth Differ. 10, 295-306 (1999).
    • (1999) Cell Growth Differ , vol.10 , pp. 295-306
    • Ruiz-Lozano, P.1
  • 83
    • 0030882879 scopus 로고    scopus 로고
    • Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53
    • Mathupala, S. P., Heese, C. & Pedersen, P. L. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J. Biol. Chem. 272, 22776-22780 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 22776-22780
    • Mathupala, S.P.1    Heese, C.2    Pedersen, P.L.3
  • 84
    • 79952280229 scopus 로고    scopus 로고
    • P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
    • Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310-316 (2011).
    • (2011) Nat. Cell Biol , vol.13 , pp. 310-316
    • Jiang, P.1
  • 85
    • 79951812916 scopus 로고    scopus 로고
    • Telomere dysfunction induces metabolic and mitochondrial compromise
    • Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359-365 (2011).
    • (2011) Nature , vol.470 , pp. 359-365
    • Sahin, E.1
  • 86
    • 84884560637 scopus 로고    scopus 로고
    • P53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production
    • Goldstein, I. et al. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab. 1, 9 (2013).
    • (2013) Cancer Metab , vol.1 , pp. 9
    • Goldstein, I.1
  • 87
    • 84874604123 scopus 로고    scopus 로고
    • P53-dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene
    • Wang, S. J. et al. p53-dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. Cell Cycle 12, 753-761 (2013).
    • (2013) Cell Cycle , vol.12 , pp. 753-761
    • Wang, S.J.1
  • 88
    • 84904687584 scopus 로고    scopus 로고
    • Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
    • Zhang, P. et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl Acad. Sci. USA 111, 10684-10689 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 10684-10689
    • Zhang, P.1
  • 89
    • 84872905650 scopus 로고    scopus 로고
    • Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells
    • Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542-546 (2013). This study describes a role for p53 in supporting metabolic adaptation to serine starvation by transiently activating p53, p21 and cell cycle arrest. This enables depleted serine stores to be channelled to GSH synthesis, sustaining cellular redox balance and cell survival. The effectiveness of a serine-depleted diet in limiting cancer growth in vivo is also demonstrated.
    • (2013) Nature , vol.493 , pp. 542-546
    • Maddocks, O.D.1
  • 90
    • 84876838620 scopus 로고    scopus 로고
    • The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation
    • Reid, M. A. et al. The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol. Cell 50, 200-211 (2013).
    • (2013) Mol. Cell , vol.50 , pp. 200-211
    • Reid, M.A.1
  • 91
    • 80052258995 scopus 로고    scopus 로고
    • Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
    • Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869-874 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 869-874
    • Locasale, J.W.1
  • 92
    • 84901263663 scopus 로고    scopus 로고
    • Serine but not glycine, supports one-carbon metabolism and proliferation of cancer cells
    • Labuschagne, C. F., van den Broek, N. J., Mackay, G. M., Vousden, K. H. & Maddocks, O. D. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248-1258 (2014).
    • (2014) Cell Rep , vol.7 , pp. 1248-1258
    • Labuschagne, C.F.1    Van Den Broek, N.J.2    Mackay, G.M.3    Vousden, K.H.4    Maddocks, O.D.5
  • 93
    • 84902332213 scopus 로고    scopus 로고
    • Quantitative flux analysis reveals folate-dependent NADPH production
    • Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298-302 (2014). The authors apply a novel and elegant technique, which uses liquid chromatography and mass spectrometry to track the source of NADPH production. They reveal an unexpected importance of one-carbon metabolism in cellular NADPH production.
    • (2014) Nature , vol.510 , pp. 298-302
    • Fan, J.1
  • 94
    • 0037680229 scopus 로고    scopus 로고
    • Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism
    • Hanada, K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16-30 (2003).
    • (2003) Biochim. Biophys. Acta , vol.1632 , pp. 16-30
    • Hanada, K.1
  • 95
    • 84869082905 scopus 로고    scopus 로고
    • Serine is a natural ligand and allosteric activator of pyruvate kinase M2
    • Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458-462 (2012).
    • (2012) Nature , vol.491 , pp. 458-462
    • Chaneton, B.1
  • 96
    • 84874947662 scopus 로고    scopus 로고
    • Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type i tumor model
    • Sanchez-Macedo, N. et al. Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ. 20, 659-668 (2013).
