-
1
-
-
77954225200
-
Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
-
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 2010;12(7):665-75.
-
(2010)
Nat Cell Biol.
, vol.12
, Issue.7
, pp. 665-675
-
-
Zhao, Y.1
Yang, J.2
Liao, W.3
Liu, X.4
Zhang, H.5
Wang, S.6
-
2
-
-
84865251228
-
The Autophagy-related Protein Kinase Atg1 Interacts with the Ubiquitin-like Protein Atg8 via the Atg8 Family Interacting Motif to Facilitate Autophagosome Formation
-
Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, Kirisako H, et al. The Autophagy-related Protein Kinase Atg1 Interacts with the Ubiquitin-like Protein Atg8 via the Atg8 Family Interacting Motif to Facilitate Autophagosome Formation. J Biol Chem. 2012;287(34):28503-7.
-
(2012)
J Biol Chem.
, vol.287
, Issue.34
, pp. 28503-28507
-
-
Nakatogawa, H.1
Ohbayashi, S.2
Sakoh-Nakatogawa, M.3
Kakuta, S.4
Suzuki, S.W.5
Kirisako, H.6
-
3
-
-
84870943446
-
The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size
-
Backues SK, Lynch-Day MA, Klionsky DJ. The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size. Autophagy. 2012;8(12):1835-6.
-
(2012)
Autophagy.
, vol.8
, Issue.12
, pp. 1835-1836
-
-
Backues, S.K.1
Lynch-Day, M.A.2
Klionsky, D.J.3
-
4
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942-6.
-
(2010)
Nature.
, vol.465
, Issue.7300
, pp. 942-946
-
-
Yu, L.1
McPhee, C.K.2
Zheng, L.3
Mardones, G.A.4
Rong, Y.5
Peng, J.6
-
5
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: Lessons from yeast
-
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458-67.
-
(2009)
Nat Rev Mol Cell Biol.
, vol.10
, Issue.7
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
6
-
-
34848886914
-
Autophagosome formation: Core machinery and adaptations
-
Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9(10):1102-9.
-
(2007)
Nat Cell Biol.
, vol.9
, Issue.10
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
7
-
-
1642329712
-
Determination of four sequential stages during microautophagy in vitro
-
Kunz JB, Schwarz H, Mayer A. Determination of four sequential stages during microautophagy in vitro. J Biol Chem. 2004;279(11):9987-96.
-
(2004)
J Biol Chem.
, vol.279
, Issue.11
, pp. 9987-9996
-
-
Kunz, J.B.1
Schwarz, H.2
Mayer, A.3
-
8
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell. 2005;19(1):15-26.
-
(2005)
Mol Cell.
, vol.19
, Issue.1
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
9
-
-
0023858711
-
Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation
-
Mortimore GE, Lardeux BR, Adams CE. Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem. 1988;263(5):2506-12.
-
(1988)
J Biol Chem.
, vol.263
, Issue.5
, pp. 2506-2512
-
-
Mortimore, G.E.1
Lardeux, B.R.2
Adams, C.E.3
-
10
-
-
0025294506
-
Peptide sequences that target cytosolic proteins for lysosomal proteolysis
-
Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 1990;15(8):305-9.
-
(1990)
Trends Biochem Sci.
, vol.15
, Issue.8
, pp. 305-309
-
-
Dice, J.F.1
-
11
-
-
0029979607
-
Common principles of protein translocation across membranes
-
Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science. 1996;271(5255):1519-26.
-
(1996)
Science.
, vol.271
, Issue.5255
, pp. 1519-1526
-
-
Schatz, G.1
Dobberstein, B.2
-
12
-
-
0034914206
-
A molecular chaperone complex at the lysosomal membrane is required for protein translocation
-
Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci. 2001;114(Pt 13):2491-9.
-
(2001)
J Cell Sci.
, vol.114
, Issue.PART 13
, pp. 2491-2499
-
-
Agarraberes, F.A.1
Dice, J.F.2
-
13
-
-
0029837453
-
A receptor for the selective uptake and degradation of proteins by lysosomes
-
Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273(5274):501-3.
-
(1996)
Science.
, vol.273
, Issue.5274
, pp. 501-503
-
-
Cuervo, A.M.1
Dice, J.F.2
-
14
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol. 2010;12(9):831-5.
-
(2010)
Nat Cell Biol.
, vol.12
, Issue.9
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
15
-
-
77950465542
-
Current knowledge of the pre-autophagosomal structure (PAS)
-
Suzuki K, Ohsumi Y. Current knowledge of the pre-autophagosomal structure (PAS). FEBS Letters. 2010;584(7):1280-6.
-
(2010)
FEBS Letters.
, vol.584
, Issue.7
, pp. 1280-1286
-
-
Suzuki, K.1
Ohsumi, Y.2
-
16
-
-
77951221542
-
The role of the Atg1/ULK1 complex in autophagy regulation
-
Noboru M. The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology. 2010;22(2):132-9.
-
(2010)
Current Opinion in Cell Biology.
, vol.22
, Issue.2
, pp. 132-139
-
-
Noboru, M.1
-
17
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-41.
-
(2011)
Nat Cell Biol.
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.-L.4
-
18
-
-
70349644856
-
Atg101, a novel mammalian autophagy protein interacting with Atg13
-
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5(7):973-9.
-
(2009)
Autophagy.
, vol.5
, Issue.7
, pp. 973-979
-
-
Hosokawa, N.1
Sasaki, T.2
Iemura, S.3
Natsume, T.4
Hara, T.5
Mizushima, N.6
-
19
-
-
66449083078
-
ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297-305.
