-
1
-
-
0030946194
-
TGF-βlatency: Biological significance and mechanisms of activation
-
Gleizes PE, Munger JS, Nunes I, Harpel JG, Mazzieri R, et al. 1997. TGF-βlatency: biological significance and mechanisms of activation. Stem Cells 15:190-97
-
(1997)
Stem Cells
, vol.15
, pp. 190-197
-
-
Gleizes, P.E.1
Munger, J.S.2
Nunes, I.3
Harpel, J.G.4
Mazzieri, R.5
-
2
-
-
0030908028
-
Latent transforming growth factor-β: Structural features and mechanisms of activation
-
Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB. 1997. Latent transforming growth factor-β: structural features and mechanisms of activation. Kidney Int. 51:1376-82
-
(1997)
Kidney Int.
, vol.51
, pp. 1376-1382
-
-
Munger, J.S.1
Harpel, J.G.2
Gleizes, P.E.3
Mazzieri, R.4
Nunes, I.5
Rifkin, D.B.6
-
3
-
-
51649112340
-
T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance
-
Pesu M, Watford WT, Wei L, Xu L, Fuss I, et al. 2008. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 455:246-50
-
(2008)
Nature
, vol.455
, pp. 246-250
-
-
Pesu, M.1
Watford, W.T.2
Wei, L.3
Xu, L.4
Fuss, I.5
-
4
-
-
79959250326
-
Latent TGF-β structure and activation
-
Shi M, Zhu J, Wang R, Chen X, Mi L, et al. 2011. Latent TGF-β structure and activation. Nature 474:343-49
-
(2011)
Nature
, vol.474
, pp. 343-349
-
-
Shi, M.1
Zhu, J.2
Wang, R.3
Chen, X.4
Mi, L.5
-
6
-
-
33646164362
-
Transforming growth factor-βregulation of immune responses
-
Li MO,Wan YY, Sanjabi S, Robertson AK, Flavell RA. 2006. Transforming growth factor-βregulation of immune responses. Annu. Rev. Immunol. 24:99-146
-
(2006)
Annu. Rev. Immunol.
, vol.24
, pp. 99-146
-
-
Li Mowan, Y.Y.1
Sanjabi, S.2
Robertson, A.K.3
Flavell, R.A.4
-
7
-
-
0027531528
-
Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death
-
Kulkarni AB, Huh C-G, Becker D, Geiser A, Lyght M, et al. 1993. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90:770-74
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 770-774
-
-
Kulkarni, A.B.1
Huh, C.-G.2
Becker, D.3
Geiser, A.4
Lyght, M.5
-
8
-
-
0026799402
-
Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease
-
Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, et al. 1992. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693-99
-
(1992)
Nature
, vol.359
, pp. 693-699
-
-
Shull, M.M.1
Ormsby, I.2
Kier, A.B.3
Pawlowski, S.4
Diebold, R.J.5
-
9
-
-
68549123472
-
New regulatory mechanisms of TGF-β receptor function
-
Kang JS, Liu C, Derynck R. 2009. New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol. 19:385-94
-
(2009)
Trends Cell Biol.
, vol.19
, pp. 385-394
-
-
Kang, J.S.1
Liu, C.2
Derynck, R.3
-
10
-
-
0038682002
-
Mechanisms of TGF-β signaling from cell membrane to the nucleus
-
Shi YG, Massague J. 2003. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685-700
-
(2003)
Cell
, vol.113
, pp. 685-700
-
-
Shi, Y.G.1
Massague, J.2
-
11
-
-
55849145475
-
Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth
-
Daly AC, Randall RA, Hill CS. 2008. Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol. 28:6889-902
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6889-6902
-
-
Daly, A.C.1
Randall, R.A.2
Hill, C.S.3
-
12
-
-
84866532132
-
Induction and molecular signature of pathogenic TH17 cells
-
Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, et al. 2012. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13:991-99
-
(2012)
Nat. Immunol.
, vol.13
, pp. 991-999
-
-
Lee, Y.1
Awasthi, A.2
Yosef, N.3
Quintana, F.J.4
Xiao, S.5
-
14
-
-
0031587828
-
TheMAD-related protein Smad7 associates with the TGFβreceptor and functions as an antagonist of TGFβsignaling
-
HayashiH, Abdollah S, Qiu YB, Cai JX, Xu YY, et al. 1997. TheMAD-related protein Smad7 associates with the TGFβreceptor and functions as an antagonist of TGFβsignaling. Cell 89:1165-73
-
(1997)
Cell
, vol.89
, pp. 1165-1173
-
-
Hayashih Abdollah, S.1
Qiu, Y.B.2
Cai, J.X.3
Xu, Y.Y.4
-
15
-
-
0030611757
-
Identification of Smad7, a TGF β-inducible antagonist of TGF-βsignalling
-
Nakao A, AfrakhteM,Moren A, Nakayama T, Christian JL, et al. 1997. Identification of Smad7, a TGF β-inducible antagonist of TGF-βsignalling. Nature 389:631-35
-
(1997)
Nature
, vol.389
, pp. 631-635
-
-
Nakao, A.1
Afrakhtemmoren, A.2
Nakayama, T.3
Christian, J.L.4
-
16
-
-
1642539976
-
GADD34-PP1c recruited by Smad7 dephosphorylates TGFβtype 1 receptor
-
Shi W, Sun C,He B, Xiong W, Shi X, et al. 2004. GADD34-PP1c recruited by Smad7 dephosphorylates TGFβtype 1 receptor. J. Cell Biol. 164:291-300
-
(2004)
J. Cell Biol.
, vol.164
, pp. 291-300
-
-
Shi, W.1
Sun Che, B.2
Xiong, W.3
Shi, X.4
-
17
-
-
0034517389
-
Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβreceptor for degradation
-
Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu HT, et al. 2000. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβreceptor for degradation. Mol. Cell 6:1365-75
-
(2000)
Mol. Cell
, vol.6
, pp. 1365-1375
-
-
Kavsak, P.1
Rasmussen, R.K.2
Causing, C.G.3
Bonni, S.4
Zhu, H.T.5
-
19
-
-
0029907123
-
Autoimmunity associated with TGFbeta1- deficiency in mice is dependent on MHC class II antigen expression
-
Letterio JJ, Geiser AG, Kulkarni AB,DangH, Kong L, et al. 1996. Autoimmunity associated with TGFbeta1- deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Investig. 98:2109-19
-
(1996)
J. Clin. Investig.
, vol.98
, pp. 2109-2119
-
-
Letterio, J.J.1
Geiser, A.G.2
Abdangh, K.3
Kong, L.4
-
20
-
-
0033214476
-
β2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-β1 null mouse
-
Kobayashi S, Yoshida K, Ward JM, Letterio JJ, Longenecker G, et al. 1999. β2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-β1 null mouse. J. Immunol. 163:4013-19
-
(1999)
J. Immunol.
, vol.163
, pp. 4013-4019
-
-
Kobayashi, S.1
Yoshida, K.2
Ward, J.M.3
Letterio, J.J.4
Longenecker, G.5
-
21
-
-
0034131557
-
Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease
-
Gorelik L, Flavell RA. 2000. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171-81
-
(2000)
Immunity
, vol.12
, pp. 171-181
-
-
Gorelik, L.1
Flavell, R.A.2
-
22
-
-
0034600070
-
Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor βiI receptor
-
Lucas PJ, Kim S-J, Melby SJ, Gress RE. 2000. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor βII receptor. J. Exp. Med. 191:1187-96
-
(2000)
J. Exp. Med.
, vol.191
, pp. 1187-1196
-
-
Lucas, P.J.1
Kim, S.-J.2
Melby, S.J.3
Gress, R.E.4
-
23
-
-
33748448717
-
Transforming growth factor-βcontrols development, homeostasis, and tolerance ofTcells by regulatoryTcell-dependent and -independent mechanisms
-
Li MO, Sanjabi S, Flavell RA. 2006. Transforming growth factor-βcontrols development, homeostasis, and tolerance ofTcells by regulatoryTcell-dependent and -independent mechanisms. Immunity 25:455-71
-
(2006)
Immunity
, vol.25
, pp. 455-471
-
-
Li, M.O.1
Sanjabi, S.2
Flavell, R.A.3
-
24
-
-
33748465396
-
Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-βreceptor
-
Marie JC, Liggitt D, Rudensky AY. 2006. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-βreceptor. Immunity 25:441-54
-
(2006)
Immunity
, vol.25
, pp. 441-454
-
-
Marie, J.C.1
Liggitt, D.2
Rudensky, A.Y.3
-
25
-
-
44049087148
-
A critical function for TGF-βsignaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells
-
Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, ChenW. 2008. A critical function for TGF-βsignaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9:632-40
-
(2008)
Nat. Immunol.
, vol.9
, pp. 632-640
-
-
Liu, Y.1
Zhang, P.2
Li, J.3
Kulkarni, A.B.4
Perruche, S.5
Chen, W.6
-
26
-
-
84862621461
-
TGF-β signaling to T cells inhibits autoimmunity during lymphopeniadriven proliferation
-
Zhang N, Bevan MJ. 2012. TGF-β signaling to T cells inhibits autoimmunity during lymphopeniadriven proliferation. Nat. Immunol. 13:667-73
-
(2012)
Nat. Immunol.
