메뉴 건너뛰기




Volumn 9, Issue 10, 2013, Pages 1121-1133

The regulation of the autophagic network and its implications for human disease

Author keywords

ATGs; Autophagy; FOXO1; Heat Shock Proteins (HSP); HSF1; Human diseases; mTOR; UPR

Indexed keywords

ATGS; AUTOPHAGY; DISEASES; FOXO1; HEAT SHOCK PROTEINS (HSP); HSF1; HUMAN; HUMAN DISEASES.; MTOR; REVIEW; SIGNAL TRANSDUCTION; UPR;

EID: 84904230331     PISSN: 14492288     EISSN: None     Source Type: Journal    
DOI: 10.7150/ijbs.6666     Document Type: Review
Times cited : (29)

References (148)
  • 1
    • 77954225200 scopus 로고    scopus 로고
    • Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
    • Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 2010;12(7):665-75.
    • (2010) Nat Cell Biol. , vol.12 , Issue.7 , pp. 665-675
    • Zhao, Y.1    Yang, J.2    Liao, W.3    Liu, X.4    Zhang, H.5    Wang, S.6
  • 2
    • 84865251228 scopus 로고    scopus 로고
    • The Autophagy-related Protein Kinase Atg1 Interacts with the Ubiquitin-like Protein Atg8 via the Atg8 Family Interacting Motif to Facilitate Autophagosome Formation
    • Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, Kirisako H, et al. The Autophagy-related Protein Kinase Atg1 Interacts with the Ubiquitin-like Protein Atg8 via the Atg8 Family Interacting Motif to Facilitate Autophagosome Formation. J Biol Chem. 2012;287(34):28503-7.
    • (2012) J Biol Chem. , vol.287 , Issue.34 , pp. 28503-28507
    • Nakatogawa, H.1    Ohbayashi, S.2    Sakoh-Nakatogawa, M.3    Kakuta, S.4    Suzuki, S.W.5    Kirisako, H.6
  • 3
    • 84870943446 scopus 로고    scopus 로고
    • The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size
    • Backues SK, Lynch-Day MA, Klionsky DJ. The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size. Autophagy. 2012;8(12):1835-6.
    • (2012) Autophagy. , vol.8 , Issue.12 , pp. 1835-1836
    • Backues, S.K.1    Lynch-Day, M.A.2    Klionsky, D.J.3
  • 4
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942-6.
    • (2010) Nature. , vol.465 , Issue.7300 , pp. 942-946
    • Yu, L.1    McPhee, C.K.2    Zheng, L.3    Mardones, G.A.4    Rong, Y.5    Peng, J.6
  • 5
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: Lessons from yeast
    • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458-67.
    • (2009) Nat Rev Mol Cell Biol. , vol.10 , Issue.7 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 6
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: Core machinery and adaptations
    • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9(10):1102-9.
    • (2007) Nat Cell Biol. , vol.9 , Issue.10 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 7
    • 1642329712 scopus 로고    scopus 로고
    • Determination of four sequential stages during microautophagy in vitro
    • Kunz JB, Schwarz H, Mayer A. Determination of four sequential stages during microautophagy in vitro. J Biol Chem. 2004;279(11):9987-96.
    • (2004) J Biol Chem. , vol.279 , Issue.11 , pp. 9987-9996
    • Kunz, J.B.1    Schwarz, H.2    Mayer, A.3
  • 8
    • 21244448694 scopus 로고    scopus 로고
    • The TOR and EGO protein complexes orchestrate microautophagy in yeast
    • Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell. 2005;19(1):15-26.
    • (2005) Mol Cell. , vol.19 , Issue.1 , pp. 15-26
    • Dubouloz, F.1    Deloche, O.2    Wanke, V.3    Cameroni, E.4    De Virgilio, C.5
  • 9
    • 0023858711 scopus 로고
    • Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation
    • Mortimore GE, Lardeux BR, Adams CE. Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem. 1988;263(5):2506-12.
    • (1988) J Biol Chem. , vol.263 , Issue.5 , pp. 2506-2512
    • Mortimore, G.E.1    Lardeux, B.R.2    Adams, C.E.3
  • 10
    • 0025294506 scopus 로고
    • Peptide sequences that target cytosolic proteins for lysosomal proteolysis
    • Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 1990;15(8):305-9.
    • (1990) Trends Biochem Sci. , vol.15 , Issue.8 , pp. 305-309
    • Dice, J.F.1
  • 11
    • 0029979607 scopus 로고    scopus 로고
    • Common principles of protein translocation across membranes
    • Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science. 1996;271(5255):1519-26.
    • (1996) Science. , vol.271 , Issue.5255 , pp. 1519-1526
    • Schatz, G.1    Dobberstein, B.2
  • 12
    • 0034914206 scopus 로고    scopus 로고
    • A molecular chaperone complex at the lysosomal membrane is required for protein translocation
    • Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci. 2001;114(Pt 13):2491-9.
    • (2001) J Cell Sci. , vol.114 , Issue.PART 13 , pp. 2491-2499
    • Agarraberes, F.A.1    Dice, J.F.2
  • 13
    • 0029837453 scopus 로고    scopus 로고
    • A receptor for the selective uptake and degradation of proteins by lysosomes
    • Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273(5274):501-3.
    • (1996) Science. , vol.273 , Issue.5274 , pp. 501-503
    • Cuervo, A.M.1    Dice, J.F.2
  • 14
    • 77956414236 scopus 로고    scopus 로고
    • The origin of the autophagosomal membrane
    • Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol. 2010;12(9):831-5.