    • (2013) Cell Death Differ , vol.20 , pp. 659-668
    • Sanchez-Macedo, N.1
  • 97
    • 80555135898 scopus 로고    scopus 로고
    • ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress
    • Assaily, W. et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 44, 491-501 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 491-501
    • Assaily, W.1
  • 99
    • 69749128490 scopus 로고    scopus 로고
    • Specific activation of the p53 pathway by low dose actinomycin D: A new route to p53 based cyclotherapy
    • Choong, M. L., Yang, H., Lee, M. A. & Lane, D. P. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 8, 2810-2818 (2009).
    • (2009) Cell Cycle , vol.8 , pp. 2810-2818
    • Choong, M.L.1    Yang, H.2    Lee, M.A.3    Lane, D.P.4
  • 100
    • 84875906475 scopus 로고    scopus 로고
    • Dissecting the pathways that destabilize mutant p53: The proteasome or autophagy?
    • Choudhury, S., Kolukula, V. K., Preet, A., Albanese, C. & Avantaggiati, M. L. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? Cell Cycle 12, 1022-1029 (2013).
    • (2013) Cell Cycle , vol.12 , pp. 1022-1029
    • Choudhury, S.1    Kolukula, V.K.2    Preet, A.3    Albanese, C.4    Avantaggiati, M.L.5
  • 101
    • 33745885329 scopus 로고    scopus 로고
    • DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
    • Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121-134 (2006).
    • (2006) Cell , vol.126 , pp. 121-134
    • Crighton, D.1
  • 102
    • 80052719816 scopus 로고    scopus 로고
    • Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death
    • Gao, W., Shen, Z., Shang, L. & Wang, X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ. 18, 1598-1607 (2011).
    • (2011) Cell Death Differ , vol.18 , pp. 1598-1607
    • Gao, W.1    Shen, Z.2    Shang, L.3    Wang, X.4
  • 103
    • 84884331483 scopus 로고    scopus 로고
    • TRP53 activates a global autophagy program to promote tumor suppression
    • Kenzelmann Broz, D. & Attardi, L. D. TRP53 activates a global autophagy program to promote tumor suppression. Autophagy 9, 1440-1442 (2013).
    • (2013) Autophagy , vol.9 , pp. 1440-1442
    • Kenzelmann Broz, D.1    Attardi, L.D.2
  • 104
    • 84859639962 scopus 로고    scopus 로고
    • Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
    • Lee, I. H. et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336, 225-228 (2012).
    • (2012) Science , vol.336 , pp. 225-228
    • Lee, I.H.1
  • 105
    • 84892882660 scopus 로고    scopus 로고
    • A dual role for autophagy in a murine model of lung cancer
    • Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 5, 3056 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3056
    • Rao, S.1
  • 106
    • 84890432985 scopus 로고    scopus 로고
    • P53 status determines the role of autophagy in pancreatic tumour development
    • Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296-300 (2013). This paper emphasizes the importance of determining the genetic make-up of a tumour before deciding on a treatment. Using genetically engineered mice, the authors show that the p53 status of pancreatic tumours with activated oncogenic KRAS determines whether the inhibition of autophagy prevents or promotes tumour progression.
    • (2013) Nature , vol.504 , pp. 296-300
    • Rosenfeldt, M.T.1
  • 107
    • 84879777723 scopus 로고    scopus 로고
    • Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
    • Guo, J. Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447-1461 (2013).
    • (2013) Genes Dev , vol.27 , pp. 1447-1461
    • Guo, J.Y.1
  • 108
    • 84905499163 scopus 로고    scopus 로고
    • Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations
    • Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905-913 (2014).
    • (2014) Cancer Discov , vol.4 , pp. 905-913
    • Yang, A.1
  • 109
    • 48449101433 scopus 로고    scopus 로고
    • P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
    • Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451-460 (2008).
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 110
    • 34248194200 scopus 로고    scopus 로고
    • The regulation of AMPK β1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
    • Feng, Z. et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67, 3043-3053 (2007).
    • (2007) Cancer Res , vol.67 , pp. 3043-3053
    • Feng, Z.1
  • 111
    • 53649084026 scopus 로고    scopus 로고
    • P53 represses autophagy in a cell cycle-dependent fashion
    • Tasdemir, E. et al. p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 7, 3006-3011 (2008).