-
(2009)
J Biol Chem.
, vol.284
, Issue.18
, pp. 12297-12305
-
-
Ganley, I.G.1
du Lam, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
20
-
-
33845692364
-
Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast
-
He C, Song H, Yorimitsu T, Monastyrska I, Yen W-L, Legakis JE, et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. The Journal of Cell Biology. 2006;175(6):925-35.
-
(2006)
The Journal of Cell Biology.
, vol.175
, Issue.6
, pp. 925-935
-
-
He, C.1
Song, H.2
Yorimitsu, T.3
Monastyrska, I.4
Yen, W.-L.5
Legakis, J.E.6
-
21
-
-
77951621262
-
The emerging mechanisms of isoform-specific PI3K signalling
-
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11(5):329-41.
-
(2010)
Nat Rev Mol Cell Biol.
, vol.11
, Issue.5
, pp. 329-341
-
-
Vanhaesebroeck, B.1
Guillermet-Guibert, J.2
Graupera, M.3
Bilanges, B.4
-
22
-
-
0035809160
-
Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae
-
Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152(3):519-30.
-
(2001)
J Cell Biol.
, vol.152
, Issue.3
, pp. 519-530
-
-
Kihara, A.1
Noda, T.2
Ishihara, N.3
Ohsumi, Y.4
-
23
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009;11(4):468-76.
-
(2009)
Nat Cell Biol.
, vol.11
, Issue.4
, pp. 468-476
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
Yan, Y.4
Backer, J.M.5
Chait, B.T.6
-
24
-
-
59249089394
-
Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG
-
Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG. Molecular Biology of the Cell. 2008;19(12):5360-72.
-
(2008)
Molecular Biology of the Cell.
, vol.19
, Issue.12
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
25
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077-82.
-
(2003)
Proc Natl Acad Sci U S A.
, vol.100
, Issue.25
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
26
-
-
25144457455
-
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927-39.
-
(2005)
Cell.
, vol.122
, Issue.6
, pp. 927-939
-
-
Pattingre, S.1
Tassa, A.2
Qu, X.3
Garuti, R.4
Liang, X.H.5
Mizushima, N.6
-
27
-
-
33947715151
-
HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein
-
Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007;1(1):23-35.
-
(2007)
Cell Host Microbe.
, vol.1
, Issue.1
, pp. 23-35
-
-
Orvedahl, A.1
Alexander, D.2
Talloczy, Z.3
Sun, Q.4
Wei, Y.5
Zhang, W.6
-
28
-
-
58149095737
-
Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11
-
Sinha S, Colbert CL, Becker N, Wei Y, Levine B. Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy. 2008;4(8):989-97.
-
(2008)
Autophagy.
, vol.4
, Issue.8
, pp. 989-997
-
-
Sinha, S.1
Colbert, C.L.2
Becker, N.3
Wei, Y.4
Levine, B.5
-
29
-
-
53049102656
-
The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function
-
Obara K, Sekito T, Niimi K, Ohsumi Y. The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function. J Biol Chem. 2008;283(35):23972-80.
-
(2008)
J Biol Chem.
, vol.283
, Issue.35
, pp. 23972-23980
-
-
Obara, K.1
Sekito, T.2
Niimi, K.3
Ohsumi, Y.4
-
30
-
-
0037166241
-
Formation of the approximately 350-kDa Apg12-Apg5. Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
-
Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the approximately 350-kDa Apg12-Apg5. Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 2002;277(21):18619-25.
-
(2002)
J Biol Chem.
, vol.277
, Issue.21
, pp. 18619-18625
-
-
Kuma, A.1
Mizushima, N.2
Ishihara, N.3
Ohsumi, Y.4
-
31
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. Embo J. 2010;29(11):1792-802.
-
(2010)
Embo J.
, vol.29
, Issue.11
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
32
-
-
35848967804
-
How to interpret LC3 immunoblotting
-
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542-5.
-
(2007)
Autophagy.
, vol.3
, Issue.6
, pp. 542-545
-
-
Mizushima, N.1
Yoshimori, T.2
-
33
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282(52):37298-302.
-
(2007)
J Biol Chem.
, vol.282
, Issue.52
, pp. 37298-37302
-
-
Hanada, T.1
Noda, N.N.2
Satomi, Y.3
Ichimura, Y.4
Fujioka, Y.5
Takao, T.6
-
34
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425-34.
-
(2005)
J Cell Biol.
, vol.169
, Issue.3
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
-
35
-
-
62849120511
-
The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation
-
Hanada T, Satomi Y, Takao T, Ohsumi Y. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. FEBS Lett. 2009;583(7):1078-83.
-
(2009)
FEBS Lett.
, vol.583
, Issue.7
, pp. 1078-1083
-
-
Hanada, T.1
Satomi, Y.2
Takao, T.3
Ohsumi, Y.4
-
36
-
-
79251577061
-
The regulation of autophagy-unanswered questions
-
Chen Y, Klionsky DJ. The regulation of autophagy-unanswered questions. J Cell Sci. 2011;124(Pt 2):161-70.
-
(2011)
J Cell Sci.
, vol.124
, Issue.PART 2
, pp. 161-170
-
-
Chen, Y.1
Klionsky, D.J.2
-
37
-
-
34248583762
-
Methods for monitoring autophagy from yeast to human
-
Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181-206.
-
(2007)
Autophagy.
, vol.3
, Issue.3
, pp. 181-206
-
-
Klionsky, D.J.1
Cuervo, A.M.2
Seglen, P.O.3
-
38
-
-
33746108329
-
Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
-
Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005;1(2):84-91.