, vol.13
, pp. 667-673
-
-
Zhang, N.1
Bevan, M.J.2
-
27
-
-
84863072891
-
Requirements of transcription factor Smaddependent and -independent TGF-βsignaling to control discrete T-cell functions
-
Gu A-D, Wang Y, Lin L, Zhang SS, Wan YY. 2012. Requirements of transcription factor Smaddependent and -independent TGF-βsignaling to control discrete T-cell functions. Proc. Natl. Acad. Sci. USA 109:905-10
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 905-910
-
-
Gu, A.-D.1
Wang, Y.2
Lin, L.3
Zhang, S.S.4
Wan, Y.Y.5
-
28
-
-
77955498891
-
Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and Th1 development
-
Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, et al. 2010. Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185:842-55
-
(2010)
J. Immunol.
, vol.185
, pp. 842-855
-
-
Takimoto, T.1
Wakabayashi, Y.2
Sekiya, T.3
Inoue, N.4
Morita, R.5
-
29
-
-
33745578957
-
Smad4 signalling inTcells is required for suppression of gastrointestinal cancer
-
Kim BG, Li CL,Qiao WH,MamuraM,Kasperczak B, et al. 2006. Smad4 signalling inTcells is required for suppression of gastrointestinal cancer. Nature 441:1015-19
-
(2006)
Nature
, vol.441
, pp. 1015-1019
-
-
Kim, B.G.1
Li, C.L.2
Qiao, W.H.3
Mamura, M.4
Kasperczak, B.5
-
30
-
-
0034679703
-
Blockade of transforming growth factor β/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity
-
Nakao A, Miike S, Hatano M, Okumura K, Tokuhisa T, et al. 2000. Blockade of transforming growth factor β/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J. Exp. Med. 192:151-58
-
(2000)
J. Exp. Med.
, vol.192
, pp. 151-158
-
-
Nakao, A.1
Miike, S.2
Hatano, M.3
Okumura, K.4
Tokuhisa, T.5
-
31
-
-
77950835033
-
Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis
-
Kleiter I, Song J, Lukas D, Hasan M, Neumann B, et al. 2010. Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 133:1067-81
-
(2010)
Brain
, vol.133
, pp. 1067-1081
-
-
Kleiter, I.1
Song, J.2
Lukas, D.3
Hasan, M.4
Neumann, B.5
-
32
-
-
0034894059
-
Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease
-
Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. 2001. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J. Clin. Investig. 108:601-9
-
(2001)
J. Clin. Investig.
, vol.108
, pp. 601-609
-
-
Monteleone, G.1
Kumberova, A.2
Croft, N.M.3
McKenzie, C.4
Steer, H.W.5
Macdonald, T.T.6
-
33
-
-
62949223226
-
Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression
-
Fantini MC, Rio A, Fina D, Caruso R, Sarra M, et al. 2009. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136:1308-16
-
(2009)
Gastroenterology
, vol.136
, pp. 1308-1316
-
-
Fantini, M.C.1
Rio, A.2
Fina, D.3
Caruso, R.4
Sarra, M.5
-
34
-
-
0022465625
-
Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth
-
Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, et al. 1986. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163:1037-50
-
(1986)
J. Exp. Med.
, vol.163
, pp. 1037-1050
-
-
Kehrl, J.H.1
Wakefield, L.M.2
Roberts, A.B.3
Jakowlew, S.4
Alvarez-Mon, M.5
-
35
-
-
0037315644
-
CD28 co-stimulation regulates the effect of transforming growth factor-β1 on the proliferation of naive CD4+ T cells
-
Sung JL, Lin JT, Gorham JD. 2003. CD28 co-stimulation regulates the effect of transforming growth factor-β1 on the proliferation of naive CD4+ T cells. Int. Immunopharmacol. 3:233-45
-
(2003)
Int. Immunopharmacol.
, vol.3
, pp. 233-245
-
-
Sung, J.L.1
Lin, J.T.2
Gorham, J.D.3
-
36
-
-
68249141869
-
Opposing effects of TGF-βand IL-15 cytokines control the number of short-lived effector CD8+ T cells
-
Sanjabi S, Mosaheb MM, Flavell RA. 2009. Opposing effects of TGF-βand IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity 31:131-44
-
(2009)
Immunity
, vol.31
, pp. 131-144
-
-
Sanjabi, S.1
Mosaheb, M.M.2
Flavell, R.A.3
-
37
-
-
68249152608
-
Cell-intrinsic transforming growth factor-β signalingmediates virus-specific CD8+ T cell deletion and viral persistence in vivo
-
Tinoco R, Alcalde V, Yang Y, Sauer K, Zuniga EI. 2009. Cell-intrinsic transforming growth factor-β signalingmediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31:145-57
-
(2009)
Immunity
, vol.31
, pp. 145-157
-
-
Tinoco, R.1
Alcalde, V.2
Yang, Y.3
Sauer, K.4
Zuniga, E.I.5
-
38
-
-
0030030037
-
Fas- and activation-induced apoptosis are reduced in human T cells preactivated in the presence of TGF-β
-
Cerwenka A, Kovar H, Majdic O, Holter W. 1996. Fas- and activation-induced apoptosis are reduced in human T cells preactivated in the presence of TGF-β. J. Immunol. 156:459-64
-
(1996)
J. Immunol.
, vol.156
, pp. 459-464
-
-
Cerwenka, A.1
Kovar, H.2
Majdic, O.3
Holter, W.4
-
39
-
-
84882640205
-
TGF-βcytokine signaling promotesCD8+ T cell development and low-Affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor α expression
-
Ouyang W, Oh SA,MaQ, BivonaMR, Zhu J, LiMO. 2013. TGF-βcytokine signaling promotesCD8+ T cell development and low-Affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor α expression. Immunity 39:335-46
-
(2013)
Immunity
, vol.39
, pp. 335-346
-
-
Ouyang, W.1
Oh, S.A.2
Ma, Q.3
Bivona, M.R.4
Zhu, J.5
Li, M.O.6
-
40
-
-
84879254845
-
GPR15-mediated homing controls immune homeostasis in the large intestine mucosa
-
Kim SV, XiangWV, Kwak C, Yang Y, Lin XW, et al. 2013. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340:1456-59
-
(2013)
Science
, vol.340
, pp. 1456-1459
-
-
Kim, S.V.1
Xiangwv Kwak, C.2
Yang, Y.3
Lin, X.W.4
-
41
-
-
79952946257
-
Quantitative events determine the differentiation and function of helper T cells
-
O'Garra A, Gabrysova L, Spits H. 2011. Quantitative events determine the differentiation and function of helper T cells. Nat. Immunol. 12:288-94
-
(2011)
Nat. Immunol.
, vol.12
, pp. 288-294
-
-
O'Garra, A.1
Gabrysova, L.2
Spits, H.3
-
42
-
-
35549003579
-
Regulation of interferon-γ during innate and adaptive immune responses
-
Schoenborn JR, Wilson CB. 2007. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 96:41-101
-
(2007)
Adv. Immunol.
, vol.96
, pp. 41-101
-
-
Schoenborn, J.R.1
Wilson, C.B.2
-
43
-
-
0037013930
-
Mechanism of transforming growth factorβ-induced inhibition of T helper type 1 differentiation
-
Gorelik L, Constant S, Flavell RA. 2002. Mechanism of transforming growth factorβ-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195:1499-505
-
(2002)
J. Exp. Med.
, vol.195
, pp. 1499-1505
-
-
Gorelik, L.1
Constant, S.2
Flavell, R.A.3
-
44
-
-
0032529414
-
Low dose TGF-βattenuates IL-12 responsiveness in murine Th cells
-
Gorham JD, GulerML, Fenoglio D, Gubler U, Murphy KM. 1998. Low dose TGF-βattenuates IL-12 responsiveness in murine Th cells. J. Immunol. 161:1664-70
-
(1998)
J. Immunol.
, vol.161
, pp. 1664-1670
-
-
Gorham, J.D.1
Gulerml Fenoglio, D.2
Gubler, U.3
Murphy, K.M.4
-
45
-
-
20644472421
-
Transforming growth factor-βcontrols T helper type 1 cell development through regulation of natural killer cell interferon-γ
-
Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. 2005. Transforming growth factor-βcontrols T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat. Immunol. 6:600-7
-
(2005)
Nat. Immunol.
, vol.6
, pp. 600-607
-
-
Laouar, Y.1
Sutterwala, F.S.2
Gorelik, L.3
Flavell, R.A.4
-
46
-
-
16444374110
-
Transforming growth factor-β1 enhances the interferon-?- dependent, interleukin-12-independent pathway of T helper 1 cell differentiation
-
Smeltz RB, Chen J, Shevach EM. 2005. Transforming growth factor-β1 enhances the interferon-?- dependent, interleukin-12-independent pathway of T helper 1 cell differentiation. Immunology 114:484-92
-
(2005)
Immunology
, vol.114
, pp. 484-492
-
-
Smeltz, R.B.1
Chen, J.2
Shevach, E.M.3
-
47
-
-
84861164238
-
Identification of a new pathway for Th1 cell development induced by cooperative stimulation with IL-4 and TGF-β
-
Tofukuji S, Kuwahara M, Suzuki J, Ohara O, Nakayama T, Yamashita M. 2012. Identification of a new pathway for Th1 cell development induced by cooperative stimulation with IL-4 and TGF-β. J. Immunol. 188:4846-57
-
(2012)
J. Immunol.
, vol.188
, pp. 4846-4857
-
-
Tofukuji, S.1
Kuwahara, M.2
Suzuki, J.3
Ohara, O.4
Nakayama, T.5
Yamashita, M.6
-
48
-
-
0034327176
-
Cutting edge: TGF-βinhibits Th type 2 development through inhibition of GATA-3 expression
-
Gorelik L, Fields PE, Flavell RA. 2000. Cutting edge: TGF-βinhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol. 165:4773-77
-
(2000)
J. Immunol.
, vol.165
, pp. 4773-4777
-
-
Gorelik, L.1
Fields, P.E.2
Flavell, R.A.3
-
49
-
-
0033623339
-
TGF-β1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression
-
Heath VL, Murphy EE, Crain C, Tomlinson MG, O'Garra A. 2000. TGF-β1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur. J. Immunol. 30:2639-49
-
(2000)
Eur. J. Immunol.
, vol.30
, pp. 2639-2649
-
-
Heath, V.L.1
Murphy, E.E.2
Crain, C.3
Tomlinson, M.G.4
O'Garra, A.5
-
50
-
-
84864131152
-
The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-β and suppresses TH2 differentiation
-
Kuwahara M, Yamashita M, Shinoda K, Tofukuji S, Onodera A, et al. 2012. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-β and suppresses TH2 differentiation. Nat. Immunol. 13:778-86
-
(2012)
Nat. Immunol.