    • (2008) Cell Cycle , vol.7 , pp. 3006-3011
    • Tasdemir, E.1
  • 112
    • 80051707399 scopus 로고    scopus 로고
    • P53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200
    • Morselli, E. et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 10, 2763-2769 (2011).
    • (2011) Cell Cycle , vol.10 , pp. 2763-2769
    • Morselli, E.1
  • 113
    • 84860163119 scopus 로고    scopus 로고
    • P53/HMGB1 complexes regulate autophagy and apoptosis
    • Livesey, K. M. et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996-2005 (2012).
    • (2012) Cancer Res , vol.72 , pp. 1996-2005
    • Livesey, K.M.1
  • 114
    • 84859855907 scopus 로고    scopus 로고
    • Redox regulation of p53, redox effectors regulated by p53: A subtle balance
    • Maillet, A. & Pervaiz, S. Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid. Redox Signal 16, 1285-1294 (2012).
    • (2012) Antioxid. Redox Signal , vol.16 , pp. 1285-1294
    • Maillet, A.1    Pervaiz, S.2
  • 115
    • 84907485979 scopus 로고    scopus 로고
    • TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy
    • Xie, J. M. et al. TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy. Cancer Res. 74, 5127-5138 (2014).
    • (2014) Cancer Res , vol.74 , pp. 5127-5138
    • Xie, J.M.1
  • 116
    • 84901390341 scopus 로고    scopus 로고
    • A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia
    • Li, M. et al. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J. Neurosci. 34, 7458-7471 (2014).
    • (2014) J. Neurosci. , vol.34 , pp. 7458-7471
    • Li, M.1
  • 117
    • 84870918602 scopus 로고    scopus 로고
    • Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death
    • Cheung, E. C., Ludwig, R. L. & Vousden, K. H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl Acad. Sci. USA 109, 20491-20496 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 20491-20496
    • Cheung, E.C.1    Ludwig, R.L.2    Vousden, K.H.3
  • 118
    • 84868573341 scopus 로고    scopus 로고
    • Molecular pathways: Tumor cells co-opt the brain-specific metabolism gene CPT1C to promote survival
    • Reilly, P. T. & Mak, T. W. Molecular pathways: tumor cells co-opt the brain-specific metabolism gene CPT1C to promote survival. Clin. Cancer Res. 18, 5850-5855 (2012).
    • (2012) Clin. Cancer Res , vol.18 , pp. 5850-5855
    • Reilly, P.T.1    Mak, T.W.2
  • 119
    • 67449158764 scopus 로고    scopus 로고
    • The guardian recruits cops: The p53-p21 axis delegates prosurvival duties to the Keap1-Nrf2 stress pathway
    • Toledano, M. B. The guardian recruits cops: the p53-p21 axis delegates prosurvival duties to the Keap1-Nrf2 stress pathway. Mol. Cell 34, 637-639 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 637-639
    • Toledano, M.B.1
  • 120
    • 0035945676 scopus 로고    scopus 로고
    • Reciprocal down-regulation of p53 and SOD2 gene expression - Implication in p53 mediated apoptosis
    • Drane, P., Bravard, A., Bouvard, V. & May, E. Reciprocal down-regulation of p53 and SOD2 gene expression - implication in p53 mediated apoptosis. Oncogene 20, 430-439 (2001).
    • (2001) Oncogene , vol.20 , pp. 430-439
    • Drane, P.1    Bravard, A.2    Bouvard, V.3    May, E.4
  • 121
    • 1942520427 scopus 로고    scopus 로고
    • Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses
    • Yoon, K. A., Nakamura, Y. & Arakawa, H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49, 134-140 (2004).
    • (2004) J. Hum. Genet. , vol.49 , pp. 134-140
    • Yoon, K.A.1    Nakamura, Y.2    Arakawa, H.3
  • 122
    • 11144356558 scopus 로고    scopus 로고
    • P53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis
    • Hussain, S. P. et al. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 64, 2350-2356 (2004).