-
(2005)
Autophagy.
, vol.1
, Issue.2
, pp. 84-91
-
-
Tanida, I.1
Minematsu-Ikeguchi, N.2
Ueno, T.3
Kominami, E.4
-
39
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131-45.
-
(2007)
J Biol Chem.
, vol.282
, Issue.33
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
-
40
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84.
-
(2006)
Cell.
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
42
-
-
77950501014
-
mTOR regulation of autophagy
-
Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H. mTOR regulation of autophagy. FEBS Letters. 2010;584(7):1287-95.
-
(2010)
FEBS Letters.
, vol.584
, Issue.7
, pp. 1287-1295
-
-
Jung, C.H.1
Ro, S.-H.2
Cao, J.3
Otto, N.M.4
Kim, D.-H.5
-
43
-
-
4043171462
-
Upstream and downstream of mTOR
-
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926-45.
-
(2004)
Genes Dev.
, vol.18
, Issue.16
, pp. 1926-1945
-
-
Hay, N.1
Sonenberg, N.2
-
44
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648-57.
-
(2002)
Nat Cell Biol.
, vol.4
, Issue.9
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
45
-
-
44949215822
-
The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
-
Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol. 2008;28(12):4104-15.
-
(2008)
Mol Cell Biol.
, vol.28
, Issue.12
, pp. 4104-4115
-
-
Huang, J.1
Dibble, C.C.2
Matsuzaki, M.3
Manning, B.D.4
-
46
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903-15.
-
(2007)
Mol Cell.
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
-
47
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873-86.
-
(2009)
Cell.
, vol.137
, Issue.5
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
Sancak, Y.4
Kang, S.A.5
Kuehl, W.M.6
-
48
-
-
56249147509
-
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
-
Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008;105(45):17414-9.
-
(2008)
Proc Natl Acad Sci U S A.
, vol.105
, Issue.45
, pp. 17414-17419
-
-
Choo, A.Y.1
Yoon, S.O.2
Kim, S.G.3
Roux, P.P.4
Blenis, J.5
-
49
-
-
0034683568
-
Tor-mediated induction of autophagy via an Apg1 protein kinase complex
-
Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150(6):1507-13.
-
(2000)
J Cell Biol.
, vol.150
, Issue.6
, pp. 1507-1513
-
-
Kamada, Y.1
Funakoshi, T.2
Shintani, T.3
Nagano, K.4
Ohsumi, M.5
Ohsumi, Y.6
-
50
-
-
27744569843
-
mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569-80.
-
(2005)
Cell.
, vol.123
, Issue.4
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
Blenis, J.4
-
51
-
-
0032520009
-
4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway
-
Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12(4):502-13.
-
(1998)
Genes Dev.
, vol.12
, Issue.4
, pp. 502-513
-
-
Gingras, A.C.1
Kennedy, S.G.2
O'Leary, M.A.3
Sonenberg, N.4
Hay, N.5
-
52
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992-2003.
-
(2009)
Mol Biol Cell.
, vol.20
, Issue.7
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
-
53
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11(6):859-71.
-
(2006)
Dev Cell.
, vol.11
, Issue.6
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
Moffat, J.6
-
54
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122-8.
-
(2004)
Nat Cell Biol.
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
Hall, A.6
-
55
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159-68.
-
(2006)
Mol Cell.
, vol.22
, Issue.2
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
-
57
-
-
0036847977
-
The cellular and molecular basis of store-operated calcium entry
-
Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL. The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol. 2002;4(11):E263-72.
-
(2002)
Nat Cell Biol.
, vol.4
, Issue.11
-
-
Venkatachalam, K.1
van Rossum, D.B.2
Patterson, R.L.3
Ma, H.T.4
Gill, D.L.5
-
58
-
-
67649870315
-
The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy
-
Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S. The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic. 2009;10(8):1157-67.
-
(2009)
Traffic.
, vol.10
, Issue.8
, pp. 1157-1167
-
-
Kim, H.J.1
Soyombo, A.A.2
Tjon-Kon-Sang, S.3
So, I.4
Muallem, S.5
-
59
-
-
34247380330
-
Regulation of autophagy by the inositol trisphosphate receptor
-
Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 2007;14(5):1029-39.
-
(2007)
Cell Death Differ.
, vol.14
, Issue.5
, pp. 1029-1039
-
-
Criollo, A.1
Maiuri, M.C.2
Tasdemir, E.3
Vitale, I.4
Fiebig, A.A.5
Andrews, D.6
-
60
-
-
49949105827
-
The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells
-
Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008;15(9):1460-71.
-
(2008)
Cell Death Differ.
, vol.15
, Issue.9
, pp. 1460-1471
-
-
Li, J.1
Ni, M.2
Lee, B.3
Barron, E.4
Hinton, D.R.5
Lee, A.S.6
-
61
-
-
33846189759
-
Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
-
Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 2007;25(2):193-205.
-
(2007)
Mol Cell.
, vol.25
, Issue.2
, pp. 193-205
-
-
Hoyer-Hansen, M.1
Bastholm, L.2
Szyniarowski, P.3
Campanella, M.4
Szabadkai, G.5
Farkas, T.6
-
62
-
-
65249084046
-
A critical role of eEF-2K in mediating autophagy in response to multiple cellular stresses
-
Py BF, Boyce M, Yuan J. A critical role of eEF-2K in mediating autophagy in response to multiple cellular stresses. Autophagy. 2009;5(3):393-6.
-
(2009)
Autophagy.