, vol.13
, pp. 778-786
-
-
Kuwahara, M.1
Yamashita, M.2
Shinoda, K.3
Tofukuji, S.4
Onodera, A.5
-
51
-
-
0033987397
-
CD4+ T helper cells engineered to produce latent TGF-β1 reverse allergen-induced airway hyperreactivity and inflammation
-
Hansen G, McIntire JJ, Yeung VP, Berry G, Thorbecke GJ, et al. 2000. CD4+ T helper cells engineered to produce latent TGF-β1 reverse allergen-induced airway hyperreactivity and inflammation. J. Clin. Investig. 105:61-70
-
(2000)
J. Clin. Investig.
, vol.105
, pp. 61-70
-
-
Hansen, G.1
McIntire, J.J.2
Yeung, V.P.3
Berry, G.4
Thorbecke, G.J.5
-
52
-
-
84859416933
-
Regulatory T cells: Mechanisms of differentiation and function
-
Josefowicz SZ, Lu L-F, Rudensky AY. 2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531-64
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 531-564
-
-
Josefowicz, S.Z.1
Lu, L.-F.2
Rudensky, A.Y.3
-
53
-
-
0035162560
-
Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse
-
Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, et al. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27:68-73
-
(2001)
Nat. Genet.
, vol.27
, pp. 68-73
-
-
Brunkow, M.E.1
Jeffery, E.W.2
Hjerrild, K.A.3
Paeper, B.4
Clark, L.B.5
-
54
-
-
15244354286
-
Regulatory T cell lineage specification by the forkhead transcription factor FoxP3
-
Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. 2005. Regulatory T cell lineage specification by the forkhead transcription factor FoxP3. Immunity 22:329-41
-
(2005)
Immunity
, vol.22
, pp. 329-341
-
-
Fontenot, J.D.1
Rasmussen, J.P.2
Williams, L.M.3
Dooley, J.L.4
Farr, A.G.5
Rudensky, A.Y.6
-
56
-
-
84859390119
-
Induced CD4+Foxp3+ regulatory T cells in immune tolerance
-
Bilate AM, Lafaille JJ. 2012. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu. Rev. Immunol. 30:733-58
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 733-758
-
-
Bilate, A.M.1
Lafaille, J.J.2
-
57
-
-
17144400393
-
TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells
-
Marie JC, Letterio JJ, GavinM, Rudensky AY. 2005. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201:1061-67
-
(2005)
J. Exp. Med.
, vol.201
, pp. 1061-1067
-
-
Marie, J.C.1
Letterio, J.J.2
Gavinm Rudensky, A.Y.3
-
58
-
-
77953267301
-
Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development
-
Ouyang W, Beckett O, Ma Q, Li MO. 2010. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32:642-53
-
(2010)
Immunity
, vol.32
, pp. 642-653
-
-
Ouyang, W.1
Beckett, O.2
Ma, Q.3
Li, M.O.4
-
59
-
-
0348223787
-
Conversion of peripheral CD4+CD25? Naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3
-
Chen WJ, Jin WW, Hardegen N, Lei KJ, Li L, et al. 2003. Conversion of peripheral CD4+CD25? naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198:1875-86
-
(2003)
J. Exp. Med.
, vol.198
, pp. 1875-1886
-
-
Chen, W.J.1
Jin, W.W.2
Hardegen, N.3
Lei, K.J.4
Li, L.5
-
60
-
-
33947644716
-
Cutting edge: IL-2 is essential for TGF-β- mediated induction of Foxp3+ T regulatory cells
-
Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. 2007. Cutting edge: IL-2 is essential for TGF-β- mediated induction of Foxp3+ T regulatory cells. J. Immunol. 178:4022-26
-
(2007)
J. Immunol.
, vol.178
, pp. 4022-4026
-
-
Davidson, T.S.1
Dipaolo, R.J.2
Andersson, J.3
Shevach, E.M.4
-
61
-
-
33846923124
-
IL-2 is essential for TGF-βto convert naive CD4+CD25? Cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells
-
Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. 2007. IL-2 is essential for TGF-βto convert naive CD4+CD25? cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 178:2018-27
-
(2007)
J. Immunol.
, vol.178
, pp. 2018-2027
-
-
Zheng, S.G.1
Wang, J.2
Wang, P.3
Gray, J.D.4
Horwitz, D.A.5
-
62
-
-
38349095578
-
Smad3 andNFATcooperate to induce Foxp3 expression through its enhancer
-
Tone Y, Furuuchi K, Kojima Y, TykocinskiML, GreeneMI, Tone M. 2008. Smad3 andNFATcooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9:194-202
-
(2008)
Nat. Immunol.
, vol.9
, pp. 194-202
-
-
Tone, Y.1
Furuuchi, K.2
Kojima, Y.3
Greenemi, T.4
Tone, M.5
-
63
-
-
76749133610
-
Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate
-
Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. 2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808-12
-
(2010)
Nature
, vol.463
, pp. 808-812
-
-
Zheng, Y.1
Josefowicz, S.2
Chaudhry, A.3
Peng, X.P.4
Forbush, K.5
Rudensky, A.Y.6
-
64
-
-
84866403123
-
Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut
-
Schlenner SM, Weigmann B, Ruan Q, Chen Y, von Boehmer H. 2012. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J. Exp. Med. 209:1529-35
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1529-1535
-
-
Schlenner, S.M.1
Weigmann, B.2
Ruan, Q.3
Chen, Y.4
Von Boehmer, H.5
-
65
-
-
77951456596
-
Molecular mechanisms regulating TGF-β-induced Foxp3 expression
-
Xu L, Kitani A, StroberW. 2010. Molecular mechanisms regulating TGF-β-induced Foxp3 expression. Mucosal Immunol. 3:230-38
-
(2010)
Mucosal Immunol.
, vol.3
, pp. 230-238
-
-
Xu, L.1
Kitani, A.2
Strober, W.3
-
66
-
-
70349243737
-
The role of NF-κB and Smad3 in TGF-β-mediated Foxp3 expression
-
Jana S, Jailwala P, Haribhai D, Waukau J, Glisic S, et al. 2009. The role of NF-κB and Smad3 in TGF-β-mediated Foxp3 expression. Eur. J. Immunol. 39:2571-83
-
(2009)
Eur. J. Immunol.
, vol.39
, pp. 2571-2583
-
-
Jana, S.1
Jailwala, P.2
Haribhai, D.3
Waukau, J.4
Glisic, S.5
-
67
-
-
72149124496
-
Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation
-
Martinez GJ, Zhang Z, Chung Y, Reynolds JM, Lin X, et al. 2009. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J. Biol. Chem. 284:35283-86
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 35283-35286
-
-
Martinez, G.J.1
Zhang, Z.2
Chung, Y.3
Reynolds, J.M.4
Lin, X.5
-
68
-
-
77952777819
-
Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells
-
Lu L, Wang J, Zhang F, Chai Y, Brand D, et al. 2010. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J. Immunol. 184:4295-306
-
(2010)
J. Immunol.
, vol.184
, pp. 4295-4306
-
-
Lu, L.1
Wang, J.2
Zhang, F.3
Chai, Y.4
Brand, D.5
-
69
-
-
77956552342
-
Smad2 positively regulates the generation of Th17 cells
-
Martinez GJ, Zhang Z, Reynolds JM, Tanaka S, Chung Y, et al. 2010. Smad2 positively regulates the generation of Th17 cells. J. Biol. Chem. 285:29039-43
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 29039-29043
-
-
Martinez, G.J.1
Zhang, Z.2
Reynolds, J.M.3
Tanaka, S.4
Chung, Y.5
-
70
-
-
63049109925
-
Down-regulation of Gfi-1 expression by TGF-βis important for differentiation of Th17 and CD103+ inducible regulatory T cells
-
Zhu J, Davidson TS, Wei G, Jankovic D, Cui K, et al. 2009. Down-regulation of Gfi-1 expression by TGF-βis important for differentiation of Th17 and CD103+ inducible regulatory T cells. J. Exp. Med. 206:329-41
-
(2009)
J. Exp. Med.
, vol.206
, pp. 329-341
-
-
Zhu, J.1
Davidson, T.S.2
Wei, G.3
Jankovic, D.4
Cui, K.5
-
71
-
-
33846980131
-
Epigenetic control of the foxp3 locus in regulatory T cells
-
Floess S, Freyer J, Siewert C, Baron U, Olek S, et al. 2007. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5:169-78
-
(2007)
PLoS Biol.
, vol.5
, pp. 169-178
-
-
Floess, S.1
Freyer, J.2
Siewert, C.3
Baron, U.4
Olek, S.5
-
72
-
-
49649107703
-
DNA methylation controls Foxp3 gene expression
-
Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, et al. 2008. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38:1654-63
-
(2008)
Eur. J. Immunol.
, vol.38
, pp. 1654-1663
-
-
Polansky, J.K.1
Kretschmer, K.2
Freyer, J.3
Floess, S.4
Garbe, A.5
-
73
-
-
34547769253
-
All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation
-
Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. 2007. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204:1765-74
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1765-1774
-
-
Benson, M.J.1
Pino-Lagos, K.2
Rosemblatt, M.3
Noelle, R.J.4
-
74
-
-
34547788180
-
A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β-And retinoic acid-dependent mechanism
-
Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun C-M, et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β-And retinoic acid-dependent mechanism. J. Exp. Med. 204:1757-64
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1757-1764
-
-
Coombes, J.L.1
Siddiqui, K.R.2
Arancibia-Carcamo, C.V.3
Hall, J.4
Sun, C.-M.5
-
75
-
-
34547757390
-
Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
-
SunC-M,Hall JA, BlankRB, Bouladoux N, Oukka M, et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204:1775-85
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1775-1785
-
-
Sunc-Mhall, J.A.1
Blankrb Bouladoux, N.2
Oukka, M.3
-
76
-
-
84881018661
-
Alveolar macrophages contribute to respiratory tolerance by inducing FoxP3 expression in naive T cells
-
Coleman MM, Ruane D, Moran B, Dunne PJ, Keane J, Mills KHG. 2013. Alveolar macrophages contribute to respiratory tolerance by inducing FoxP3 expression in naive T cells. Am. J. Respir. Cell Mol. Biol. 48:773-80
-
(2013)
Am. J. Respir. Cell Mol. Biol.