    • (2010) Nat Cell Biol. , vol.12 , Issue.9 , pp. 831-835
    • Tooze, S.A.1    Yoshimori, T.2
  • 15
    • 77950465542 scopus 로고    scopus 로고
    • Current knowledge of the pre-autophagosomal structure (PAS)
    • Suzuki K, Ohsumi Y. Current knowledge of the pre-autophagosomal structure (PAS). FEBS Letters. 2010;584(7):1280-6.
    • (2010) FEBS Letters. , vol.584 , Issue.7 , pp. 1280-1286
    • Suzuki, K.1    Ohsumi, Y.2
  • 16
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • Noboru M. The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology. 2010;22(2):132-9.
    • (2010) Current Opinion in Cell Biology. , vol.22 , Issue.2 , pp. 132-139
    • Noboru, M.1
  • 17
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-41.
    • (2011) Nat Cell Biol. , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.-L.4
  • 19
    • 66449083078 scopus 로고    scopus 로고
    • ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297-305.
    • (2009) J Biol Chem. , vol.284 , Issue.18 , pp. 12297-12305
    • Ganley, I.G.1    du Lam, H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 20
    • 33845692364 scopus 로고    scopus 로고
    • Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast
    • He C, Song H, Yorimitsu T, Monastyrska I, Yen W-L, Legakis JE, et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. The Journal of Cell Biology. 2006;175(6):925-35.
    • (2006) The Journal of Cell Biology. , vol.175 , Issue.6 , pp. 925-935
    • He, C.1    Song, H.2    Yorimitsu, T.3    Monastyrska, I.4    Yen, W.-L.5    Legakis, J.E.6
  • 22
    • 0035809160 scopus 로고    scopus 로고
    • Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae
    • Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152(3):519-30.
    • (2001) J Cell Biol. , vol.152 , Issue.3 , pp. 519-530
    • Kihara, A.1    Noda, T.2    Ishihara, N.3    Ohsumi, Y.4
  • 23
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009;11(4):468-76.
    • (2009) Nat Cell Biol. , vol.11 , Issue.4 , pp. 468-476
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5    Chait, B.T.6
  • 24
    • 59249089394 scopus 로고    scopus 로고
    • Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG
    • Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG. Molecular Biology of the Cell. 2008;19(12):5360-72.
    • (2008) Molecular Biology of the Cell. , vol.19 , Issue.12 , pp. 5360-5372
    • Itakura, E.1    Kishi, C.2    Inoue, K.3    Mizushima, N.4
  • 25
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077-82.
    • (2003) Proc Natl Acad Sci U S A. , vol.100 , Issue.25 , pp. 15077-15082
    • Yue, Z.1    Jin, S.2    Yang, C.3    Levine, A.J.4    Heintz, N.5
  • 26
    • 25144457455 scopus 로고    scopus 로고
    • Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
    • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927-39.
    • (2005) Cell. , vol.122 , Issue.6 , pp. 927-939
    • Pattingre, S.1    Tassa, A.2    Qu, X.3    Garuti, R.4    Liang, X.H.5    Mizushima, N.6
  • 27
    • 33947715151 scopus 로고    scopus 로고
    • HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein
    • Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007;1(1):23-35.
    • (2007) Cell Host Microbe. , vol.1 , Issue.1 , pp. 23-35
    • Orvedahl, A.1    Alexander, D.2    Talloczy, Z.3    Sun, Q.4    Wei, Y.5    Zhang, W.6
  • 28
    • 58149095737 scopus 로고    scopus 로고
    • Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11
    • Sinha S, Colbert CL, Becker N, Wei Y, Levine B. Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy. 2008;4(8):989-97.
    • (2008) Autophagy. , vol.4 , Issue.8 , pp. 989-997
    • Sinha, S.1    Colbert, C.L.2    Becker, N.3    Wei, Y.4    Levine, B.5
  • 29
    • 53049102656 scopus 로고    scopus 로고
    • The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function
    • Obara K, Sekito T, Niimi K, Ohsumi Y. The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function. J Biol Chem. 2008;283(35):23972-80.
    • (2008) J Biol Chem. , vol.283 , Issue.35 , pp. 23972-23980
    • Obara, K.1    Sekito, T.2    Niimi, K.3    Ohsumi, Y.4
  • 30
    • 0037166241 scopus 로고    scopus 로고
    • Formation of the approximately 350-kDa Apg12-Apg5. Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
    • Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the approximately 350-kDa Apg12-Apg5. Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 2002;277(21):18619-25.
    • (2002) J Biol Chem. , vol.277 , Issue.21 , pp. 18619-18625
    • Kuma, A.1    Mizushima, N.2    Ishihara, N.3    Ohsumi, Y.4
  • 31
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. Embo J. 2010;29(11):1792-802.
    • (2010) Embo J. , vol.29 , Issue.11 , pp. 1792-1802
    • Weidberg, H.1    Shvets, E.2    Shpilka, T.3    Shimron, F.4    Shinder, V.5    Elazar, Z.6
  • 32
    • 35848967804 scopus 로고    scopus 로고
    • How to interpret LC3 immunoblotting
    • Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542-5.
    • (2007) Autophagy. , vol.3 , Issue.6 , pp. 542-545
    • Mizushima, N.1    Yoshimori, T.2
  • 33
    • 38049098543 scopus 로고    scopus 로고
    • The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282(52):37298-302.
    • (2007) J Biol Chem. , vol.282 , Issue.52 , pp. 37298-37302
    • Hanada, T.1    Noda, N.N.2    Satomi, Y.3    Ichimura, Y.4    Fujioka, Y.5    Takao, T.6
  • 34
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
    • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425-34.