, vol.5
, Issue.3
, pp. 393-396
-
-
Py, B.F.1
Boyce, M.2
Yuan, J.3
-
63
-
-
78649338141
-
Autophagy and the Integrated Stress Response
-
Kroemer G, MariÃo G, Levine B. Autophagy and the Integrated Stress Response. Molecular Cell. 2010;40(2):280-93.
-
(2010)
Molecular Cell.
, vol.40
, Issue.2
, pp. 280-293
-
-
Kroemer, G.1
MariÃo, G.2
Levine, B.3
-
64
-
-
75149171923
-
Control of basal autophagy by calpain1 mediated cleavage of ATG5
-
Xia H-G, Zhang L, Chen G, Zhang T, Liu J, Jin M, et al. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy. 2010;6(1):61-6.
-
(2010)
Autophagy.
, vol.6
, Issue.1
, pp. 61-66
-
-
Xia, H.-G.1
Zhang, L.2
Chen, G.3
Zhang, T.4
Liu, J.5
Jin, M.6
-
65
-
-
0346096508
-
Quality control in the endoplasmic reticulum protein factory
-
Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature. 2003;426(6968):891-4.
-
(2003)
Nature.
, vol.426
, Issue.6968
, pp. 891-894
-
-
Sitia, R.1
Braakman, I.2
-
66
-
-
82255173966
-
The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation
-
Walter P, Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science. 2011;334(6059):1081-6.
-
(2011)
Science.
, vol.334
, Issue.6059
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
67
-
-
71949098172
-
Signalling Pathways in the Unfolded Protein Response: Development from Yeast to Mammals
-
Mori K. Signalling Pathways in the Unfolded Protein Response: Development from Yeast to Mammals. Journal of Biochemistry. 2009;146(6):743-50.
-
(2009)
Journal of Biochemistry.
, vol.146
, Issue.6
, pp. 743-750
-
-
Mori, K.1
-
68
-
-
36049049392
-
IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response
-
Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response. Science. 2007;318(5852):944-9.
-
(2007)
Science.
, vol.318
, Issue.5852
, pp. 944-949
-
-
Lin, J.H.1
Li, H.2
Yasumura, D.3
Cohen, H.R.4
Zhang, C.5
Panning, B.6
-
69
-
-
34250794495
-
XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks
-
Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks. Mol Cell. 2007;27(1):53-66.
-
(2007)
Mol Cell.
, vol.27
, Issue.1
, pp. 53-66
-
-
Acosta-Alvear, D.1
Zhou, Y.2
Blais, A.3
Tsikitis, M.4
Lents, N.H.5
Arias, C.6
-
70
-
-
65549101724
-
HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation
-
Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem. 2009;284(9):5523-32.
-
(2009)
J Biol Chem.
, vol.284
, Issue.9
, pp. 5523-5532
-
-
Carra, S.1
Brunsting, J.F.2
Lambert, H.3
Landry, J.4
Kampinga, H.H.5
-
71
-
-
0032693671
-
Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress
-
Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10(11):3787-99.
-
(1999)
Mol Biol Cell.
, vol.10
, Issue.11
, pp. 3787-3799
-
-
Haze, K.1
Yoshida, H.2
Yanagi, H.3
Yura, T.4
Mori, K.5
-
72
-
-
0032054744
-
CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum
-
Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982-95.
-
(1998)
Genes Dev.
, vol.12
, Issue.7
, pp. 982-995
-
-
Zinszner, H.1
Kuroda, M.2
Wang, X.3
Batchvarova, N.4
Lightfoot, R.T.5
Remotti, H.6
-
73
-
-
0041703031
-
The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: Elucidation by GADD34-deficient mice
-
Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, et al. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J. 2003;17(11):1573-5.
-
(2003)
FASEB J.
, vol.17
, Issue.11
, pp. 1573-1575
-
-
Kojima, E.1
Takeuchi, A.2
Haneda, M.3
Yagi, A.4
Hasegawa, T.5
Yamaki, K.6
-
74
-
-
33846211417
-
ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
-
Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14(2):230-9.
-
(2007)
Cell Death Differ.
, vol.14
, Issue.2
, pp. 230-239
-
-
Kouroku, Y.1
Fujita, E.2
Tanida, I.3
Ueno, T.4
Isoai, A.5
Kumagai, H.6
-
75
-
-
0032827420
-
Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis
-
Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, et al. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol. 1999;19(10):7203-15.
-
(1999)
Mol Cell Biol.
, vol.19
, Issue.10
, pp. 7203-7215
-
-
Peruzzi, F.1
Prisco, M.2
Dews, M.3
Salomoni, P.4
Grassilli, E.5
Romano, G.6
-
76
-
-
33244464562
-
Critical nodes in signalling pathways: Insights into insulin action
-
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85-96.
-
(2006)
Nat Rev Mol Cell Biol.
, vol.7
, Issue.2
, pp. 85-96
-
-
Taniguchi, C.M.1
Emanuelli, B.2
Kahn, C.R.3
-
77
-
-
0035856949
-
Insulin signalling and the regulation of glucose and lipid metabolism
-
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806.
-
(2001)
Nature.
, vol.414
, Issue.6865
, pp. 799-806
-
-
Saltiel, A.R.1
Kahn, C.R.2
-
78
-
-
0038701745
-
Regulation of aging and age-related disease by DAF-16 and heat-shock factor
-
Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300(5622):1142-5.
-
(2003)
Science.
, vol.300
, Issue.5622
, pp. 1142-1145
-
-
Hsu, A.L.1
Murphy, C.T.2
Kenyon, C.3
-
79
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6(6):458-71.
-
(2007)
Cell Metab.