    • (2004) Cancer Res , vol.64 , pp. 2350-2356
    • Hussain, S.P.1
  • 123
    • 33846000687 scopus 로고    scopus 로고
    • P53 suppresses the Nrf2-dependent transcription of antioxidant response genes
    • Faraonio, R. et al. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 281, 39776-39784 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 39776-39784
    • Faraonio, R.1
  • 125
    • 23844477888 scopus 로고    scopus 로고
    • The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway
    • Rivera, A. & Maxwell, S. A. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J. Biol. Chem. 280, 29346-29354 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 29346-29354
    • Rivera, A.1    Maxwell, S.A.2
  • 126
    • 84873678601 scopus 로고    scopus 로고
    • Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence
    • Jiang, P., Du, W., Mancuso, A., Wellen, K. E. & Yang, X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493, 689-693 (2013). The authors demonstrate that p53 regulates the metabolism and proliferation of human and mouse cells by repressing ME1 and ME2, which are important for NADPH production, lipogenesis and glutamine metabolism.
    • (2013) Nature , vol.493 , pp. 689-693
    • Jiang, P.1    Du, W.2    Mancuso, A.3    Wellen, K.E.4    Yang, X.5
  • 127
    • 65349103899 scopus 로고    scopus 로고
    • Blinded by the light: The growing complexity of p53
    • Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413-431 (2009).
    • (2009) Cell , vol.137 , pp. 413-431
    • Vousden, K.H.1    Prives, C.2
  • 128
    • 78650386155 scopus 로고    scopus 로고
    • Decision making of the p53 network: Death by integration
    • Li, Z. et al. Decision making of the p53 network: death by integration. J. Theor. Biol. 271, 205-211 (2011).
    • (2011) J. Theor. Biol. , vol.271 , pp. 205-211
    • Li, Z.1
  • 129
    • 84878981053 scopus 로고    scopus 로고
    • TIGAR is required for efficient intestinal regeneration and tumorigenesis
    • Cheung, E. C. et al. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev. Cell 25, 463-477 (2013).
    • (2013) Dev. Cell , vol.25 , pp. 463-477
    • Cheung, E.C.1
  • 130
    • 33846935466 scopus 로고    scopus 로고
    • Cancer biology: Gone but not forgotten
    • Sharpless, N. E. & DePinho, R. A. Cancer biology: gone but not forgotten. Nature 445, 606-607 (2007).
    • (2007) Nature , vol.445 , pp. 606-607
    • Sharpless, N.E.1    Depinho, R.A.2
  • 131
    • 78649492693 scopus 로고    scopus 로고
    • Selective activation of p53-mediated tumour suppression in high-grade tumours
    • Junttila, M. R. et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567-571 (2010).
    • (2010) Nature , vol.468 , pp. 567-571
    • Junttila, M.R.1
  • 132
    • 0029802591 scopus 로고    scopus 로고
    • P53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells
    • Chen, X., Ko, L. J., Jayaraman, L. & Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438-2451 (1996).
    • (1996) Genes Dev , vol.10 , pp. 2438-2451
    • Chen, X.1    Ko, L.J.2    Jayaraman, L.3    Prives, C.4
  • 133
    • 84862270480 scopus 로고    scopus 로고
    • P53 dynamics control cell fate
    • Purvis, J. E. et al. p53 dynamics control cell fate. Science 336, 1440-1444 (2012).
    • (2012) Science , vol.336 , pp. 1440-1444
    • Purvis, J.E.1
  • 134
    • 84874948475 scopus 로고    scopus 로고
    • A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis
    • Kracikova, M., Akiri, G., George, A., Sachidanandam, R. & Aaronson, S. A. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death Differ. 20, 576-588 (2013).
    • (2013) Cell Death Differ , vol.20 , pp. 576-588
    • Kracikova, M.1    Akiri, G.2    George, A.3    Sachidanandam, R.4    Aaronson, S.A.5
  • 135
    • 84866065842 scopus 로고    scopus 로고
    • How p53 wields the scales of fate: Arrest or death?
    • Goh, A. M. & Lane, D. P. How p53 wields the scales of fate: arrest or death? Transcription 3, 240-244 (2012).
    • (2012) Transcription , vol.3 , pp. 240-244
    • Goh, A.M.1    Lane, D.P.2
  • 136
    • 77951942433 scopus 로고    scopus 로고
    • DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis
    • Schlereth, K. et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 38, 356-368 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 356-368
    • Schlereth, K.1
  • 137
    • 79955795151 scopus 로고    scopus 로고
    • Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression
    • Brady, C. A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145, 571-583 (2011).