, vol.48
, pp. 773-780
-
-
Coleman, M.M.1
Ruane, D.2
Moran, B.3
Dunne, P.J.4
Keane, J.5
Mills, K.H.G.6
-
77
-
-
84879627201
-
Cutting edge: Inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance
-
Khare A, Krishnamoorthy N, Oriss TB, Fei M, Ray P, Ray A. 2013. Cutting edge: Inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. J. Immunol. 191:25-29
-
(2013)
J. Immunol.
, vol.191
, pp. 25-29
-
-
Khare, A.1
Krishnamoorthy, N.2
Oriss, T.B.3
Fei, M.4
Ray, P.5
Ray, A.6
-
78
-
-
84878659255
-
Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance
-
Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, et al. 2013. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 210:775-88
-
(2013)
J. Exp. Med.
, vol.210
, pp. 775-788
-
-
Soroosh, P.1
Doherty, T.A.2
Duan, W.3
Mehta, A.K.4
Choi, H.5
-
79
-
-
77950408684
-
Skin-draining lymph nodes contain dermis-derived CD103? Dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells
-
Guilliams M, Crozat K, Henri S, Tamoutounour S, Grenot P, et al. 2010. Skin-draining lymph nodes contain dermis-derived CD103? dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood 115:1958-68
-
(2010)
Blood
, vol.115
, pp. 1958-1968
-
-
Guilliams, M.1
Crozat, K.2
Henri, S.3
Tamoutounour, S.4
Grenot, P.5
-
80
-
-
77957025756
-
Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer i
-
Xu L, Kitani A, Stuelten C, McGrady G, Fuss I, StroberW. 2010. Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity 33:313-25
-
(2010)
Immunity
, vol.33
, pp. 313-325
-
-
Xu, L.1
Kitani, A.2
Stuelten, C.3
McGrady, G.4
Fuss, I.5
Strober, W.6
-
81
-
-
55549084247
-
Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells
-
Hill JA, Hall JA, Sun C-M, Cai Q, Ghyselinck N, et al. 2008. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29:758-70
-
(2008)
Immunity
, vol.29
, pp. 758-770
-
-
Hill, J.A.1
Hall, J.A.2
Sun, C.-M.3
Cai, Q.4
Ghyselinck, N.5
-
82
-
-
47249085266
-
STAT6 inhibits TGF-β1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor
-
Takaki H, Ichiyama K, Koga K, Chinen T, Takaesu G, et al. 2008. STAT6 inhibits TGF-β1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J. Biol. Chem. 283:14955-62
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 14955-14962
-
-
Takaki, H.1
Ichiyama, K.2
Koga, K.3
Chinen, T.4
Takaesu, G.5
-
83
-
-
35748934494
-
Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells
-
Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH. 2007. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J. Immunol. 179:3724-33
-
(2007)
J. Immunol.
, vol.179
, pp. 3724-3733
-
-
Kang, S.G.1
Lim, H.W.2
Andrisani, O.M.3
Broxmeyer, H.E.4
Kim, C.H.5
-
84
-
-
15444363794
-
T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells
-
Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, et al. 2005. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201:737-46
-
(2005)
J. Exp. Med.
, vol.201
, pp. 737-746
-
-
Fahlen, L.1
Read, S.2
Gorelik, L.3
Hurst, S.D.4
Coffman, R.L.5
-
85
-
-
84862777225
-
Extrathymically generated regulatory T cells control mucosal TH2 inflammation
-
Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, et al. 2012. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395-99
-
(2012)
Nature
, vol.482
, pp. 395-399
-
-
Josefowicz, S.Z.1
Niec, R.E.2
Kim, H.Y.3
Treuting, P.4
Chinen, T.5
-
86
-
-
79960453738
-
A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity
-
Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, et al. 2011. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35:109-22
-
(2011)
Immunity
, vol.35
, pp. 109-122
-
-
Haribhai, D.1
Williams, J.B.2
Jia, S.3
Nickerson, D.4
Schmitt, E.G.5
-
87
-
-
84877742439
-
Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota
-
Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, et al. 2013. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497:258-62
-
(2013)
Nature
, vol.497
, pp. 258-262
-
-
Cebula, A.1
Seweryn, M.2
Rempala, G.A.3
Pabla, S.S.4
McIndoe, R.A.5
-
88
-
-
84855163123
-
Induction of immunological tolerance by oral anti-CD3
-
Pires da Cunha A, Weiner HL. 2012. Induction of immunological tolerance by oral anti-CD3. Clin. Dev. Immunol. 2012:425021
-
(2012)
Clin. Dev. Immunol.
, vol.2012
, pp. 425021
-
-
Pires Da Cunha, A.1
Weiner, H.L.2
-
89
-
-
80053170075
-
Generation of antiinflammatory adenosine by leukocytes is regulated by TGF-β
-
Regateiro FS, Howie D, Nolan KF, Agorogiannis EI, Greaves DR, et al. 2011. Generation of antiinflammatory adenosine by leukocytes is regulated by TGF-β. Eur. J. Immunol. 41:2955-65
-
(2011)
Eur. J. Immunol.
, vol.41
, pp. 2955-2965
-
-
Regateiro, F.S.1
Howie, D.2
Nolan, K.F.3
Agorogiannis, E.I.4
Greaves, D.R.5
-
90
-
-
34548131112
-
Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3? Precursor cells in the absence of interleukin
-
Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, et al. 2007. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3? precursor cells in the absence of interleukin. Nat. Immunol. 8:931-41
-
(2007)
Nat. Immunol.
, vol.8
, pp. 931-941
-
-
Maynard, C.L.1
Harrington, L.E.2
Janowski, K.M.3
Oliver, J.R.4
Zindl, C.L.5
-
91
-
-
36248970701
-
A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells
-
Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, et al. 2007. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8:1380-89
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1380-1389
-
-
Awasthi, A.1
Carrier, Y.2
Peron, J.P.3
Bettelli, E.4
Kamanaka, M.5
-
93
-
-
84355162720
-
Priming microenvironments dictate cytokine requirements for T helper 17 cell lineage commitment
-
Hu W, Troutman TD, Edukulla R, Pasare C. 2011. Priming microenvironments dictate cytokine requirements for T helper 17 cell lineage commitment. Immunity 35:1010-22
-
(2011)
Immunity
, vol.35
, pp. 1010-1022
-
-
Hu, W.1
Troutman, T.D.2
Edukulla, R.3
Pasare, C.4
-
94
-
-
84863151799
-
Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
-
Shaw MH, Kamada N, Kim Y-G, Nunez G. 2012. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209:251-58
-
(2012)
J. Exp. Med.
, vol.209
, pp. 251-258
-
-
Shaw, M.H.1
Kamada, N.2
Kim, Y.-G.3
Nunez, G.4
-
95
-
-
34547188748
-
IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways
-
Zhou L, Ivanov II, Spolski R,Min R, Shenderov K, et al. 2007. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8:967-74
-
(2007)
Nat. Immunol.
, vol.8
, pp. 967-974
-
-
Zhou, L.1
Ivanov, I.I.2
Spolski Rmin, R.3
Shenderov, K.4
-
96
-
-
34548125305
-
Interleukins 1β and 6 but not transforming growth factor-βare essential for the differentiation of interleukin 17-producing human T helper cells
-
Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. 2007. Interleukins 1β and 6 but not transforming growth factor-βare essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8:942-49
-
(2007)
Nat. Immunol.
, vol.8
, pp. 942-949
-
-
Acosta-Rodriguez, E.V.1
Napolitani, G.2
Lanzavecchia, A.3
Sallusto, F.4
-
97
-
-
34548133583
-
Development, cytokine profile and function of human interleukin 17-producing helper T cells
-
Wilson NJ, Boniface K, Chan JR,McKenzie BS, BlumenscheinWM, et al. 2007. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8:950-57
-
(2007)
Nat. Immunol.
, vol.8
, pp. 950-957
-
-
Wilson, N.J.1
Boniface, K.2
Chan, J.R.3
McKenzie, B.S.4
Blumenschein, W.M.5
-
98
-
-
44049104564
-
The differentiation of human TH-17 cells requires transforming growth factor-βand induction of the nuclear receptor RORt
-
Manel N, Unutmaz D, Littman DR. 2008. The differentiation of human TH-17 cells requires transforming growth factor-βand induction of the nuclear receptor RORt. Nat. Immunol. 9:641-49
-
(2008)
Nat. Immunol.
, vol.9
, pp. 641-649
-
-
Manel, N.1
Unutmaz, D.2
Littman, D.R.3
-
99
-
-
44049102724
-
A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving andmodulating humanTH-17 responses
-
Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, et al. 2008. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving andmodulating humanTH-17 responses. Nat. Immunol. 9:650-57
-
(2008)
Nat. Immunol.
, vol.9
, pp. 650-657
-
-
Volpe, E.1
Servant, N.2
Zollinger, R.3
Bogiatzi, S.I.4
Hupe, P.5
-
100
-
-
77958584113
-
Generation of pathogenic TH17 cells in the absence of TGF-βsignalling
-
Ghoreschi K, Laurence A, Yang X-P, Tato CM, McGeachy MJ, et al. 2010. Generation of pathogenic TH17 cells in the absence of TGF-βsignalling. Nature 467:967-71
-
(2010)
Nature
, vol.467
, pp. 967-971
-
-
Ghoreschi, K.1
Laurence, A.2
Yang, X.-P.3
Tato, C.M.4
McGeachy, M.J.5
-
101
-
-
33750142276
-
Signals mediated by transforming growth factor-βinitiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease
-
Veldhoen M, Hocking RJ, Flavell RA, Stockinger B. 2006. Signals mediated by transforming growth factor-βinitiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7:1151-56
-
(2006)
Nat. Immunol.