, vol.6
, Issue.6
, pp. 458-471
-
-
Mammucari, C.1
Milan, G.2
Romanello, V.3
Masiero, E.4
Rudolf, R.5
Del Piccolo, P.6
-
80
-
-
0742323000
-
Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones
-
Morley JF, Morimoto RI. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell. 2004;15(2):657-64.
-
(2004)
Mol Biol Cell.
, vol.15
, Issue.2
, pp. 657-664
-
-
Morley, J.F.1
Morimoto, R.I.2
-
81
-
-
39349083915
-
Adapting proteostasis for disease intervention
-
Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916-9.
-
(2008)
Science.
, vol.319
, Issue.5865
, pp. 916-919
-
-
Balch, W.E.1
Morimoto, R.I.2
Dillin, A.3
Kelly, J.W.4
-
82
-
-
77953091249
-
Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity
-
Henis-Korenblit S, Zhang P, Hansen M, McCormick M, Lee SJ, Cary M, et al. Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc Natl Acad Sci U S A. 2010;107(21):9730-5.
-
(2010)
Proc Natl Acad Sci U S A.
, vol.107
, Issue.21
, pp. 9730-9735
-
-
Henis-Korenblit, S.1
Zhang, P.2
Hansen, M.3
McCormick, M.4
Lee, S.J.5
Cary, M.6
-
83
-
-
70350365110
-
Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression
-
Lee SJ, Murphy CT, Kenyon C. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 2009;10(5):379-91.
-
(2009)
Cell Metab.
, vol.10
, Issue.5
, pp. 379-391
-
-
Lee, S.J.1
Murphy, C.T.2
Kenyon, C.3
-
84
-
-
13944269223
-
The plasticity of aging: Insights from long-lived mutants
-
Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449-60.
-
(2005)
Cell.
, vol.120
, Issue.4
, pp. 449-460
-
-
Kenyon, C.1
-
86
-
-
0141481091
-
FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics
-
Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003;278(38):35959-67.
-
(2003)
J Biol Chem.
, vol.278
, Issue.38
, pp. 35959-35967
-
-
Jacobs, F.M.1
van der Heide, L.P.2
Wijchers, P.J.3
Burbach, J.P.4
Hoekman, M.F.5
Smidt, M.P.6
-
87
-
-
41849128523
-
The FoxO code
-
Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27(16):2276-88.
-
(2008)
Oncogene.
, vol.27
, Issue.16
, pp. 2276-2288
-
-
Calnan, D.R.1
Brunet, A.2
-
88
-
-
11144294668
-
From worm to human: Bioinformatics approaches to identify FOXO target genes
-
Xuan Z, Zhang MQ. From worm to human: bioinformatics approaches to identify FOXO target genes. Mech Ageing Dev. 2005;126(1):209-15.
-
(2005)
Mech Ageing Dev.
, vol.126
, Issue.1
, pp. 209-215
-
-
Xuan, Z.1
Zhang, M.Q.2
-
89
-
-
2942726155
-
The ins and outs of FoxO shuttling: Mechanisms of FoxO translocation and transcriptional regulation
-
Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004;380(Pt 2):297-309.
-
(2004)
Biochem J.
, vol.380
, Issue.PART 2
, pp. 297-309
-
-
Van Der Heide, L.P.1
Hoekman, M.F.2
Smidt, M.P.3
-
90
-
-
33846295218
-
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
-
Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309-23.
-
(2007)
Cell.
, vol.128
, Issue.2
, pp. 309-323
-
-
Paik, J.H.1
Kollipara, R.2
Chu, G.3
Ji, H.4
Xiao, Y.5
Ding, Z.6
-
91
-
-
1542267804
-
Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification
-
Hosaka T, Biggs WH, 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A. 2004;101(9):2975-80.
-
(2004)
Proc Natl Acad Sci U S A.
, vol.101
, Issue.9
, pp. 2975-2980
-
-
Hosaka, T.1
Biggs III, W.H.2
Tieu, D.3
Boyer, A.D.4
Varki, N.M.5
Cavenee, W.K.6
-
92
-
-
34548289502
-
Dynamic FoxO transcription factors
-
Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120(Pt 15):2479-87.
-
(2007)
J Cell Sci.
, vol.120
, Issue.PART 15
, pp. 2479-2487
-
-
Huang, H.1
Tindall, D.J.2
-
93
-
-
41549135942
-
FoxO transcription factors in the maintenance of cellular homeostasis during aging
-
Salih DA, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol. 2008;20(2):126-36.
-
(2008)
Curr Opin Cell Biol.
, vol.20
, Issue.2
, pp. 126-136
-
-
Salih, D.A.1
Brunet, A.2
-
94
-
-
34249281690
-
Stressing the role of FoxO proteins in lifespan and disease
-
van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol. 2007;8(6):440-50.
-
(2007)
Nat Rev Mol Cell Biol.
, vol.8
, Issue.6
, pp. 440-450
-
-
van der Horst, A.1
Burgering, B.M.2
-
95
-
-
0038152845
-
Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a
-
Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215-8.
-
(2003)
Science.
, vol.301
, Issue.5630
, pp. 215-218
-
-
Castrillon, D.H.1
Miao, L.2
Kollipara, R.3
Horner, J.W.4
DePinho, R.A.5
-
96
-
-
41849114197
-
Foxo in the immune system
-
Peng SL. Foxo in the immune system. Oncogene. 2008;27(16):2337-44.
-
(2008)
Oncogene.
, vol.27
, Issue.16
, pp. 2337-2344
-
-
Peng, S.L.1
-
97
-
-
27844497945
-
FOXO transcription factors at the interface between longevity and tumor suppression
-
Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24(50):7410-25.
