-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 153-160). Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
2
-
-
34547975052
-
Scaling learning algorithms towards AI
-
L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.), Cambridge, MA: MIT Press
-
Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large scale kernel machines. Cambridge, MA: MIT Press.
-
(2007)
Large scale kernel machines
-
-
Bengio, Y.1
Le Cun, Y.2
-
3
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291-294.
-
(1988)
Biological Cybernetics
, vol.59
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
4
-
-
84862612564
-
On contrastive divergence learning
-
R. G. Cowell, & Z. Ghahramani (Eds.), N. P.: Society for Artificial Intelligence and Statistics
-
Carreira-Perpiñan, M. A., & Hinton, G. E. (2005). On contrastive divergence learning. In R. G. Cowell, & Z. Ghahramani (Eds.), Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (pp. 33-40). N. P.: Society for Artificial Intelligence and Statistics.
-
(2005)
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
, pp. 33-40
-
-
Carreira-Perpiñan, M.A.1
Hinton, G.E.2
-
8
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771-1800.
-
(2002)
Neural Computation
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
9
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
10
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
11
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
D. E. Rumelhart & J. L. McClelland (Eds.), Foundations. Cambridge, MA: MIT Press
-
Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations. Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing: Explorations in the microstructure of cognition
, vol.1
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
12
-
-
0004243089
-
-
(Tech. Rep. TR-CMU-CS-84-119), Pittsburgh, PA: Carnegie Mellon University, Department of Computer Science
-
Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint satisfaction networks that learn (Tech. Rep. TR-CMU-CS-84-119). Pittsburgh, PA: Carnegie Mellon University, Department of Computer Science.
-
(1984)
Boltzmann machines: Constraint satisfaction networks that learn
-
-
Hinton, G.E.1
Sejnowski, T.J.2
Ackley, D.H.3
-
13
-
-
0002834189
-
Autoencoders, minimum description length, and Helmholtz free energy
-
D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Francisco: Morgan Kaufmann
-
Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. In D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 3-10). San Francisco: Morgan Kaufmann.
-
(1994)
Advances in neural information processing systems
, vol.6
, pp. 3-10
-
-
Hinton, G.E.1
Zemel, R.S.2
-
14
-
-
0034153465
-
Nonlinear autoassociation is not equivalent to PCA
-
Japkowicz, N., Hanson, S. J., & Gluck, M. A. (2000). Nonlinear autoassociation is not equivalent to PCA. Neural Computation, 12(3), 531-545.
-
(2000)
Neural Computation
, vol.12
, Issue.3
, pp. 531-545
-
-
Japkowicz, N.1
Hanson, S.J.2
Gluck, M.A.3
-
15
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Z. Ghahramani (Ed.), Madison, WI: Omnipress
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. In Z. Ghahramani (Ed.), Twenty-Fourth International Conference on Machine Learning (ICML'2007) (pp. 473-480). Madison, WI: Omnipress.
-
(2007)
Twenty-Fourth International Conference on Machine Learning (ICML'2007)
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
17
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Ranzato, M., Poultney, C., Chopra, S., & Le Cun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19.Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.19
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
Le Cun, Y.4
-
18
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
20
-
-
72249121023
-
Markov chains and Monte-Carlo simulation
-
Ulm: Ulm University, Department of Stochastics
-
Schmidt, V. (2006). Markov chains and Monte-Carlo simulation. In Lecture Notes, Summer 2006. Ulm: Ulm University, Department of Stochastics.
-
(2006)
Lecture Notes, Summer 2006
-
-
Schmidt, V.1
-
21
-
-
85153961469
-
Transformation invariant autoassociation with application to handwritten character recognition
-
G. Tesauro, D. Touretzky, & T. Leen (Eds.), Cambridge, MA: MIT Press
-
Schwenk, H., & Milgram, M. (1995). Transformation invariant autoassociation with application to handwritten character recognition. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 991-998). Cambridge, MA: MIT Press.
-
(1995)
Advances in neural information processing systems
, vol.7
, pp. 991-998
-
-
Schwenk, H.1
Milgram, M.2
-
22
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press
-
Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (Vol. 1, pp. 194-281). Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing
, vol.1
, pp. 194-281
-
-
Smolensky, P.1
-
23
-
-
84864026688
-
Modeling human motion using binary latent variables
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Taylor, G., Hinton, G., & Roweis, S. (2007). Modeling human motion using binary latent variables. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 1345-1352). Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.19
, pp. 1345-1352
-
-
Taylor, G.1
Hinton, G.2
Roweis, S.3
-
24
-
-
56449086223
-
Training restricted Boltzmann machines using approximations to the likelihood gradient
-
A. McCallum & S. Roweis (Eds.), Madison, WI: Omnipress
-
Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In A. McCallum & S. Roweis (Eds.), Proceedings of the International Conference on Machine Learning (Vol. 25, pp. 1064-1071). Madison, WI: Omnipress.
-
(2008)
Proceedings of the International Conference on Machine Learning
, vol.25
, pp. 1064-1071
-
-
Tieleman, T.1
-
25
-
-
84899000641
-
Exponential family harmoniums with an application to information retrieval
-
L. Saul, Y. Weiss, & L. Bottou (Eds.), Cambridge, MA: MIT Press
-
Welling, M., Rosen-Zvi, M., & Hinton, G. E. (2005). Exponential family harmoniums with an application to information retrieval. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, vol.17
-
-
Welling, M.1
Rosen-Zvi, M.2
Hinton, G.E.3
-
26
-
-
84899029362
-
The convergence of contrastive divergences
-
L. Saul, Y. Weiss, & L. Bottou (Eds.), Cambridge, MA: MIT Press
-
Yuille, A. L. (2005). The convergence of contrastive divergences. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17 (pp. 1593-1600). Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, vol.17
, pp. 1593-1600
-
-
Yuille, A.L.1
|