    • (2011) Cell , vol.145 , pp. 571-583
    • Brady, C.A.1
  • 139
    • 34547935761 scopus 로고    scopus 로고
    • Living with p53, dying of p53
    • Aylon, Y. & Oren, M. Living with p53, dying of p53. Cell 130, 597-600 (2007).
    • (2007) Cell , vol.130 , pp. 597-600
    • Aylon, Y.1    Oren, M.2
  • 140
    • 84872762772 scopus 로고    scopus 로고
    • The impact of post-transcriptional regulation in the p53 network
    • Freeman, J. A. & Espinosa, J. M. The impact of post-transcriptional regulation in the p53 network. Brief. Funct. Genom. 12, 46-57 (2013).
    • (2013) Brief. Funct. Genom. , vol.12 , pp. 46-57
    • Freeman, J.A.1    Espinosa, J.M.2
  • 141
    • 80052604378 scopus 로고    scopus 로고
    • Transcriptional and epigenetic regulation of the p53 tumor suppressor gene
    • Saldana-Meyer, R. & Recillas-Targa, F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 6, 1068-1077 (2011).
    • (2011) Epigenetics , vol.6 , pp. 1068-1077
    • Saldana-Meyer, R.1    Recillas-Targa, F.2
  • 142
    • 84861973567 scopus 로고    scopus 로고
    • Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
    • Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269-1283 (2012). This paper investigates which p53-dependent processes are essential to its function as a tumour suppressor, showing that mice carrying p53 that is defective in the induction of cell cycle arrest, senescence and apoptosis are still protected from early-onset tumour formation. The study therefore indicates that - contrary to expectations - none of these functions of p53 is essential to its tumour suppressive capacity.
    • (2012) Cell , vol.149 , pp. 1269-1283
    • Li, T.1
  • 143
    • 33646354381 scopus 로고    scopus 로고
    • Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members
    • Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351-365 (2006).
    • (2006) Cancer Cell , vol.9 , pp. 351-365
    • Certo, M.1
  • 144
    • 84885147908 scopus 로고    scopus 로고
    • High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis
    • Liu, J. C. et al. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13, 483-491 (2013).
    • (2013) Cell Stem Cell , vol.13 , pp. 483-491
    • Liu, J.C.1
  • 145
    • 84862905519 scopus 로고    scopus 로고
    • ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53
    • Sullivan, K. D. et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nat. Chem. Biol. 8, 646-654 (2012).
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 646-654
    • Sullivan, K.D.1
  • 146
    • 84878546043 scopus 로고    scopus 로고
    • P53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa
    • Valente, L. J. et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3, 1339-1345 (2013).
    • (2013) Cell Rep , vol.3 , pp. 1339-1345
    • Valente, L.J.1
  • 147
    • 80054736586 scopus 로고    scopus 로고
    • Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages
    • Jiang, D. et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc. Natl Acad. Sci. USA 108, 17123-17128 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 17123-17128
    • Jiang, D.1
  • 148
    • 84878582588 scopus 로고    scopus 로고
    • P53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo
    • Timofeev, O. et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep. 3, 1512-1525 (2013).
    • (2013) Cell Rep , vol.3 , pp. 1512-1525
    • Timofeev, O.1
  • 149
    • 33845611951 scopus 로고    scopus 로고
    • Modeling the therapeutic efficacy of p53 restoration in tumors
    • Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323-1334 (2006).
    • (2006) Cell , vol.127 , pp. 1323-1334
    • Martins, C.P.1    Brown-Swigart, L.2    Evan, G.I.3
  • 150
    • 33846899456 scopus 로고    scopus 로고
    • Restoration of p53 function leads to tumour regression in vivo
    • Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661-665 (2007).
    • (2007) Nature , vol.445 , pp. 661-665
    • Ventura, A.1
  • 151
    • 33846937033 scopus 로고    scopus 로고
    • Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
    • Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660 (2007).
    • (2007) Nature , vol.445 , pp. 656-660
    • Xue, W.1
  • 152
    • 84908153270 scopus 로고    scopus 로고
    • Targeting antioxidants for cancer therapy
    • Glasauer, A. & Chandel, N. S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 92, 90-101 (2014).