-
(2005)
Oncogene.
, vol.24
, Issue.50
, pp. 7410-7425
-
-
Greer, E.L.1
Brunet, A.2
-
98
-
-
2342496712
-
FoxOs at the crossroads of cellular metabolism, differentiation, and transformation
-
Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117(4):421-6.
-
(2004)
Cell.
, vol.117
, Issue.4
, pp. 421-426
-
-
Accili, D.1
Arden, K.C.2
-
99
-
-
36448968532
-
FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells
-
Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al. FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells. Cell Metabolism. 2007;6(6):472-83.
-
(2007)
Cell Metabolism.
, vol.6
, Issue.6
, pp. 472-483
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
Cao, P.4
Sandri, M.5
Schiaffino, S.6
-
100
-
-
13444254003
-
Direct control of caveolin-1 expression by FOXO transcription factors
-
van den Heuvel AP, Schulze A, Burgering BM. Direct control of caveolin-1 expression by FOXO transcription factors. Biochem J. 2005;385(Pt 3):795-802.
-
(2005)
Biochem J.
, vol.385
, Issue.PART 3
, pp. 795-802
-
-
van den Heuvel, A.P.1
Schulze, A.2
Burgering, B.M.3
-
101
-
-
37349025432
-
FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2
-
Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell. 2007;28(6):941-53.
-
(2007)
Mol Cell.
, vol.28
, Issue.6
, pp. 941-953
-
-
Bakker, W.J.1
Harris, I.S.2
Mak, T.W.3
-
102
-
-
1642580499
-
FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1
-
Bakker WJ, Blazquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, et al. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol. 2004;164(2):175-84.
-
(2004)
J Cell Biol.
, vol.164
, Issue.2
, pp. 175-184
-
-
Bakker, W.J.1
Blazquez-Domingo, M.2
Kolbus, A.3
Besooyen, J.4
Steinlein, P.5
Beug, H.6
-
103
-
-
33745576798
-
Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
-
Kim M-S, Pak YK, Jang P-G, Namkoong C, Choi Y-S, Won J-C, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006;9(7):901-6.
-
(2006)
Nat Neurosci.
, vol.9
, Issue.7
, pp. 901-906
-
-
Kim, M.-S.1
Pak, Y.K.2
Jang, P.-G.3
Namkoong, C.4
Choi, Y.-S.5
Won, J.-C.6
-
104
-
-
41549108590
-
PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and-independent pathways in control of energy homeostasis and stress response
-
Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, et al. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and-independent pathways in control of energy homeostasis and stress response. Cell Metab. 2008;7(4):291-301.
-
(2008)
Cell Metab.
, vol.7
, Issue.4
, pp. 291-301
-
-
Belgardt, B.F.1
Husch, A.2
Rother, E.3
Ernst, M.B.4
Wunderlich, F.T.5
Hampel, B.6
-
105
-
-
11144356337
-
Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
-
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399-412.
-
(2004)
Cell.
, vol.117
, Issue.3
, pp. 399-412
-
-
Sandri, M.1
Sandri, C.2
Gilbert, A.3
Skurk, C.4
Calabria, E.5
Picard, A.6
-
106
-
-
84870953354
-
FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway
-
Zhou J, Liao W, Yang J, Ma K, Li X, Wang Y, Wang D, et al. FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy. 2012;8(12):1712-23.
-
(2012)
Autophagy.
, vol.8
, Issue.12
, pp. 1712-1723
-
-
Zhou, J.1
Liao, W.2
Yang, J.3
Ma, K.4
Li, X.5
Wang, Y.6
Wang, D.7
-
107
-
-
52449086907
-
The insulin paradox: Aging, proteotoxicity and neurodegeneration
-
Cohen E, Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci. 2008;9(10):759-67.
-
(2008)
Nat Rev Neurosci.
, vol.9
, Issue.10
, pp. 759-767
-
-
Cohen, E.1
Dillin, A.2
-
108
-
-
0038701745
-
Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor
-
Hsu A-L, Murphy CT, Kenyon C. Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor. Science. 2003;300(5622):1142-5.
-
(2003)
Science.
, vol.300
, Issue.5622
, pp. 1142-1145
-
-
Hsu, A.-L.1
Murphy, C.T.2
Kenyon, C.3
-
109
-
-
0037442768
-
Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress
-
Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 2003;17(4):516-28.
-
(2003)
Genes Dev.
, vol.17
, Issue.4
, pp. 516-528
-
-
Ahn, S.G.1
Thiele, D.J.2
-
110
-
-
70349266064
-
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging
-
Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 2009;106(35):14914-9.
-
(2009)
Proc Natl Acad Sci U S A.
, vol.106
, Issue.35
, pp. 14914-14919
-
-
Ben-Zvi, A.1
Miller, E.A.2
Morimoto, R.I.3
-
111
-
-
60749101582
-
Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1
-
Westerheide SD, Anckar J, Stevens SM, Jr., Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science. 2009;323(5917):1063-6.
-
(2009)
Science.
, vol.323
, Issue.5917
, pp. 1063-1066
-
-
Westerheide, S.D.1
Anckar, J.2
Stevens Jr., S.M.3
Sistonen, L.4
Morimoto, R.I.5
-
112
-
-
64549097439
-
Guidelines for the nomenclature of the human heat shock proteins
-
Kampinga H, Hageman J, Vos M, Kubota H, Tanguay R, Bruford E, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress and Chaperones. 2009;14(1):105-11.
-
(2009)
Cell Stress and Chaperones.
