메뉴 건너뛰기




Volumn 12, Issue 7, 2000, Pages 1705-1720

Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; LEARNING; NERVE CELL; PATTERN RECOGNITION; PHYSIOLOGY; SIGNAL PROCESSING;

EID: 0034222304     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015312     Document Type: Article
Times cited : (490)

References (24)
  • 1
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow, H. (1989). Unsupervised learning. Neural Computation, 1, 295-311.
    • (1989) Neural Computation , vol.1 , pp. 295-311
    • Barlow, H.1
  • 2
    • 0000797290 scopus 로고
    • What is the computational goal of the neocortex?
    • C. Koch & J. Davis (Eds.), Cambridge, MA: MIT Press
    • Barlow, H. (1994). What is the computational goal of the neocortex? In C. Koch & J. Davis (Eds.), Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press.
    • (1994) Large-scale Neuronal Theories of the Brain
    • Barlow, H.1
  • 3
    • 0030832881 scopus 로고    scopus 로고
    • The "independent components" of natural scenes are edge filters
    • Bell, A., & Sejnowski,T. (1997). The "independent components" of natural scenes are edge filters. Vision Research, 37, 3327-3338.
    • (1997) Vision Research , vol.37 , pp. 3327-3338
    • Bell, A.1
  • 4
    • 0031645454 scopus 로고    scopus 로고
    • Multidimensional independent component analysis
    • Seattle, WA
    • Cardoso, J. F. (1998). Multidimensional independent component analysis. In Proc. ICASSP'98 (Seattle, WA).
    • (1998) Proc. ICASSP'98
    • Cardoso, J.F.1
  • 6
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • Comon, P. (1994). Independent component analysis - a new concept? Signal Processing, 36, 287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 7
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Field, D. (1994). What is the goal of sensory coding? Neural Computation, 6, 559-601.
    • (1994) Neural Computation , vol.6 , pp. 559-601
    • Field, D.1
  • 8
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • Földíak, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3, 194-200.
    • (1991) Neural Computation , vol.3 , pp. 194-200
    • Földíak, P.1
  • 9
    • 0026904517 scopus 로고
    • Normalization of cell responses in cat striate cortex
    • Heeger, D. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181-198.
    • (1992) Visual Neuroscience , vol.9 , pp. 181-198
    • Heeger, D.1
  • 10
    • 0001331725 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • Hubel, D., & Wiesel, T. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 73, 218-226.
    • (1962) Journal of Physiology , vol.73 , pp. 218-226
    • Hubel, D.1    Wiesel, T.2
  • 11
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483-1492.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 12
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general nonlinear Hebbian-like learning rules
    • Hyvärinen, A., & Oja, E. (1998). Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing, 64(3), 301-313.
    • (1998) Signal Processing , vol.64 , Issue.3 , pp. 301-313
    • Hyvärinen, A.1    Oja, E.2
  • 15
    • 0001380009 scopus 로고    scopus 로고
    • Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map
    • Kohonen, T. (1996). Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map. Biological Cybernetics, 75, 281-291.
    • (1996) Biological Cybernetics , vol.75 , pp. 281-291
    • Kohonen, T.1
  • 16
    • 0032101368 scopus 로고    scopus 로고
    • Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations
    • Mel, B. W., Ruderman, D. E., & Archie, K. A. (1998). Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations. Journal of Neuroscience, 18, 43254-334.
    • (1998) Journal of Neuroscience , vol.18 , pp. 43254-43334
    • Mel, B.W.1    Ruderman, D.E.2    Archie, K.A.3
  • 17
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 18
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37, 3311-3325.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 19
    • 0002049291 scopus 로고
    • Separation of a mixture of independent sources through a maximum likelihood approach
    • Pham, D.-T., Garrat, P., & Jutten, C. (1992). Separation of a mixture of independent sources through a maximum likelihood approach. In Proc. EUSIPCO (pp. 771-774).
    • (1992) Proc. EUSIPCO , pp. 771-774
    • Pham, D.-T.1    Garrat, P.2    Jutten, C.3
  • 20
    • 0020970727 scopus 로고
    • Visual cortical neurons as localized spatial frequency filters
    • Pollen, D., & Ronner, S. (1983). Visual cortical neurons as localized spatial frequency filters. IEEE Trans. on Systems, Man, and Cybernetics, 13, 907-916.
    • (1983) IEEE Trans. on Systems, Man, and Cybernetics , vol.13 , pp. 907-916
    • Pollen, D.1    Ronner, S.2
  • 21
    • 0032495066 scopus 로고    scopus 로고
    • Independent component analysis of natural image sequences yields spatiotemporal filters similar to simple cells in primary visual cortex
    • van Hateren, J. H., & Ruderman, D. L. (1998). Independent component analysis of natural image sequences yields spatiotemporal filters similar to simple cells in primary visual cortex. Proc. Royal Society ser. B, 265, 2315-2320.
    • (1998) Proc. Royal Society Ser. B , vol.265 , pp. 2315-2320
    • Van Hateren, J.H.1    Ruderman, D.L.2
  • 22
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • van Hateren, J. H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Royal Society ser. B, 265, 359-366.
    • (1998) Proc. Royal Society Ser. B , vol.265 , pp. 359-366
    • Van Hateren, J.H.1    Van Der Schaaf, A.2
  • 23
    • 0012263280 scopus 로고
    • Form analysis in visual cortex
    • M. S Gazzaniga (Ed.), Cambridge, MA: MIT Press
    • von der Heydt, R. (1995). Form analysis in visual cortex. In M. S Gazzaniga (Ed.), The cognitive neurosciences (pp. 365-382). Cambridge, MA: MIT Press.
    • (1995) The Cognitive Neurosciences , pp. 365-382
    • Von Der Heydt, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.