    • (2005) J Cell Biol. , vol.169 , Issue.3 , pp. 425-434
    • Komatsu, M.1    Waguri, S.2    Ueno, T.3    Iwata, J.4    Murata, S.5    Tanida, I.6
  • 35
    • 62849120511 scopus 로고    scopus 로고
    • The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation
    • Hanada T, Satomi Y, Takao T, Ohsumi Y. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. FEBS Lett. 2009;583(7):1078-83.
    • (2009) FEBS Lett. , vol.583 , Issue.7 , pp. 1078-1083
    • Hanada, T.1    Satomi, Y.2    Takao, T.3    Ohsumi, Y.4
  • 36
    • 79251577061 scopus 로고    scopus 로고
    • The regulation of autophagy-unanswered questions
    • Chen Y, Klionsky DJ. The regulation of autophagy-unanswered questions. J Cell Sci. 2011;124(Pt 2):161-70.
    • (2011) J Cell Sci. , vol.124 , Issue.PART 2 , pp. 161-170
    • Chen, Y.1    Klionsky, D.J.2
  • 37
    • 34248583762 scopus 로고    scopus 로고
    • Methods for monitoring autophagy from yeast to human
    • Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181-206.
    • (2007) Autophagy. , vol.3 , Issue.3 , pp. 181-206
    • Klionsky, D.J.1    Cuervo, A.M.2    Seglen, P.O.3
  • 38
    • 33746108329 scopus 로고    scopus 로고
    • Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
    • Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005;1(2):84-91.
    • (2005) Autophagy. , vol.1 , Issue.2 , pp. 84-91
    • Tanida, I.1    Minematsu-Ikeguchi, N.2    Ueno, T.3    Kominami, E.4
  • 39
    • 34548259958 scopus 로고    scopus 로고
    • p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131-45.
    • (2007) J Biol Chem. , vol.282 , Issue.33 , pp. 24131-24145
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3    Brech, A.4    Bruun, J.A.5    Outzen, H.6
  • 40
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84.
    • (2006) Cell. , vol.124 , Issue.3 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 43
    • 4043171462 scopus 로고    scopus 로고
    • Upstream and downstream of mTOR
    • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926-45.
    • (2004) Genes Dev. , vol.18 , Issue.16 , pp. 1926-1945
    • Hay, N.1    Sonenberg, N.2
  • 44
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648-57.
    • (2002) Nat Cell Biol. , vol.4 , Issue.9 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 45
    • 44949215822 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
    • Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol. 2008;28(12):4104-15.
    • (2008) Mol Cell Biol. , vol.28 , Issue.12 , pp. 4104-4115
    • Huang, J.1    Dibble, C.C.2    Matsuzaki, M.3    Manning, B.D.4
  • 47
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873-86.
    • (2009) Cell. , vol.137 , Issue.5 , pp. 873-886
    • Peterson, T.R.1    Laplante, M.2    Thoreen, C.C.3    Sancak, Y.4    Kang, S.A.5    Kuehl, W.M.6
  • 48
    • 56249147509 scopus 로고    scopus 로고
    • Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
    • Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008;105(45):17414-9.
    • (2008) Proc Natl Acad Sci U S A. , vol.105 , Issue.45 , pp. 17414-17419
    • Choo, A.Y.1    Yoon, S.O.2    Kim, S.G.3    Roux, P.P.4    Blenis, J.5
  • 50
    • 27744569843 scopus 로고    scopus 로고
    • mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
    • Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569-80.
    • (2005) Cell. , vol.123 , Issue.4 , pp. 569-580
    • Holz, M.K.1    Ballif, B.A.2    Gygi, S.P.3    Blenis, J.4
  • 51
    • 0032520009 scopus 로고    scopus 로고
    • 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway
    • Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12(4):502-13.
    • (1998) Genes Dev. , vol.12 , Issue.4 , pp. 502-513
    • Gingras, A.C.1    Kennedy, S.G.2    O'Leary, M.A.3    Sonenberg, N.4    Hay, N.5
  • 52
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992-2003.
    • (2009) Mol Biol Cell. , vol.20 , Issue.7 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5    Cao, J.6
  • 53
    • 33751348056 scopus 로고    scopus 로고
    • Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
    • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11(6):859-71.
    • (2006) Dev Cell. , vol.11 , Issue.6 , pp. 859-871
    • Guertin, D.A.1    Stevens, D.M.2    Thoreen, C.C.3    Burds, A.A.4    Kalaany, N.Y.5    Moffat, J.6
  • 54
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122-8.
    • (2004) Nat Cell Biol. , vol.6 , Issue.11 , pp. 1122-1128
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3    Lin, S.4    Ruegg, M.A.5    Hall, A.6
  • 56
    • 0034304906 scopus 로고    scopus 로고
    • The versatility and universality of calcium signalling
    • Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11-21.
    • (2000) Nat Rev Mol Cell Biol. , vol.1 , Issue.1 , pp. 11-21
    • Berridge, M.J.1    Lipp, P.2    Bootman, M.D.3
  • 58
    • 67649870315 scopus 로고    scopus 로고
    • The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy
    • Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S. The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic. 2009;10(8):1157-67.
    • (2009) Traffic. , vol.10 , Issue.8 , pp. 1157-1167
    • Kim, H.J.1    Soyombo, A.A.2    Tjon-Kon-Sang, S.3    So, I.4    Muallem, S.5
  • 60
    • 49949105827 scopus 로고    scopus 로고
    • The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells
    • Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008;15(9):1460-71.