, vol.7
, pp. 1151-1156
-
-
Veldhoen, M.1
Hocking, R.J.2
Flavell, R.A.3
Stockinger, B.4
-
102
-
-
33646577466
-
Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
-
Bettelli E, Carrier YJ, Gao WD, Korn T, Strom TB, et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235-38
-
(2006)
Nature
, vol.441
, pp. 235-238
-
-
Bettelli, E.1
Carrier, Y.J.2
Gao, W.D.3
Korn, T.4
Strom, T.B.5
-
103
-
-
36248965294
-
TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology
-
McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, et al. 2007. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8:1390-97
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1390-1397
-
-
McGeachy, M.J.1
Bak-Jensen, K.S.2
Chen, Y.3
Tato, C.M.4
Blumenschein, W.5
-
104
-
-
46749138596
-
Molecular antagonism and plasticity of regulatory and inflammatory T cell programs
-
Yang XO,Nurieva R, Martinez GJ, Kang HS, Chung Y, et al. 2008. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44-56
-
(2008)
Immunity
, vol.29
, pp. 44-56
-
-
Yang Xonurieva, R.1
Martinez, G.J.2
Kang, H.S.3
Chung, Y.4
-
105
-
-
79956324792
-
Transcription factor Smadindependent T helper 17 cell induction by transforming-growth factor-βis mediated by suppression of Eomesodermin
-
Ichiyama K, Sekiya T, Inoue N, Tamiya T, Kashiwagi I, et al. 2011. Transcription factor Smadindependent T helper 17 cell induction by transforming-growth factor-βis mediated by suppression of Eomesodermin. Immunity 34:741-54
-
(2011)
Immunity
, vol.34
, pp. 741-754
-
-
Ichiyama, K.1
Sekiya, T.2
Inoue, N.3
Tamiya, T.4
Kashiwagi, I.5
-
106
-
-
77956546075
-
SMAD2 is essential for TGFβ-mediated Th17 cell generation
-
Malhotra N, Robertson E, Kang J. 2010. SMAD2 is essential for TGFβ-mediated Th17 cell generation. J. Biol. Chem. 285:29044-48
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 29044-29048
-
-
Malhotra, N.1
Robertson, E.2
Kang, J.3
-
107
-
-
43449135305
-
TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORt function
-
Zhou L, Lopes JE, Chong MMW, Ivanov II, Min R, et al. 2008. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORt function. Nature 453:236-40
-
(2008)
Nature
, vol.453
, pp. 236-240
-
-
Zhou, L.1
Lopes, J.E.2
Chong, M.M.W.3
Ivanov, I.I.4
Min, R.5
-
108
-
-
47749124186
-
Foxp3 inhibits RORt-mediated IL-17A mRNA transcription through direct interaction with RORt
-
Ichiyama K, YoshidaH,Wakabayashi Y, Chinen T, SaekiK, et al. 2008. Foxp3 inhibitsRORt-mediated IL-17A mRNA transcription through direct interaction with RORt. J. Biol. Chem. 283:17003-8
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 17003-17008
-
-
Ichiyama, K.1
Yoshida, H.2
Wakabayashi, Y.3
Chinen, T.4
Saeki, K.5
-
109
-
-
84862665298
-
The symphony of the ninth: The development and function of Th9 cells
-
Jabeen R, Kaplan MH. 2012. The symphony of the ninth: the development and function of Th9 cells. Curr. Opin. Immunol. 24:303-7
-
(2012)
Curr. Opin. Immunol.
, vol.24
, pp. 303-307
-
-
Jabeen, R.1
Kaplan, M.H.2
-
110
-
-
56349093347
-
IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3? Effector T cells
-
Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, et al. 2008. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3? effector T cells. Nat. Immunol. 9:1347-55
-
(2008)
Nat. Immunol.
, vol.9
, pp. 1347-1355
-
-
Dardalhon, V.1
Awasthi, A.2
Kwon, H.3
Galileos, G.4
Gao, W.5
-
111
-
-
56349154943
-
Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset
-
Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, et al. 2008. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9:1341-46
-
(2008)
Nat. Immunol.
, vol.9
, pp. 1341-1346
-
-
Veldhoen, M.1
Uyttenhove, C.2
Van Snick, J.3
Helmby, H.4
Westendorf, A.5
-
112
-
-
77952584843
-
The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation
-
Chang H-C, Sehra S, Goswami R, Yao W, Yu Q, et al. 2010. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11:527-34
-
(2010)
Nat. Immunol.
, vol.11
, pp. 527-534
-
-
Chang, H.-C.1
Sehra, S.2
Goswami, R.3
Yao, W.4
Yu, Q.5
-
113
-
-
84863010992
-
STAT6-dependent regulation of Th9 development
-
Goswami R, Jabeen R, Yagi R, Duy P, Zhu J, et al. 2012. STAT6-dependent regulation of Th9 development. J. Immunol. 188:968-75
-
(2012)
J. Immunol.
, vol.188
, pp. 968-975
-
-
Goswami, R.1
Jabeen, R.2
Yagi, R.3
Duy, P.4
Zhu, J.5
-
114
-
-
80054927155
-
An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation
-
Wilhelm C,Hirota K, Stieglitz B, van Snick J, TolainiM, et al. 2011. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12:1071-77
-
(2011)
Nat. Immunol.
, vol.12
, pp. 1071-1077
-
-
Wilhelm Chirota, K.1
Stieglitz, B.2
Snick, T.J.3
-
115
-
-
13544274450
-
Distinct effects of TGF-β1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: A role for T cell intrinsic Smad3
-
McKarns SC, Schwartz RH. 2005. Distinct effects of TGF-β1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J. Immunol. 174:2071-83
-
(2005)
J. Immunol.
, vol.174
, pp. 2071-2083
-
-
McKarns, S.C.1
Schwartz, R.H.2
-
116
-
-
84879124602
-
Truncated form of TGF-βRII, but not its absence, induces memory CD8+ T cell expansion and lymphoproliferative disorder in mice
-
Ishigame H, Mosaheb MM, Sanjabi S, Flavell RA. 2013. Truncated form of TGF-βRII, but not its absence, induces memory CD8+ T cell expansion and lymphoproliferative disorder in mice. J. Immunol. 190:6340-50
-
(2013)
J. Immunol.
, vol.190
, pp. 6340-6350
-
-
Ishigame, H.1
Mosaheb, M.M.2
Sanjabi, S.3
Flavell, R.A.4
-
117
-
-
79952921526
-
Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β
-
Konkel JE,MaruyamaT,Carpenter AC, Xiong Y, Zamarron BF, et al. 2011. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat. Immunol. 12:312-19
-
(2011)
Nat. Immunol.
, vol.12
, pp. 312-319
-
-
Konkel, J.E.1
Maruyama, T.2
Carpenter, A.C.3
Xiong, Y.4
Zamarron, B.F.5
-
118
-
-
85027952412
-
Transcriptional reprogramming of mature CD4+ helperTcells generates distinctMHCclass II-restricted cytotoxicTlymphocytes
-
MucidaD,Husain MM, Muroi S, van Wijk F, Shinnakasu R, et al. 2013. Transcriptional reprogramming of mature CD4+ helperTcells generates distinctMHCclass II-restricted cytotoxicTlymphocytes. Nat. Immunol. 14:281-89
-
(2013)
Nat. Immunol.
, vol.14
, pp. 281-289
-
-
Mucidadhusain, M.M.1
Muroi, S.2
Van Wijk, F.3
Shinnakasu, R.4
-
119
-
-
85027933013
-
Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity
-
Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D. 2013. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14:271-80
-
(2013)
Nat. Immunol.
, vol.14
, pp. 271-280
-
-
Reis, B.S.1
Rogoz, A.2
Costa-Pinto, F.A.3
Taniuchi, I.4
Mucida, D.5
-
120
-
-
77952743515
-
CD8+ Tregs in lupus, autoimmunity, and beyond
-
Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP. 2010. CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun. Rev. 9:560-68
-
(2010)
Autoimmun. Rev.
, vol.9
, pp. 560-568
-
-
Dinesh, R.K.1
Skaggs, B.J.2
La Cava, A.3
Hahn, B.H.4
Singh, R.P.5
-
121
-
-
73249148836
-
Novel CD8+ Treg suppress EAE by TGF-β- and IFN-?-dependent mechanisms
-
Chen M-L, Yan B-S, Kozoriz D, Weiner HL. 2009. Novel CD8+ Treg suppress EAE by TGF-β- and IFN-?-dependent mechanisms. Eur. J. Immunol. 39:3423-35
-
(2009)
Eur. J. Immunol.
, vol.39
, pp. 3423-3435
-
-
Chen, M.-L.1
Yan, B.-S.2
Kozoriz, D.3
Weiner, H.L.4
-
122
-
-
84874101369
-
Transforming growth factor βsignaling controls activities of human intestinal CD8+ T suppressor cells
-
RabinowitzKM,WangY,ChenEY, Hovhannisyan Z, ChiangD, et al. 2013. Transforming growth factor βsignaling controls activities of human intestinal CD8+ T suppressor cells. Gastroenterology 144:601-12
-
(2013)
Gastroenterology
, vol.144
, pp. 601-612
-
-
Rabinowitz, K.M.1
Wang, Y.2
Chen, E.Y.3
Chiangd, H.Z.4
-
123
-
-
79951804510
-
CD8+Foxp3+ T cells share developmental and phenotypic features with classical CD4+Foxp3+ regulatory T cells but lack potent suppressive activity
-
Mayer CT, Floess S, Baru AM, Lahl K, Huehn J, Sparwasser T. 2011. CD8+Foxp3+ T cells share developmental and phenotypic features with classical CD4+Foxp3+ regulatory T cells but lack potent suppressive activity. Eur. J. Immunol. 41:716-25
-
(2011)
Eur. J. Immunol.