, vol.14
, Issue.1
, pp. 105-111
-
-
Kampinga, H.1
Hageman, J.2
Vos, M.3
Kubota, H.4
Tanguay, R.5
Bruford, E.6
-
113
-
-
84860668972
-
Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins
-
Carra S, Crippa V, Rusmini P, Boncoraglio A, Minoia M, Giorgetti E, et al. Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol. 2012;97(2):83-100.
-
(2012)
Prog Neurobiol.
, vol.97
, Issue.2
, pp. 83-100
-
-
Carra, S.1
Crippa, V.2
Rusmini, P.3
Boncoraglio, A.4
Minoia, M.5
Giorgetti, E.6
-
114
-
-
58149375078
-
Proteasome inhibitor MG132 induces BAG3 expression through activation of heat shock factor 1
-
Du ZX, Zhang HY, Meng X, Gao YY, Zou RL, Liu BQ, et al. Proteasome inhibitor MG132 induces BAG3 expression through activation of heat shock factor 1. J Cell Physiol. 2009;218(3):631-7.
-
(2009)
J Cell Physiol.
, vol.218
, Issue.3
, pp. 631-637
-
-
Du, Z.X.1
Zhang, H.Y.2
Meng, X.3
Gao, Y.Y.4
Zou, R.L.5
Liu, B.Q.6
-
115
-
-
78149266599
-
HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones
-
Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, et al. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet. 2010;19(23):4677-93.
-
(2010)
Hum Mol Genet.
, vol.19
, Issue.23
, pp. 4677-4693
-
-
Vos, M.J.1
Zijlstra, M.P.2
Kanon, B.3
van Waarde-Verhagen, M.A.4
Brunt, E.R.5
Oosterveld-Hut, H.M.6
-
116
-
-
34347404887
-
Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
-
Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007;21(13):1621-35.
-
(2007)
Genes Dev.
, vol.21
, Issue.13
, pp. 1621-1635
-
-
Karantza-Wadsworth, V.1
Patel, S.2
Kravchuk, O.3
Chen, G.4
Mathew, R.5
Jin, S.6
-
117
-
-
33845459165
-
Autophagy is activated for cell survival after endoplasmic reticulum stress
-
Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220-31.
-
(2006)
Mol Cell Biol.
, vol.26
, Issue.24
, pp. 9220-9231
-
-
Ogata, M.1
Hino, S.2
Saito, A.3
Morikawa, K.4
Kondo, S.5
Kanemoto, S.6
-
118
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344-8.
-
(2010)
Science.
, vol.330
, Issue.6009
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
119
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885-9.
-
(2006)
Nature.
, vol.441
, Issue.7095
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
-
120
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131-5.
-
(2009)
Nature.
, vol.458
, Issue.7242
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
-
121
-
-
0025785734
-
Uptake and degradation of cytoplasmic RNA by hepatic lysosomes. Quantitative relationship to RNA turnover
-
Heydrick SJ, Lardeux BR, Mortimore GE. Uptake and degradation of cytoplasmic RNA by hepatic lysosomes. Quantitative relationship to RNA turnover. J Biol Chem. 1991;266(14):8790-6.
-
(1991)
J Biol Chem.
, vol.266
, Issue.14
, pp. 8790-8796
-
-
Heydrick, S.J.1
Lardeux, B.R.2
Mortimore, G.E.3
-
122
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7(3):279-96.
-
(2011)
Autophagy.
, vol.7
, Issue.3
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
123
-
-
60549093730
-
Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
-
Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell. 2009;33(4):517-27.
-
(2009)
Mol Cell.
, vol.33
, Issue.4
, pp. 517-527
-
-
Korolchuk, V.I.1
Mansilla, A.2
Menzies, F.M.3
Rubinsztein, D.C.4
-
124
-
-
33748413303
-
Intracellular quality control by autophagy: How does autophagy prevent neurodegeneration?
-
Mizushima N, Hara T. Intracellular quality control by autophagy: how does autophagy prevent neurodegeneration? Autophagy. 2006;2(4):302-4.
-
(2006)
Autophagy.
, vol.2
, Issue.4
, pp. 302-304
-
-
Mizushima, N.1
Hara, T.2
-
125
-
-
77956416339
-
Autophagy in mammalian development and differentiation
-
Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823-30.
-
(2010)
Nat Cell Biol.
, vol.12
, Issue.9
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
126
-
-
36849088609
-
Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
-
Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 2007;131(6):1137-48.
-
(2007)
Cell.
, vol.131
, Issue.6
, pp. 1137-1148
-
-
Berry, D.L.1
Baehrecke, E.H.2
-
127
-
-
48749126160
-
Autophagy and viral neurovirulence
-
Orvedahl A, Levine B. Autophagy and viral neurovirulence. Cell Microbiol. 2008;10(9):1747-56.
-
(2008)
Cell Microbiol.
, vol.10
, Issue.9
, pp. 1747-1756
-
-
Orvedahl, A.1
Levine, B.2
-
128
-
-
79951642032
-
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
-
Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222-30.
-
(2011)
Nat Immunol.
, vol.12
, Issue.3
, pp. 222-230
-
-
Nakahira, K.1
Haspel, J.A.2
Rathinam, V.A.3
Lee, S.J.4
Dolinay, T.5
Lam, H.C.6
-
129
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
-
Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264-8.
-
(2008)
Nature.
, vol.456
, Issue.7219
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
Uematsu, S.4
Yang, B.G.5
Satoh, T.6
-
130
-
-
49949098271
-
BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development
-
Arsov I, Li X, Matthews G, Coradin J, Hartmann B, Simon AK, et al. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ. 2008;15(9):1385-95.