    • (2008) Cell Death Differ. , vol.15 , Issue.9 , pp. 1460-1471
    • Li, J.1    Ni, M.2    Lee, B.3    Barron, E.4    Hinton, D.R.5    Lee, A.S.6
  • 62
    • 65249084046 scopus 로고    scopus 로고
    • A critical role of eEF-2K in mediating autophagy in response to multiple cellular stresses
    • Py BF, Boyce M, Yuan J. A critical role of eEF-2K in mediating autophagy in response to multiple cellular stresses. Autophagy. 2009;5(3):393-6.
    • (2009) Autophagy. , vol.5 , Issue.3 , pp. 393-396
    • Py, B.F.1    Boyce, M.2    Yuan, J.3
  • 63
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the Integrated Stress Response
    • Kroemer G, MariÃo G, Levine B. Autophagy and the Integrated Stress Response. Molecular Cell. 2010;40(2):280-93.
    • (2010) Molecular Cell. , vol.40 , Issue.2 , pp. 280-293
    • Kroemer, G.1    MariÃo, G.2    Levine, B.3
  • 64
    • 75149171923 scopus 로고    scopus 로고
    • Control of basal autophagy by calpain1 mediated cleavage of ATG5
    • Xia H-G, Zhang L, Chen G, Zhang T, Liu J, Jin M, et al. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy. 2010;6(1):61-6.
    • (2010) Autophagy. , vol.6 , Issue.1 , pp. 61-66
    • Xia, H.-G.1    Zhang, L.2    Chen, G.3    Zhang, T.4    Liu, J.5    Jin, M.6
  • 65
    • 0346096508 scopus 로고    scopus 로고
    • Quality control in the endoplasmic reticulum protein factory
    • Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature. 2003;426(6968):891-4.
    • (2003) Nature. , vol.426 , Issue.6968 , pp. 891-894
    • Sitia, R.1    Braakman, I.2
  • 66
    • 82255173966 scopus 로고    scopus 로고
    • The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation
    • Walter P, Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science. 2011;334(6059):1081-6.
    • (2011) Science. , vol.334 , Issue.6059 , pp. 1081-1086
    • Walter, P.1    Ron, D.2
  • 67
    • 71949098172 scopus 로고    scopus 로고
    • Signalling Pathways in the Unfolded Protein Response: Development from Yeast to Mammals
    • Mori K. Signalling Pathways in the Unfolded Protein Response: Development from Yeast to Mammals. Journal of Biochemistry. 2009;146(6):743-50.
    • (2009) Journal of Biochemistry. , vol.146 , Issue.6 , pp. 743-750
    • Mori, K.1
  • 68
    • 36049049392 scopus 로고    scopus 로고
    • IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response
    • Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response. Science. 2007;318(5852):944-9.
    • (2007) Science. , vol.318 , Issue.5852 , pp. 944-949
    • Lin, J.H.1    Li, H.2    Yasumura, D.3    Cohen, H.R.4    Zhang, C.5    Panning, B.6
  • 69
    • 34250794495 scopus 로고    scopus 로고
    • XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks
    • Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks. Mol Cell. 2007;27(1):53-66.
    • (2007) Mol Cell. , vol.27 , Issue.1 , pp. 53-66
    • Acosta-Alvear, D.1    Zhou, Y.2    Blais, A.3    Tsikitis, M.4    Lents, N.H.5    Arias, C.6
  • 70
    • 65549101724 scopus 로고    scopus 로고
    • HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation
    • Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem. 2009;284(9):5523-32.
    • (2009) J Biol Chem. , vol.284 , Issue.9 , pp. 5523-5532
    • Carra, S.1    Brunsting, J.F.2    Lambert, H.3    Landry, J.4    Kampinga, H.H.5
  • 71
    • 0032693671 scopus 로고    scopus 로고
    • Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress
    • Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10(11):3787-99.
    • (1999) Mol Biol Cell. , vol.10 , Issue.11 , pp. 3787-3799
    • Haze, K.1    Yoshida, H.2    Yanagi, H.3    Yura, T.4    Mori, K.5
  • 72
    • 0032054744 scopus 로고    scopus 로고
    • CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum
    • Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982-95.
    • (1998) Genes Dev. , vol.12 , Issue.7 , pp. 982-995
    • Zinszner, H.1    Kuroda, M.2    Wang, X.3    Batchvarova, N.4    Lightfoot, R.T.5    Remotti, H.6
  • 73
    • 0041703031 scopus 로고    scopus 로고
    • The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: Elucidation by GADD34-deficient mice
    • Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, et al. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J. 2003;17(11):1573-5.
    • (2003) FASEB J. , vol.17 , Issue.11 , pp. 1573-1575
    • Kojima, E.1    Takeuchi, A.2    Haneda, M.3    Yagi, A.4    Hasegawa, T.5    Yamaki, K.6
  • 74
    • 33846211417 scopus 로고    scopus 로고
    • ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
    • Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14(2):230-9.
    • (2007) Cell Death Differ. , vol.14 , Issue.2 , pp. 230-239
    • Kouroku, Y.1    Fujita, E.2    Tanida, I.3    Ueno, T.4    Isoai, A.5    Kumagai, H.6
  • 75
    • 0032827420 scopus 로고    scopus 로고
    • Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis
    • Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, et al. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol. 1999;19(10):7203-15.
    • (1999) Mol Cell Biol. , vol.19 , Issue.10 , pp. 7203-7215
    • Peruzzi, F.1    Prisco, M.2    Dews, M.3    Salomoni, P.4    Grassilli, E.5    Romano, G.6
  • 76
    • 33244464562 scopus 로고    scopus 로고
    • Critical nodes in signalling pathways: Insights into insulin action
    • Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85-96.