, vol.41
, pp. 716-725
-
-
Mayer, C.T.1
Floess, S.2
Baru, A.M.3
Lahl, K.4
Huehn, J.5
Sparwasser, T.6
-
124
-
-
84862489728
-
Identification and expansion of highly suppressive CD8+FoxP3+ regulatory T cells after experimental allogeneic bone marrow transplantation
-
Robb RJ, Lineburg KE, Kuns RD,Wilson YA, Raffelt NC, et al. 2012. Identification and expansion of highly suppressive CD8+FoxP3+ regulatory T cells after experimental allogeneic bone marrow transplantation. Blood 119:5898-908
-
(2012)
Blood
, vol.119
, pp. 5898-5908
-
-
Robb, R.J.1
Lineburg, K.E.2
Kuns Rdwilson, Y.A.3
Raffelt, N.C.4
-
125
-
-
84862532298
-
Cell-Autonomous role of TGFβ and IL-2 receptors in CD4+ and CD8+ inducible regulatory T-cell generation during GVHD
-
SawamukaiN, Satake A, Schmidt AM, Lamborn IT, Ojha P, et al. 2012. Cell-Autonomous role of TGFβ and IL-2 receptors in CD4+ and CD8+ inducible regulatory T-cell generation during GVHD. Blood 119:5575-83
-
(2012)
Blood
, vol.119
, pp. 5575-5583
-
-
Sawamukain Satake, A.1
Schmidt, A.M.2
Lamborn, I.T.3
Ojha, P.4
-
126
-
-
84867290406
-
Dendritic cell- specific disruption of TGF-βreceptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity
-
Ramalingam R, Larmonier CB,Thurston RD, Midura-KielaMT, Zheng SG, et al. 2012. Dendritic cell- specific disruption of TGF-βreceptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J. Immunol. 189:3878-93
-
(2012)
J. Immunol.
, vol.189
, pp. 3878-3893
-
-
Ramalingam, R.1
Larmonier, C.B.2
Thurston, R.D.3
Midura-Kiela, M.T.4
Zheng, S.G.5
-
127
-
-
0030456368
-
A role for endogenous transforming growth factor β1 in Langerhans cell biology: The skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells
-
Borkowski TA, Letterio JJ, Farr AG, Udey MC. 1996. A role for endogenous transforming growth factor β1 in Langerhans cell biology: The skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184:2417-22
-
(1996)
J. Exp. Med.
, vol.184
, pp. 2417-2422
-
-
Borkowski, T.A.1
Letterio, J.J.2
Farr, A.G.3
Udey, M.C.4
-
128
-
-
0033233252
-
TGF-β1 regulation of dendritic cells
-
Strobl H, KnappW. 1999. TGF-β1 regulation of dendritic cells. Microbes Infect. 1:1283-90
-
(1999)
Microbes Infect.
, vol.1
, pp. 1283-1290
-
-
Strobl, H.1
Knapp, W.2
-
129
-
-
35748948090
-
Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells
-
Kaplan DH,LiMO, JenisonMC, ShlomchikWD,FlavellRA, Shlomchik MJ. 2007. Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204:2545-52
-
(2007)
J. Exp. Med.
, vol.204
, pp. 2545-2552
-
-
Kaplan, D.H.1
Li, M.O.2
Jenison, M.C.3
Shlomchik, W.D.4
Flavell, R.A.5
Shlomchik, M.J.6
-
130
-
-
84870276714
-
Identification of Axl as a downstream effector of TGF-β1 during Langerhans cell differentiation and epidermal homeostasis
-
Bauer T, Zagorska A, Jurkin J, Yasmin N, Koeffel R, et al. 2012. Identification of Axl as a downstream effector of TGF-β1 during Langerhans cell differentiation and epidermal homeostasis. J. Exp. Med. 209:2033-47
-
(2012)
J. Exp. Med.
, vol.209
, pp. 2033-2047
-
-
Bauer, T.1
Zagorska, A.2
Jurkin, J.3
Yasmin, N.4
Koeffel, R.5
-
131
-
-
84876864630
-
Attenuated TGF-β1 responsiveness of dendritic cells and their precursors in atopic dermatitis
-
Peng W-M, Maintz L, Allam J-P, NovakN. 2013. Attenuated TGF-β1 responsiveness of dendritic cells and their precursors in atopic dermatitis. Eur. J. Immunol. 43:1374-82
-
(2013)
Eur. J. Immunol.
, vol.43
, pp. 1374-1382
-
-
Peng, W.-M.1
Maintz, L.2
Allam, J.-P.3
Novak, N.4
-
132
-
-
34248592104
-
T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation
-
Li MO, Wan YY, Flavell RA. 2007. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579-91
-
(2007)
Immunity
, vol.26
, pp. 579-591
-
-
Li, M.O.1
Wan, Y.Y.2
Flavell, R.A.3
-
133
-
-
79952771167
-
Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation
-
Gutcher I,DonkorMK, Ma Q, Rudensky AY, Flavell RA, Li MO. 2011. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 34:396-408
-
(2011)
Immunity
, vol.34
, pp. 396-408
-
-
Idonkormk, G.1
Ma, Q.2
Rudensky, A.Y.3
Flavell, R.A.4
Li, M.O.5
-
135
-
-
0033532054
-
The activation sequence of thrombospondin-1 interacts with the latency-Associated peptide to regulate activation of latent transforming growth factor-β
-
Ribeiro SMF, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE. 1999. The activation sequence of thrombospondin-1 interacts with the latency-Associated peptide to regulate activation of latent transforming growth factor-β. J. Biol. Chem. 274:13586-93
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 13586-13593
-
-
Ribeiro, S.M.F.1
Poczatek, M.2
Schultz-Cherry, S.3
Villain, M.4
Murphy-Ullrich, J.E.5
-
136
-
-
0028902002
-
Regulation of transforming growth factor-β activation by discrete sequences of thrombospondin 1
-
Schultz-Cherry S, Chen H, Mosher DF, Misenheimer TM, Krutzsch HC, et al. 1995. Regulation of transforming growth factor-β activation by discrete sequences of thrombospondin 1. J. Biol. Chem. 270:7304-10
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 7304-7310
-
-
Schultz-Cherry, S.1
Chen, H.2
Mosher, D.F.3
Misenheimer, T.M.4
Krutzsch, H.C.5
-
137
-
-
12344320716
-
Thrombospondin-1 is a major activator of TGF-β1 in vivo
-
Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, et al. 1998. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93:1159-70
-
(1998)
Cell
, vol.93
, pp. 1159-1170
-
-
Crawford, S.E.1
Stellmach, V.2
Murphy-Ullrich, J.E.3
Ribeiro, S.M.4
Lawler, J.5
-
138
-
-
0024539847
-
Role for carbohydrate structures in TGF-β-1 latency
-
Miyazono K, Heldin CH. 1989. Role for carbohydrate structures in TGF-β-1 latency. Nature 338:158-60
-
(1989)
Nature
, vol.338
, pp. 158-160
-
-
Miyazono, K.1
Heldin, C.H.2
-
139
-
-
0029861191
-
Influenza virus neuraminidase activates latent transforming growth factor β
-
Schultz-Cherry S, HinshawVS. 1996. Influenza virus neuraminidase activates latent transforming growth factor β. J. Virol. 70:8624-29
-
(1996)
J. Virol.
, vol.70
, pp. 8624-8629
-
-
Schultz-Cherry, S.1
Hinshaw, V.S.2
-
141
-
-
0037192933
-
The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1
-
Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, et al. 2002. The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J. Cell Biol. 157:493-507
-
(2002)
J. Cell Biol.
, vol.157
, pp. 493-507
-
-
Mu, D.1
Cambier, S.2
Fjellbirkeland, L.3
Baron, J.L.4
Munger, J.S.5
-
142
-
-
27344444684
-
Vascular development of the brain requires β8 integrin expression in the neuroepithelium
-
Proctor JM, Zang K, Wang D, Wang R, Reichardt LF. 2005. Vascular development of the brain requires β8 integrin expression in the neuroepithelium. J. Neurosci. 25:9940-48
-
(2005)
J. Neurosci.
, vol.25
, pp. 9940-9948
-
-
Proctor, J.M.1
Zang, K.2
Wang, D.3
Wang, R.4
Reichardt, L.F.5
-
143
-
-
0035984003
-
β8 integrins are required for vascular morphogenesis in mouse embryos
-
Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt LF. 2002. β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129:2891-903
-
(2002)
Development
, vol.129
, pp. 2891-2903
-
-
Zhu, J.1
Motejlek, K.2
Wang, D.3
Zang, K.4
Schmidt, A.5
Reichardt, L.F.6
-
144
-
-
84855525455
-
LTBPs, more than just an escort service
-
Todorovic V, Rifkin DB. 2012. LTBPs, more than just an escort service. J. Cell. Biochem. 113:410-18
-
(2012)
J. Cell. Biochem.
, vol.113
, pp. 410-418
-
-
Todorovic, V.1
Rifkin, D.B.2
-
145
-
-
0033840527
-
Specific sequence motif of 8-Cys repeats of TGF-β binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-β
-
Saharinen J, Keski-Oja J. 2000. Specific sequence motif of 8-Cys repeats of TGF-β binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-β. Mol. Biol. Cell 11:2691-704
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2691-2704
-
-
Saharinen, J.1
Keski-Oja, J.2
-
146
-
-
42449114907
-
Fibrillin-integrin interactions in health and disease
-
Jovanovic J, Iqbal S, Jensen S, Mardon H, Handford P. 2008. Fibrillin-integrin interactions in health and disease. Biochem. Soc. Trans. 36:257-62
-
(2008)
Biochem. Soc. Trans.