    • (2014) Biochem. Pharmacol. , vol.92 , pp. 90-101
    • Glasauer, A.1    Chandel, N.S.2
  • 153
    • 84896722852 scopus 로고    scopus 로고
    • Supercompetitor status of Drosophila Myc cells requires p53 as a fitness sensor to reprogram metabolism and promote viability
    • de la Cova, C. et al. Supercompetitor status of Drosophila Myc cells requires p53 as a fitness sensor to reprogram metabolism and promote viability. Cell Metab. 19, 470-483 (2014). In this elegant study in D. melanogaster, the authors examine the ability of Myc-overexpressing cells to behave as super-competitors; that is, their ability to kill wild-type cells with which they come into contact. This activity depends on wild-type p53, which promotes the fitness of the super-competitor cell.
    • (2014) Cell Metab , vol.19 , pp. 470-483
    • De La Cova, C.1
  • 154
    • 77949907107 scopus 로고    scopus 로고
    • P53-mediated hematopoietic stem and progenitor cell competition
    • Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309-322 (2010).
    • (2010) Cell Stem Cell , vol.6 , pp. 309-322
    • Bondar, T.1    Medzhitov, R.2
  • 155
    • 84862124987 scopus 로고    scopus 로고
    • P53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer
    • Jackson, J. G. et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21, 793-806 (2012).
    • (2012) Cancer Cell , vol.21 , pp. 793-806
    • Jackson, J.G.1
  • 156
    • 84884716320 scopus 로고    scopus 로고
    • P53 in breast cancer subtypes and new insights into response to chemotherapy
    • Bertheau, P. et al. p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 22, S27-S29 (2013).
    • (2013) Breast , vol.22 , pp. S27-S29
    • Bertheau, P.1
  • 158
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009).
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 159
    • 84878679199 scopus 로고    scopus 로고
    • A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
    • Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109-112 (2013).
    • (2013) Nature , vol.498 , pp. 109-112
    • Kaplon, J.1
  • 160
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854 (2013).
    • (2013) Cell , vol.153 , pp. 840-854
    • Csibi, A.1
  • 161
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105 (2013).
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1
  • 162
    • 84883497454 scopus 로고    scopus 로고
    • Glutamine and cancer: Cell biology, physiology, and clinical opportunities
    • Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678-3684 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 3678-3684
    • Hensley, C.T.1    Wasti, A.T.2    Deberardinis, R.J.3
  • 163
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385-388 (2012).
    • (2012) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1
  • 164
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728-741 (2011).
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 165
    • 84897143522 scopus 로고    scopus 로고
    • To be or not to be? How selective autophagy and cell death govern cell fate
    • Green, D. R. & Levine, B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157, 65-75 (2014).
    • (2014) Cell , vol.157 , pp. 65-75
    • Green, D.R.1    Levine, B.2
  • 166
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131 (2010).
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 168
    • 79955377420 scopus 로고    scopus 로고
    • Autophagy-deficient mice develop multiple liver tumors
    • Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800 (2011).
    • (2011) Genes Dev , vol.25 , pp. 795-800
    • Takamura, A.1
  • 169
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676 (1999).
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1
  • 170
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077-15082 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 15077-15082
    • Yue, Z.1    Jin, S.2    Yang, C.3    Levine, A.J.4    Heintz, N.5
  • 171
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
    • Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460-470 (2011).
    • (2011) Genes Dev , vol.25 , pp. 460-470
    • Guo, J.Y.1
  • 172
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717-729 (2011).
    • (2011) Genes Dev , vol.25 , pp. 717-729
    • Yang, S.1
  • 173
    • 84908213474 scopus 로고    scopus 로고
    • Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel?
    • Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709-721 (2014).
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 709-721
    • Sabharwal, S.S.1    Schumacker, P.T.2
  • 175
    • 84889575198 scopus 로고    scopus 로고
    • Modulation of oxidative stress as an anticancer strategy
    • Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947 (2013).
    • (2013) Nat. Rev. Drug Discov , vol.12 , pp. 931-947
    • Gorrini, C.1    Harris, I.S.2    Mak, T.W.3
  • 176
    • 84926387317 scopus 로고    scopus 로고
    • Ferroptosis as a p53-mediated activity during tumour suppression
    • Jiang. L, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57-62 (2015).
    • (2015) Nature , vol.520 , pp. 57-62
    • Jiang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.