    • (2006) Nat Rev Mol Cell Biol. , vol.7 , Issue.2 , pp. 85-96
    • Taniguchi, C.M.1    Emanuelli, B.2    Kahn, C.R.3
  • 77
    • 0035856949 scopus 로고    scopus 로고
    • Insulin signalling and the regulation of glucose and lipid metabolism
    • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806.
    • (2001) Nature. , vol.414 , Issue.6865 , pp. 799-806
    • Saltiel, A.R.1    Kahn, C.R.2
  • 78
    • 0038701745 scopus 로고    scopus 로고
    • Regulation of aging and age-related disease by DAF-16 and heat-shock factor
    • Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300(5622):1142-5.
    • (2003) Science. , vol.300 , Issue.5622 , pp. 1142-1145
    • Hsu, A.L.1    Murphy, C.T.2    Kenyon, C.3
  • 80
    • 0742323000 scopus 로고    scopus 로고
    • Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones
    • Morley JF, Morimoto RI. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell. 2004;15(2):657-64.
    • (2004) Mol Biol Cell. , vol.15 , Issue.2 , pp. 657-664
    • Morley, J.F.1    Morimoto, R.I.2
  • 81
    • 39349083915 scopus 로고    scopus 로고
    • Adapting proteostasis for disease intervention
    • Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916-9.
    • (2008) Science. , vol.319 , Issue.5865 , pp. 916-919
    • Balch, W.E.1    Morimoto, R.I.2    Dillin, A.3    Kelly, J.W.4
  • 82
  • 83
    • 70350365110 scopus 로고    scopus 로고
    • Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression
    • Lee SJ, Murphy CT, Kenyon C. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 2009;10(5):379-91.
    • (2009) Cell Metab. , vol.10 , Issue.5 , pp. 379-391
    • Lee, S.J.1    Murphy, C.T.2    Kenyon, C.3
  • 84
    • 13944269223 scopus 로고    scopus 로고
    • The plasticity of aging: Insights from long-lived mutants
    • Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449-60.
    • (2005) Cell. , vol.120 , Issue.4 , pp. 449-460
    • Kenyon, C.1
  • 87
    • 41849128523 scopus 로고    scopus 로고
    • The FoxO code
    • Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27(16):2276-88.
    • (2008) Oncogene. , vol.27 , Issue.16 , pp. 2276-2288
    • Calnan, D.R.1    Brunet, A.2
  • 88
    • 11144294668 scopus 로고    scopus 로고
    • From worm to human: Bioinformatics approaches to identify FOXO target genes
    • Xuan Z, Zhang MQ. From worm to human: bioinformatics approaches to identify FOXO target genes. Mech Ageing Dev. 2005;126(1):209-15.
    • (2005) Mech Ageing Dev. , vol.126 , Issue.1 , pp. 209-215
    • Xuan, Z.1    Zhang, M.Q.2
  • 89
    • 2942726155 scopus 로고    scopus 로고
    • The ins and outs of FoxO shuttling: Mechanisms of FoxO translocation and transcriptional regulation
    • Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004;380(Pt 2):297-309.
    • (2004) Biochem J. , vol.380 , Issue.PART 2 , pp. 297-309
    • Van Der Heide, L.P.1    Hoekman, M.F.2    Smidt, M.P.3
  • 90
    • 33846295218 scopus 로고    scopus 로고
    • FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
    • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309-23.
    • (2007) Cell. , vol.128 , Issue.2 , pp. 309-323
    • Paik, J.H.1    Kollipara, R.2    Chu, G.3    Ji, H.4    Xiao, Y.5    Ding, Z.6
  • 91
    • 1542267804 scopus 로고    scopus 로고
    • Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification
    • Hosaka T, Biggs WH, 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A. 2004;101(9):2975-80.
    • (2004) Proc Natl Acad Sci U S A. , vol.101 , Issue.9 , pp. 2975-2980
    • Hosaka, T.1    Biggs III, W.H.2    Tieu, D.3    Boyer, A.D.4    Varki, N.M.5    Cavenee, W.K.6
  • 92
    • 34548289502 scopus 로고    scopus 로고
    • Dynamic FoxO transcription factors
    • Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120(Pt 15):2479-87.
    • (2007) J Cell Sci. , vol.120 , Issue.PART 15 , pp. 2479-2487
    • Huang, H.1    Tindall, D.J.2
  • 93
    • 41549135942 scopus 로고    scopus 로고
    • FoxO transcription factors in the maintenance of cellular homeostasis during aging
    • Salih DA, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol. 2008;20(2):126-36.
    • (2008) Curr Opin Cell Biol. , vol.20 , Issue.2 , pp. 126-136
    • Salih, D.A.1    Brunet, A.2
  • 94
    • 34249281690 scopus 로고    scopus 로고
    • Stressing the role of FoxO proteins in lifespan and disease
    • van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol. 2007;8(6):440-50.
    • (2007) Nat Rev Mol Cell Biol. , vol.8 , Issue.6 , pp. 440-450
    • van der Horst, A.1    Burgering, B.M.2
  • 95
    • 0038152845 scopus 로고    scopus 로고
    • Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a
    • Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215-8.
    • (2003) Science. , vol.301 , Issue.5630 , pp. 215-218
    • Castrillon, D.H.1    Miao, L.2    Kollipara, R.3    Horner, J.W.4    DePinho, R.A.5
  • 96
    • 41849114197 scopus 로고    scopus 로고
    • Foxo in the immune system
    • Peng SL. Foxo in the immune system. Oncogene. 2008;27(16):2337-44.