-
(2008)
Cell Death Differ.
, vol.15
, Issue.9
, pp. 1385-1395
-
-
Arsov, I.1
Li, X.2
Matthews, G.3
Coradin, J.4
Hartmann, B.5
Simon, A.K.6
-
131
-
-
34548188741
-
Self-eating and self-killing: Crosstalk between autophagy and apoptosis
-
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741-52.
-
(2007)
Nat Rev Mol Cell Biol.
, vol.8
, Issue.9
, pp. 741-752
-
-
Maiuri, M.C.1
Zalckvar, E.2
Kimchi, A.3
Kroemer, G.4
-
132
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.
-
(2008)
Cell.
, vol.132
, Issue.1
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
133
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-75.
-
(2008)
Nature.
, vol.451
, Issue.7182
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
134
-
-
9244224723
-
Intrinsic tumour suppression
-
Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432(7015):307-15.
-
(2004)
Nature.
, vol.432
, Issue.7015
, pp. 307-315
-
-
Lowe, S.W.1
Cepero, E.2
Evan, G.3
-
135
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809-20.
-
(2003)
J Clin Invest.
, vol.112
, Issue.12
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
-
136
-
-
84876416042
-
XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells
-
Zhao Y, Li X, Cai MY, Ma K, Yang J, Zhou J, et al. XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res. 2013;23(4):491-507.
-
(2013)
Cell Res.
, vol.23
, Issue.4
, pp. 491-507
-
-
Zhao, Y.1
Li, X.2
Cai, M.Y.3
Ma, K.4
Yang, J.5
Zhou, J.6
-
138
-
-
77949542302
-
The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival
-
Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P, et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 2010;17(4):666-76.
-
(2010)
Cell Death Differ.
, vol.17
, Issue.4
, pp. 666-676
-
-
Kang, R.1
Tang, D.2
Schapiro, N.E.3
Livesey, K.M.4
Farkas, A.5
Loughran, P.6
-
139
-
-
8344242220
-
Autophagy in health and disease: A double-edged sword
-
Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306(5698):990-5.
-
(2004)
Science.
, vol.306
, Issue.5698
, pp. 990-995
-
-
Shintani, T.1
Klionsky, D.J.2
-
140
-
-
78049486018
-
Autophagy in liver diseases
-
Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R. Autophagy in liver diseases. J Hepatol. 2010;53(6):1123-34.
-
(2010)
J Hepatol.
, vol.53
, Issue.6
, pp. 1123-1134
-
-
Rautou, P.E.1
Mansouri, A.2
Lebrec, D.3
Durand, F.4
Valla, D.5
Moreau, R.6
-
141
-
-
79959919411
-
Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway
-
Yang J, Zhao Y, Ma K, Jiang FJ, Liao W, Zhang P, et al. Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway. Autophagy. 2011;7(7):748-59.
-
(2011)
Autophagy.
, vol.7
, Issue.7
, pp. 748-759
-
-
Yang, J.1
Zhao, Y.2
Ma, K.3
Jiang, F.J.4
Liao, W.5
Zhang, P.6
-
142
-
-
38949099761
-
Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila
-
Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4(2):176-84.
-
(2008)
Autophagy.
, vol.4
, Issue.2
, pp. 176-184
-
-
Simonsen, A.1
Cumming, R.C.2
Brech, A.3
Isakson, P.4
Schubert, D.R.5
Finley, K.D.6
-
143
-
-
49049096562
-
Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
-
Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008;28(27):6926-37.
-
(2008)
J Neurosci.
, vol.28
, Issue.27
, pp. 6926-6937
-
-
Boland, B.1
Kumar, A.2
Lee, S.3
Platt, F.M.4
Wegiel, J.5
Yu, W.H.6
-
144
-
-
0036566266
-
Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
-
Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11(9):1107-17.
-
(2002)
Hum Mol Genet.
, vol.11
, Issue.9
, pp. 1107-1117
-
-
Ravikumar, B.1
Duden, R.2
Rubinsztein, D.C.3
-
145
-
-
77950903972
-
The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
-
Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010;38(2):265-79.
-
(2010)
Mol Cell.
, vol.38
, Issue.2
, pp. 265-279
-
-
Filimonenko, M.1
Isakson, P.2
Finley, K.D.3
Anderson, M.4
Jeong, H.5
Melia, T.J.6
-
146
-
-
78650843219
-
Small heat shock proteins, protein degradation and protein aggregation diseases
-
Vos MJ, Zijlstra MP, Carra S, Sibon OC, Kampinga HH. Small heat shock proteins, protein degradation and protein aggregation diseases. Autophagy. 2011;7(1):101-3.
-
(2011)
Autophagy.
, vol.7
, Issue.1
, pp. 101-103
-
-
Vos, M.J.1
Zijlstra, M.P.2
Carra, S.3
Sibon, O.C.4
Kampinga, H.H.5
-
147
-
-
84866182143
-
RPN-6 determines C. elegans longevity under proteotoxic stress conditions
-
Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature. 2012;489(7415):263-8.
-
(2012)
Nature.
, vol.489
, Issue.7415
, pp. 263-268
-
-
Vilchez, D.1
Morantte, I.2
Liu, Z.3
Douglas, P.M.4
Merkwirth, C.5
Rodrigues, A.P.6
-
148
-
-
0041507039
-
Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals
-
Walker GA, Lithgow GJ. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell. 2003;2(2):131-9.
-
(2003)
Aging Cell.
, vol.2
, Issue.2
, pp. 131-139
-
-
Walker, G.A.1
Lithgow, G.J.2
|