, vol.36
, pp. 257-262
-
-
Jovanovic, J.1
Iqbal, S.2
Jensen, S.3
Mardon, H.4
Handford, P.5
-
147
-
-
0029052915
-
Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons
-
Nijbroek G, Sood S, McIntosh I, Francomano CA, Bull E, et al. 1995. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am. J. Hum. Genet. 57:8-21
-
(1995)
Am. J. Hum. Genet.
, vol.57
, pp. 8-21
-
-
Nijbroek, G.1
Sood, S.2
McIntosh, I.3
Francomano, C.A.4
Bull, E.5
-
148
-
-
0037373277
-
Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome
-
Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, et al. 2003. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33:407-11
-
(2003)
Nat. Genet.
, vol.33
, pp. 407-411
-
-
Neptune, E.R.1
Frischmeyer, P.A.2
Anderson, D.E.3
Myers, L.4
Bunton, T.E.5
-
149
-
-
25144468084
-
Lung alveolar septation defects in Ltbp-3-null mice
-
Colarossi C, Chen Y, Obata H, Jurukovski V, Fontana L, et al. 2005. Lung alveolar septation defects in Ltbp-3-null mice. Am. J. Pathol. 167:419-28
-
(2005)
Am. J. Pathol.
, vol.167
, pp. 419-428
-
-
Colarossi, C.1
Chen, Y.2
Obata, H.3
Jurukovski, V.4
Fontana, L.5
-
150
-
-
0036802141
-
Bone defects in latent TGF-β binding protein (Ltbp)-3 null mice: A role for Ltbp in TGF-βpresentation
-
Dabovic B, Chen Y, Colarossi C, Zambuto L, Obata H, Rifkin DB. 2002. Bone defects in latent TGF-β binding protein (Ltbp)-3 null mice: a role for Ltbp in TGF-βpresentation. J. Endocrinol. 175:129-41
-
(2002)
J. Endocrinol.
, vol.175
, pp. 129-141
-
-
Dabovic, B.1
Chen, Y.2
Colarossi, C.3
Zambuto, L.4
Obata, H.5
Rifkin, D.B.6
-
151
-
-
78649650472
-
TGF-βinduces surface LAP expression on murine CD4Tcells independent of Foxp3 induction
-
Oida T, Weiner HL. 2010. TGF-βinduces surface LAP expression on murine CD4Tcells independent of Foxp3 induction. PLoS ONE 5:e15523
-
(2010)
PLoS ONE
, vol.5
-
-
Oida, T.1
Weiner, H.L.2
-
152
-
-
69449086689
-
Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells
-
Wang R, Kozhaya L,Mercer F, Khaitan A, Fujii H, Unutmaz D. 2009. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 106:13439-44
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 13439-13444
-
-
Wang, R.1
Kozhaya Lmercer, F.2
Khaitan, A.3
Fujii, H.4
Unutmaz, D.5
-
153
-
-
69449085219
-
GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells
-
Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM. 2009. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 106:13445-50
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 13445-13450
-
-
Tran, D.Q.1
Andersson, J.2
Wang, R.3
Ramsey, H.4
Unutmaz, D.5
Shevach, E.M.6
-
154
-
-
84863371008
-
GARP regulates the bioavailability and activation of TGFβ
-
Wang R, Zhu J, Dong X, Shi M, Lu C, Springer TA. 2012. GARP regulates the bioavailability and activation of TGFβ. Mol. Biol. Cell 23:1129-39
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 1129-1139
-
-
Wang, R.1
Zhu, J.2
Dong, X.3
Shi, M.4
Lu, C.5
Springer, T.A.6
-
155
-
-
84878071516
-
Regulation of the expression of GARP/latent TGF-β1 complexes on mouse T cells and their role in regulatory T cell and Th17 differentiation
-
Edwards JP, Fujii H, Zhou AX,Creemers J,Unutmaz D, Shevach EM. 2013. Regulation of the expression of GARP/latent TGF-β1 complexes on mouse T cells and their role in regulatory T cell and Th17 differentiation. J. Immunol. 190:5506-15
-
(2013)
J. Immunol.
, vol.190
, pp. 5506-5515
-
-
Edwards, J.P.1
Fujii, H.2
Zhou, A.X.3
Creemers, J.4
Unutmaz, D.5
Shevach, E.M.6
-
156
-
-
15844376477
-
Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin
-
Huang XZ, Wu JF, Cass D, Erle DJ, Corry D, et al. 1996. Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133:921-28
-
(1996)
J. Cell Biol.
, vol.133
, pp. 921-928
-
-
Huang, X.Z.1
Wu, J.F.2
Cass, D.3
Erle, D.J.4
Corry, D.5
-
157
-
-
0033524949
-
The integrin αvβ6 binds and activates latent TGFβ1: A mechanism for regulating pulmonary inflammation and fibrosis
-
Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, et al. 1999. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319-28
-
(1999)
Cell
, vol.96
, pp. 319-328
-
-
Munger, J.S.1
Huang, X.2
Kawakatsu, H.3
Griffiths, M.J.4
Dalton, S.L.5
-
158
-
-
0027234361
-
Restricted distribution of integrinβ-6 messenger RNA in primate epithelial tissues
-
Breuss JM,Gillett N,LuL, Sheppard D, Pytela R. 1993. Restricted distribution of integrinβ-6 messenger RNA in primate epithelial tissues. J. Histochem. Cytochem. 41:1521-27
-
(1993)
J. Histochem. Cytochem.
, vol.41
, pp. 1521-1527
-
-
Jmgillett Nlul, B.1
Sheppard, D.2
Pytela, R.3
-
159
-
-
0028978232
-
Expression of the β-6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodelling
-
Breuss JM, Gallo J, Delisser HM, Klimanskaya IV, Folkesson HG, et al. 1995. Expression of the β-6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodelling. J. Cell Sci. 108:2241-51
-
(1995)
J. Cell Sci.
, vol.108
, pp. 2241-2251
-
-
Breuss, J.M.1
Gallo, J.2
Delisser, H.M.3
Klimanskaya, I.V.4
Folkesson, H.G.5
-
160
-
-
0037196163
-
The integrin αvβ6 binds and activates latent TGFβ3
-
Annes JP, Rifkin DB, Munger JS. 2002. The integrin αVβ6 binds and activates latent TGFβ3. FEBS Lett. 511:65-68
-
(2002)
FEBS Lett.
, vol.511
, pp. 65-68
-
-
Annes, J.P.1
Rifkin, D.B.2
Munger, J.S.3
-
161
-
-
19544368642
-
Integrin αvβ8-mediated activation of transforming growth factor-β by perivascular astrocytes: An angiogenic control switch
-
Cambier S, Gline S, Mu D, Collins R, Araya J, et al. 2005. Integrin αvβ8-mediated activation of transforming growth factor-β by perivascular astrocytes: an angiogenic control switch. Am. J. Pathol. 166:1883-94
-
(2005)
Am. J. Pathol.
, vol.166
, pp. 1883-1894
-
-
Cambier, S.1
Gline, S.2
Mu, D.3
Collins, R.4
Araya, J.5
-
162
-
-
33947265169
-
Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice
-
Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, et al. 2007. Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. J. Cell Biol. 176:787-93
-
(2007)
J. Cell Biol.
, vol.176
, pp. 787-793
-
-
Yang, Z.1
Mu, Z.2
Dabovic, B.3
Jurukovski, V.4
Yu, D.5
-
163
-
-
61949349656
-
Mice that lack activity of αvβ6- and αvβ8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice
-
Aluwihare P, Mu Z, Zhao Z, Yu D, Weinreb PH, et al. 2009. Mice that lack activity of αvβ6- and αvβ8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J. Cell Sci. 122:227-32
-
(2009)
J. Cell Sci.
, vol.122
, pp. 227-232
-
-
Aluwihare, P.1
Mu, Z.2
Zhao, Z.3
Yu, D.4
Weinreb, P.H.5
-
164
-
-
0028806184
-
Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction
-
Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, et al. 1995. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11:415-21
-
(1995)
Nat. Genet.
, vol.11
, pp. 415-421
-
-
Kaartinen, V.1
Voncken, J.W.2
Shuler, C.3
Warburton, D.4
Bu, D.5
-
165
-
-
0036902053
-
Integrin α8β1 mediates adhesion to LAP-TGFβ1
-
Lu M, Munger JS, Steadele M, Busald C, Tellier M, Schnapp LM. 2002. Integrin α8β1 mediates adhesion to LAP-TGFβ1. J. Cell Sci. 115:4641-48
-
(2002)
J. Cell Sci.
, vol.115
, pp. 4641-4648
-
-
Lu, M.1
Munger, J.S.2
Steadele, M.3
Busald, C.4
Tellier, M.5
Schnapp, L.M.6
-
166
-
-
0031670654
-
Interactions between growth factors and integrins: Latent forms of transforming growth factor-β are ligands for the integrin αvβ1
-
Munger JS, Harpel JG, Giancotti FG, Rifkin DB. 1998. Interactions between growth factors and integrins: Latent forms of transforming growth factor-β are ligands for the integrin αvβ1. Mol. Biol. Cell 9:2627-38
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 2627-2638
-
-
Munger, J.S.1
Harpel, J.G.2
Giancotti, F.G.3
Rifkin, D.B.4
-
167
-
-
0037437369
-
The integrin αvβ3 is a receptor for the latencyassociated peptides of transforming growth factors β1 and β3
-
Ludbrook SB, Barry ST, Delves CJ,Horgan CM. 2003. The integrin αvβ3 is a receptor for the latencyassociated peptides of transforming growth factors β1 and β3. Biochem. J. 369:311-18
-
(2003)
Biochem. J.