    • (2008) Oncogene. , vol.27 , Issue.16 , pp. 2337-2344
    • Peng, S.L.1
  • 97
    • 27844497945 scopus 로고    scopus 로고
    • FOXO transcription factors at the interface between longevity and tumor suppression
    • Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24(50):7410-25.
    • (2005) Oncogene. , vol.24 , Issue.50 , pp. 7410-7425
    • Greer, E.L.1    Brunet, A.2
  • 98
    • 2342496712 scopus 로고    scopus 로고
    • FoxOs at the crossroads of cellular metabolism, differentiation, and transformation
    • Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117(4):421-6.
    • (2004) Cell. , vol.117 , Issue.4 , pp. 421-426
    • Accili, D.1    Arden, K.C.2
  • 99
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells
    • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al. FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells. Cell Metabolism. 2007;6(6):472-83.
    • (2007) Cell Metabolism. , vol.6 , Issue.6 , pp. 472-483
    • Zhao, J.1    Brault, J.J.2    Schild, A.3    Cao, P.4    Sandri, M.5    Schiaffino, S.6
  • 100
    • 13444254003 scopus 로고    scopus 로고
    • Direct control of caveolin-1 expression by FOXO transcription factors
    • van den Heuvel AP, Schulze A, Burgering BM. Direct control of caveolin-1 expression by FOXO transcription factors. Biochem J. 2005;385(Pt 3):795-802.
    • (2005) Biochem J. , vol.385 , Issue.PART 3 , pp. 795-802
    • van den Heuvel, A.P.1    Schulze, A.2    Burgering, B.M.3
  • 101
    • 37349025432 scopus 로고    scopus 로고
    • FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2
    • Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell. 2007;28(6):941-53.
    • (2007) Mol Cell. , vol.28 , Issue.6 , pp. 941-953
    • Bakker, W.J.1    Harris, I.S.2    Mak, T.W.3
  • 102
    • 1642580499 scopus 로고    scopus 로고
    • FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1
    • Bakker WJ, Blazquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, et al. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol. 2004;164(2):175-84.
    • (2004) J Cell Biol. , vol.164 , Issue.2 , pp. 175-184
    • Bakker, W.J.1    Blazquez-Domingo, M.2    Kolbus, A.3    Besooyen, J.4    Steinlein, P.5    Beug, H.6
  • 103
    • 33745576798 scopus 로고    scopus 로고
    • Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
    • Kim M-S, Pak YK, Jang P-G, Namkoong C, Choi Y-S, Won J-C, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006;9(7):901-6.
    • (2006) Nat Neurosci. , vol.9 , Issue.7 , pp. 901-906
    • Kim, M.-S.1    Pak, Y.K.2    Jang, P.-G.3    Namkoong, C.4    Choi, Y.-S.5    Won, J.-C.6
  • 104
    • 41549108590 scopus 로고    scopus 로고
    • PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and-independent pathways in control of energy homeostasis and stress response
    • Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, et al. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and-independent pathways in control of energy homeostasis and stress response. Cell Metab. 2008;7(4):291-301.
    • (2008) Cell Metab. , vol.7 , Issue.4 , pp. 291-301
    • Belgardt, B.F.1    Husch, A.2    Rother, E.3    Ernst, M.B.4    Wunderlich, F.T.5    Hampel, B.6
  • 105
    • 11144356337 scopus 로고    scopus 로고
    • Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
    • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399-412.
    • (2004) Cell. , vol.117 , Issue.3 , pp. 399-412
    • Sandri, M.1    Sandri, C.2    Gilbert, A.3    Skurk, C.4    Calabria, E.5    Picard, A.6
  • 106
    • 84870953354 scopus 로고    scopus 로고
    • FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway
    • Zhou J, Liao W, Yang J, Ma K, Li X, Wang Y, Wang D, et al. FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy. 2012;8(12):1712-23.
    • (2012) Autophagy. , vol.8 , Issue.12 , pp. 1712-1723
    • Zhou, J.1    Liao, W.2    Yang, J.3    Ma, K.4    Li, X.5    Wang, Y.6    Wang, D.7
  • 107
    • 52449086907 scopus 로고    scopus 로고
    • The insulin paradox: Aging, proteotoxicity and neurodegeneration
    • Cohen E, Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci. 2008;9(10):759-67.
    • (2008) Nat Rev Neurosci. , vol.9 , Issue.10 , pp. 759-767
    • Cohen, E.1    Dillin, A.2
  • 108
    • 0038701745 scopus 로고    scopus 로고
    • Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor
    • Hsu A-L, Murphy CT, Kenyon C. Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor. Science. 2003;300(5622):1142-5.
    • (2003) Science. , vol.300 , Issue.5622 , pp. 1142-1145
    • Hsu, A.-L.1    Murphy, C.T.2    Kenyon, C.3
  • 109
    • 0037442768 scopus 로고    scopus 로고
    • Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress
    • Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 2003;17(4):516-28.
    • (2003) Genes Dev. , vol.17 , Issue.4 , pp. 516-528
    • Ahn, S.G.1    Thiele, D.J.2
  • 110
    • 70349266064 scopus 로고    scopus 로고
    • Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging
    • Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 2009;106(35):14914-9.
    • (2009) Proc Natl Acad Sci U S A. , vol.106 , Issue.35 , pp. 14914-14919
    • Ben-Zvi, A.1    Miller, E.A.2    Morimoto, R.I.3
  • 111
    • 60749101582 scopus 로고    scopus 로고
    • Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1
    • Westerheide SD, Anckar J, Stevens SM, Jr., Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science. 2009;323(5917):1063-6.
    • (2009) Science. , vol.323 , Issue.5917 , pp. 1063-1066
    • Westerheide, S.D.1    Anckar, J.2    Stevens Jr., S.M.3    Sistonen, L.4    Morimoto, R.I.5
  • 113
    • 84860668972 scopus 로고    scopus 로고
    • Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins
    • Carra S, Crippa V, Rusmini P, Boncoraglio A, Minoia M, Giorgetti E, et al. Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol. 2012;97(2):83-100.
    • (2012) Prog Neurobiol. , vol.97 , Issue.2 , pp. 83-100
    • Carra, S.1    Crippa, V.2    Rusmini, P.3    Boncoraglio, A.4    Minoia, M.5    Giorgetti, E.6
  • 114
    • 58149375078 scopus 로고    scopus 로고
    • Proteasome inhibitor MG132 induces BAG3 expression through activation of heat shock factor 1
    • Du ZX, Zhang HY, Meng X, Gao YY, Zou RL, Liu BQ, et al. Proteasome inhibitor MG132 induces BAG3 expression through activation of heat shock factor 1. J Cell Physiol. 2009;218(3):631-7.
    • (2009) J Cell Physiol. , vol.218 , Issue.3 , pp. 631-637
    • Du, Z.X.1    Zhang, H.Y.2    Meng, X.3    Gao, Y.Y.4    Zou, R.L.5    Liu, B.Q.6
  • 116
    • 34347404887 scopus 로고    scopus 로고
    • Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
    • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007;21(13):1621-35.
    • (2007) Genes Dev. , vol.21 , Issue.13 , pp. 1621-1635
    • Karantza-Wadsworth, V.1    Patel, S.2    Kravchuk, O.3    Chen, G.4    Mathew, R.5    Jin, S.6
  • 117
    • 33845459165 scopus 로고    scopus 로고
    • Autophagy is activated for cell survival after endoplasmic reticulum stress
    • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220-31.
    • (2006) Mol Cell Biol. , vol.26 , Issue.24 , pp. 9220-9231
    • Ogata, M.1    Hino, S.2    Saito, A.3    Morikawa, K.4    Kondo, S.5    Kanemoto, S.6
  • 118
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344-8.
    • (2010) Science. , vol.330 , Issue.6009 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 119
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885-9.
    • (2006) Nature. , vol.441 , Issue.7095 , pp. 885-889
    • Hara, T.1    Nakamura, K.2    Matsui, M.3    Yamamoto, A.4    Nakahara, Y.5    Suzuki-Migishima, R.6
  • 121
    • 0025785734 scopus 로고
    • Uptake and degradation of cytoplasmic RNA by hepatic lysosomes. Quantitative relationship to RNA turnover
    • Heydrick SJ, Lardeux BR, Mortimore GE. Uptake and degradation of cytoplasmic RNA by hepatic lysosomes. Quantitative relationship to RNA turnover. J Biol Chem. 1991;266(14):8790-6.
    • (1991) J Biol Chem. , vol.266 , Issue.14 , pp. 8790-8796
    • Heydrick, S.J.1    Lardeux, B.R.2    Mortimore, G.E.3
  • 122
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7(3):279-96.
    • (2011) Autophagy. , vol.7 , Issue.3 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 123
    • 60549093730 scopus 로고    scopus 로고
    • Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
    • Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell. 2009;33(4):517-27.
    • (2009) Mol Cell. , vol.33 , Issue.4 , pp. 517-527
    • Korolchuk, V.I.1    Mansilla, A.2    Menzies, F.M.3    Rubinsztein, D.C.4
  • 124
    • 33748413303 scopus 로고    scopus 로고
    • Intracellular quality control by autophagy: How does autophagy prevent neurodegeneration?
    • Mizushima N, Hara T. Intracellular quality control by autophagy: how does autophagy prevent neurodegeneration? Autophagy. 2006;2(4):302-4.
    • (2006) Autophagy. , vol.2 , Issue.4 , pp. 302-304
    • Mizushima, N.1    Hara, T.2
  • 125
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823-30.
    • (2010) Nat Cell Biol. , vol.12 , Issue.9 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 126
    • 36849088609 scopus 로고    scopus 로고
    • Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
    • Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 2007;131(6):1137-48.
    • (2007) Cell. , vol.131 , Issue.6 , pp. 1137-1148
    • Berry, D.L.1    Baehrecke, E.H.2
  • 127
    • 48749126160 scopus 로고    scopus 로고
    • Autophagy and viral neurovirulence
    • Orvedahl A, Levine B. Autophagy and viral neurovirulence. Cell Microbiol. 2008;10(9):1747-56.
    • (2008) Cell Microbiol. , vol.10 , Issue.9 , pp. 1747-1756
    • Orvedahl, A.1    Levine, B.2
  • 128
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222-30.
    • (2011) Nat Immunol. , vol.12 , Issue.3 , pp. 222-230
    • Nakahira, K.1    Haspel, J.A.2    Rathinam, V.A.3    Lee, S.J.4    Dolinay, T.5    Lam, H.C.6
  • 129
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264-8.
    • (2008) Nature. , vol.456 , Issue.7219 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3    Uematsu, S.4    Yang, B.G.5    Satoh, T.6
  • 130
    • 49949098271 scopus 로고    scopus 로고
    • BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development
    • Arsov I, Li X, Matthews G, Coradin J, Hartmann B, Simon AK, et al. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ. 2008;15(9):1385-95.