, vol.369
, pp. 311-318
-
-
Ludbrook, S.B.1
Barry, S.T.2
Delves Cjhorgan, C.M.3
-
168
-
-
28244449083
-
Increased expression of integrinαvβ3 contributes to the establishment of autocrine TGF-βsignaling in scleroderma fibroblasts
-
Asano Y, IhnH, YamaneK, JinninM,Mimura Y,TamakiK. 2005. Increased expression of integrinαvβ3 contributes to the establishment of autocrine TGF-βsignaling in scleroderma fibroblasts. J. Immunol. 175:7708-18
-
(2005)
J. Immunol.
, vol.175
, pp. 7708-7718
-
-
Asano, Y.1
Ihn, H.2
Yamane, K.3
Jinnin, M.4
Mimura, Y.5
Tamaki, K.6
-
169
-
-
33144458448
-
Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts
-
Asano Y, Ihn H, Yamane K, Jinnin M, Tamaki K. 2006. Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. Am. J. Pathol. 168:499-510
-
(2006)
Am. J. Pathol.
, vol.168
, pp. 499-510
-
-
Asano, Y.1
Ihn, H.2
Yamane, K.3
Jinnin, M.4
Tamaki, K.5
-
170
-
-
37249044357
-
Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix
-
Wipff PJ, Rifkin DB,Meister JJ, Hinz B. 2007. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179:1311-23
-
(2007)
J. Cell Biol.
, vol.179
, pp. 1311-1323
-
-
Wipff, P.J.1
Rifkin, D.B.2
Meister, J.J.3
Hinz, B.4
-
171
-
-
82755189233
-
Integrinαvβ5-mediated TGF-βactivation by airway smooth muscle cells in asthma
-
Tatler AL, John AE, Jolly L, Habgood A, Porte J, et al. 2011. Integrinαvβ5-mediated TGF-βactivation by airway smooth muscle cells in asthma. J. Immunol. 187:6094-107
-
(2011)
J. Immunol.
, vol.187
, pp. 6094-6107
-
-
Tatler, A.L.1
John, A.E.2
Jolly, L.3
Habgood, A.4
Porte, J.5
-
172
-
-
84889886646
-
Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs
-
Henderson N, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, et al. 2013. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19:1617-24
-
(2013)
Nat. Med.
, vol.19
, pp. 1617-1624
-
-
Henderson, N.1
Arnold, T.D.2
Katamura, Y.3
Giacomini, M.M.4
Rodriguez, J.D.5
-
173
-
-
84857651851
-
Epithelial cells utilize cortical actin/myosin to activate latent TGF-βthrough integrin αvβ6-dependent physical force
-
Giacomini MM, Travis MA, Kudo M, Sheppard D. 2012. Epithelial cells utilize cortical actin/myosin to activate latent TGF-βthrough integrin αvβ6-dependent physical force. Exp. Cell Res. 318:716-22
-
(2012)
Exp. Cell Res.
, vol.318
, pp. 716-722
-
-
Giacomini, M.M.1
Travis, M.A.2
Kudo, M.3
Sheppard, D.4
-
174
-
-
2942653435
-
Integrin αvβ6-mediated activation of latent TGF-β requires the latent TGF-βbinding protein-1
-
Annes JP, Chen Y, Munger JS, Rifkin DB. 2004. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-βbinding protein-1. J. Cell Biol. 165:723-34
-
(2004)
J. Cell Biol.
, vol.165
, pp. 723-734
-
-
Annes, J.P.1
Chen, Y.2
Munger, J.S.3
Rifkin, D.B.4
-
175
-
-
34548208943
-
Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice
-
Travis MA, Reizis B, Melton AC, Masteller E, Tang Q, et al. 2007. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449:361-65
-
(2007)
Nature
, vol.449
, pp. 361-365
-
-
Travis, M.A.1
Reizis, B.2
Melton, A.C.3
Masteller, E.4
Tang, Q.5
-
176
-
-
35649024275
-
Ulcerative colitis and autoimmunity induced by loss of myeloid αv integrins
-
Lacy-Hulbert A, Smith AM, Tissire H, Barry M, Crowley D, et al. 2007. Ulcerative colitis and autoimmunity induced by loss of myeloid αv integrins. Proc. Natl. Acad. Sci. USA 104:15823-28
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 15823-15828
-
-
Lacy-Hulbert, A.1
Smith, A.M.2
Tissire, H.3
Barry, M.4
Crowley, D.5
-
177
-
-
80054863891
-
Preferential expression of integrin αvβ8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells
-
Paidassi H, AcharyaM, Zhang A, Mukhopadhyay S, KwonM, et al. 2011. Preferential expression of integrin αvβ8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology 141:1813-20
-
(2011)
Gastroenterology
, vol.141
, pp. 1813-1820
-
-
Paidassi, H.1
Acharya, M.2
Zhang, A.3
Mukhopadhyay, S.4
Kwon, M.5
-
178
-
-
80054866424
-
Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8
-
Worthington JJ, Czajkowska BI, Melton AC, Travis MA. 2011. Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8. Gastroenterology 141:1802-12
-
(2011)
Gastroenterology
, vol.141
, pp. 1802-1812
-
-
Worthington, J.J.1
Czajkowska, B.I.2
Melton, A.C.3
Travis, M.A.4
-
179
-
-
78649807601
-
Expression of αvβ8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice
-
Melton AC, Bailey-Bucktrout SL, Travis MA, Fife BT, Bluestone JA, Sheppard D. 2010. Expression of αvβ8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J. Clin. Investig. 120:4436-44
-
(2010)
J. Clin. Investig.
, vol.120
, pp. 4436-4444
-
-
Melton, A.C.1
Bailey-Bucktrout, S.L.2
Travis, M.A.3
Fife, B.T.4
Bluestone, J.A.5
Sheppard, D.6
-
180
-
-
78649819162
-
αv integrin expression by DCs is required for Th17 cell differentiation and development of experimental autoimmune encephalomyelitis in mice
-
Acharya M, Mukhopadhyay S, Paidassi H, Jamil T, Chow C, et al. 2010.αv integrin expression by DCs is required for Th17 cell differentiation and development of experimental autoimmune encephalomyelitis in mice. J. Clin. Investig. 120:4445-52
-
(2010)
J. Clin. Investig.
, vol.120
, pp. 4445-4452
-
-
Acharya, M.1
Mukhopadhyay, S.2
Paidassi, H.3
Jamil, T.4
Chow, C.5
-
181
-
-
77953913216
-
Increased serum IL-17 is an independent risk factor for severe asthma
-
Agache I, Ciobanu C, Agache C, Anghel M. 2010. Increased serum IL-17 is an independent risk factor for severe asthma. Respir. Med. 104:1131-37
-
(2010)
Respir. Med.
, vol.104
, pp. 1131-1137
-
-
Agache, I.1
Ciobanu, C.2
Agache, C.3
Anghel, M.4
-
182
-
-
84862776751
-
IL-17A produced by αβTcells drives airway hyper-responsiveness inmice and enhances mouse and human airway smoothmuscle contraction
-
Kudo M, Melton AC, Chen C, Engler MB, Huang KE, et al. 2012. IL-17A produced by αβTcells drives airway hyper-responsiveness inmice and enhances mouse and human airway smoothmuscle contraction. Nat. Med. 18:547-54
-
(2012)
Nat. Med.
, vol.18
, pp. 547-554
-
-
Kudo, M.1
Melton, A.C.2
Chen, C.3
Engler, M.B.4
Huang, K.E.5
-
183
-
-
79959993129
-
Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8- mediated activation of TGF-β
-
Kitamura H, Cambier S, Somanath S, Barker T, Minagawa S, et al. 2011. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8- mediated activation of TGF-β. J. Clin. Investig. 121:2863-75
-
(2011)
J. Clin. Investig.
, vol.121
, pp. 2863-2875
-
-
Kitamura, H.1
Cambier, S.2
Somanath, S.3
Barker, T.4
Minagawa, S.5
-
184
-
-
0034652216
-
Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis
-
Kaminski N, Allard JD, Pittet JF, Zuo F, Griffiths MJ, et al. 2000. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc. Natl. Acad. Sci. USA 97:1778-83
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 1778-1783
-
-
Kaminski, N.1
Allard, J.D.2
Pittet, J.F.3
Zuo, F.4
Griffiths, M.J.5
-
185
-
-
0037435009
-
Loss of integrin αvβ6-mediated TGF-βactivation causes Mmp12-dependent emphysema
-
Morris DG, Huang X, Kaminski N,Wang Y, Shapiro SD, et al. 2003. Loss of integrin αvβ6-mediated TGF-βactivation causes Mmp12-dependent emphysema. Nature 422:169-73
-
(2003)
Nature
, vol.422
, pp. 169-173
-
-
Morris, D.G.1
Huang, X.2
Kaminski Nwang, Y.3
Shapiro, S.D.4
-
186
-
-
0036733585
-
Enteric expression of the integrin αvβ6 is essential for nematode-induced mucosal mast cell hyperplasia and expression of the granule chymase, mouse mast cell protease-1
-
Knight PA,Wright SH, Brown JK, Huang X, Sheppard D, Miller HR. 2002. Enteric expression of the integrin αvβ6 is essential for nematode-induced mucosal mast cell hyperplasia and expression of the granule chymase, mouse mast cell protease-1. Am. J. Pathol. 161:771-79
-
(2002)
Am. J. Pathol.
, vol.161
, pp. 771-779
-
-
Knight Pawright, S.H.1
Brown, J.K.2
Huang, X.3
Sheppard, D.4
Miller, H.R.5
-
187
-
-
84863012007
-
The αvβ6 integrin modulates airway hyperresponsiveness in mice by regulating intraepithelial mast cells
-
Sugimoto K, Kudo M, Sundaram A, Ren X, Huang K, et al. 2012. The αvβ6 integrin modulates airway hyperresponsiveness in mice by regulating intraepithelial mast cells. J. Clin. Investig. 122:748-58
-
(2012)
J. Clin. Investig.
, vol.122
, pp. 748-758
-
-
Sugimoto, K.1
Kudo, M.2
Sundaram, A.3
Ren, X.4
Huang, K.5
|