    • (2008) Cell Death Differ. , vol.15 , Issue.9 , pp. 1385-1395
    • Arsov, I.1    Li, X.2    Matthews, G.3    Coradin, J.4    Hartmann, B.5    Simon, A.K.6
  • 131
    • 34548188741 scopus 로고    scopus 로고
    • Self-eating and self-killing: Crosstalk between autophagy and apoptosis
    • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741-52.
    • (2007) Nat Rev Mol Cell Biol. , vol.8 , Issue.9 , pp. 741-752
    • Maiuri, M.C.1    Zalckvar, E.2    Kimchi, A.3    Kroemer, G.4
  • 132
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.
    • (2008) Cell. , vol.132 , Issue.1 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 133
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-75.
    • (2008) Nature. , vol.451 , Issue.7182 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 134
    • 9244224723 scopus 로고    scopus 로고
    • Intrinsic tumour suppression
    • Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432(7015):307-15.
    • (2004) Nature. , vol.432 , Issue.7015 , pp. 307-315
    • Lowe, S.W.1    Cepero, E.2    Evan, G.3
  • 135
    • 9144240441 scopus 로고    scopus 로고
    • Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
    • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809-20.
    • (2003) J Clin Invest. , vol.112 , Issue.12 , pp. 1809-1820
    • Qu, X.1    Yu, J.2    Bhagat, G.3    Furuya, N.4    Hibshoosh, H.5    Troxel, A.6
  • 136
    • 84876416042 scopus 로고    scopus 로고
    • XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells
    • Zhao Y, Li X, Cai MY, Ma K, Yang J, Zhou J, et al. XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res. 2013;23(4):491-507.
    • (2013) Cell Res. , vol.23 , Issue.4 , pp. 491-507
    • Zhao, Y.1    Li, X.2    Cai, M.Y.3    Ma, K.4    Yang, J.5    Zhou, J.6
  • 138
    • 77949542302 scopus 로고    scopus 로고
    • The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival
    • Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P, et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 2010;17(4):666-76.
    • (2010) Cell Death Differ. , vol.17 , Issue.4 , pp. 666-676
    • Kang, R.1    Tang, D.2    Schapiro, N.E.3    Livesey, K.M.4    Farkas, A.5    Loughran, P.6
  • 139
    • 8344242220 scopus 로고    scopus 로고
    • Autophagy in health and disease: A double-edged sword
    • Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306(5698):990-5.
    • (2004) Science. , vol.306 , Issue.5698 , pp. 990-995
    • Shintani, T.1    Klionsky, D.J.2
  • 141
    • 79959919411 scopus 로고    scopus 로고
    • Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway
    • Yang J, Zhao Y, Ma K, Jiang FJ, Liao W, Zhang P, et al. Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway. Autophagy. 2011;7(7):748-59.
    • (2011) Autophagy. , vol.7 , Issue.7 , pp. 748-759
    • Yang, J.1    Zhao, Y.2    Ma, K.3    Jiang, F.J.4    Liao, W.5    Zhang, P.6
  • 142
    • 38949099761 scopus 로고    scopus 로고
    • Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila
    • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4(2):176-84.
    • (2008) Autophagy. , vol.4 , Issue.2 , pp. 176-184
    • Simonsen, A.1    Cumming, R.C.2    Brech, A.3    Isakson, P.4    Schubert, D.R.5    Finley, K.D.6
  • 143
    • 49049096562 scopus 로고    scopus 로고
    • Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
    • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008;28(27):6926-37.
    • (2008) J Neurosci. , vol.28 , Issue.27 , pp. 6926-6937
    • Boland, B.1    Kumar, A.2    Lee, S.3    Platt, F.M.4    Wegiel, J.5    Yu, W.H.6
  • 144
    • 0036566266 scopus 로고    scopus 로고
    • Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
    • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11(9):1107-17.
    • (2002) Hum Mol Genet. , vol.11 , Issue.9 , pp. 1107-1117
    • Ravikumar, B.1    Duden, R.2    Rubinsztein, D.C.3
  • 145
    • 77950903972 scopus 로고    scopus 로고
    • The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
    • Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010;38(2):265-79.
    • (2010) Mol Cell. , vol.38 , Issue.2 , pp. 265-279
    • Filimonenko, M.1    Isakson, P.2    Finley, K.D.3    Anderson, M.4    Jeong, H.5    Melia, T.J.6
  • 146
    • 78650843219 scopus 로고    scopus 로고
    • Small heat shock proteins, protein degradation and protein aggregation diseases
    • Vos MJ, Zijlstra MP, Carra S, Sibon OC, Kampinga HH. Small heat shock proteins, protein degradation and protein aggregation diseases. Autophagy. 2011;7(1):101-3.
    • (2011) Autophagy. , vol.7 , Issue.1 , pp. 101-103
    • Vos, M.J.1    Zijlstra, M.P.2    Carra, S.3    Sibon, O.C.4    Kampinga, H.H.5
  • 147
    • 84866182143 scopus 로고    scopus 로고
    • RPN-6 determines C. elegans longevity under proteotoxic stress conditions
    • Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature. 2012;489(7415):263-8.
    • (2012) Nature. , vol.489 , Issue.7415 , pp. 263-268
    • Vilchez, D.1    Morantte, I.2    Liu, Z.3    Douglas, P.M.4    Merkwirth, C.5    Rodrigues, A.P.6
  • 148
    • 0041507039 scopus 로고    scopus 로고
    • Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals
    • Walker GA, Lithgow GJ. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell. 2003;2(2):131-9.
    • (2003) Aging Cell. , vol.2 , Issue.2 , pp. 131-139
    • Walker, G.A.1    Lithgow, G.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.