-
2
-
-
69349090197
-
Learning deep architectures for AI. Foundations & Trends in Mach. Learn
-
to appear
-
Bengio, Y. (2009). Learning deep architectures for AI. Foundations & Trends in Mach. Learn., to appear.
-
(2009)
-
-
Bengio, Y.1
-
3
-
-
84899005563
-
A neural probabilistic language model
-
Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural probabilistic language model. Adv. Neural Inf. Proc. Sys. 13 (pp. 932-938).
-
(2001)
Adv. Neural Inf. Proc. Sys
, vol.13
, pp. 932-938
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
-
4
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Adv. Neural Inf. Proc. Sys. 19 (pp. 153-160).
-
(2007)
Adv. Neural Inf. Proc. Sys
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
5
-
-
85153947869
-
Active learning with statistical models
-
Cohn, D., Ghahramani, Z., & Jordan, M. (1995). Active learning with statistical models. Adv. Neural Inf. Proc. Sys. 7 (pp. 705-712).
-
(1995)
Adv. Neural Inf. Proc. Sys
, vol.7
, pp. 705-712
-
-
Cohn, D.1
Ghahramani, Z.2
Jordan, M.3
-
6
-
-
0348021674
-
Parallel continuation-based global optimization for molecular conformation and protein folding
-
Cornell University, Dept. of Computer Science
-
Coleman, T., & Wu, Z. (1994). Parallel continuation-based global optimization for molecular conformation and protein folding (Technical Report). Cornell University, Dept. of Computer Science.
-
(1994)
Technical Report
-
-
Coleman, T.1
Wu, Z.2
-
7
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. Int. Conf. Mach. Learn. 2008 (pp. 160-167).
-
(2008)
Int. Conf. Mach. Learn. 2008
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
8
-
-
4243075127
-
Generalization in the programed teaching of a perceptron
-
Derényi, I., Geszti, T., & Györgyi, G. (1994). Generalization in the programed teaching of a perceptron. Physical Review E, 50, 3192-3200.
-
(1994)
Physical Review E
, vol.50
, pp. 3192-3200
-
-
Derényi, I.1
Geszti, T.2
Györgyi, G.3
-
9
-
-
0027636611
-
Learning and development in neural networks: The importance of starting small
-
Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48, 781-799.
-
(1993)
Cognition
, vol.48
, pp. 781-799
-
-
Elman, J.L.1
-
10
-
-
73249147663
-
The difficulty of training deep architectures and the effect of unsupervised pre-training
-
Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent, P. (2009). The difficulty of training deep architectures and the effect of unsupervised pre-training. AI & Stat. '2009.
-
(2009)
AI & Stat. '2009
-
-
Erhan, D.1
Manzagol, P.-A.2
Bengio, Y.3
Bengio, S.4
Vincent, P.5
-
11
-
-
56449085852
-
Unsupervised learning of distributions on binary vectors using two layer networks
-
UCSC-CRL-94-25, University of California, Santa Cruz
-
Freund, Y., & Haussler, D. (1994). Unsupervised learning of distributions on binary vectors using two layer networks (Technical Report UCSC-CRL-94-25). University of California, Santa Cruz.
-
(1994)
Technical Report
-
-
Freund, Y.1
Haussler, D.2
-
12
-
-
0001295178
-
On the power of small-depth threshold circuits
-
Hr̊stad, J., & Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational Complexity, 1, 113-129.
-
(1991)
Computational Complexity
, vol.1
, pp. 113-129
-
-
Hr̊stad, J.1
Goldmann, M.2
-
13
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
14
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
15
-
-
59649113160
-
Flexible shaping: How learning in small steps helps
-
Krueger, K. A., & Dayan, P. (2009). Flexible shaping: how learning in small steps helps. Cognition, 110, 380-394.
-
(2009)
Cognition
, vol.110
, pp. 380-394
-
-
Krueger, K.A.1
Dayan, P.2
-
16
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. Int. Conf. Mach. Learn. (pp. 473-480).
-
(2007)
Int. Conf. Mach. Learn
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
17
-
-
12344258158
-
-
Peterson, G. B. (2004). A day of great illumination: B. F. Skinner's discovery of shaping. Journal of the Experimental Analysis of Behavior, 82, 317-328.
-
Peterson, G. B. (2004). A day of great illumination: B. F. Skinner's discovery of shaping. Journal of the Experimental Analysis of Behavior, 82, 317-328.
-
-
-
-
18
-
-
85161966246
-
Sparse feature learning for deep belief networks
-
Ranzato, M., Boureau, Y., & LeCun, Y. (2008). Sparse feature learning for deep belief networks. Adv. Neural Inf. Proc. Sys. 20 (pp. 1185-1192).
-
(2008)
Adv. Neural Inf. Proc. Sys
, vol.20
, pp. 1185-1192
-
-
Ranzato, M.1
Boureau, Y.2
LeCun, Y.3
-
19
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. Adv. Neural Inf. Proc. Sys. 19 (pp. 1137-1144).
-
(2007)
Adv. Neural Inf. Proc. Sys
, vol.19
, pp. 1137-1144
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
20
-
-
0032888001
-
Language acquisition in the absence of explicit negative evidence: How important is starting small?
-
Rohde, D., & Plaut, D. (1999). Language acquisition in the absence of explicit negative evidence: How important is starting small? Cognition, 72, 67-109.
-
(1999)
Cognition
, vol.72
, pp. 67-109
-
-
Rohde, D.1
Plaut, D.2
-
21
-
-
34547997615
-
Learning a nonlinear embedding by preserving class neighbourhood structure
-
Salakhutdinov, R., & Hinton, G. (2007). Learning a nonlinear embedding by preserving class neighbourhood structure. AI & Stat. '2007.
-
(2007)
AI & Stat. '2007
-
-
Salakhutdinov, R.1
Hinton, G.2
-
22
-
-
85162037149
-
Using Deep Belief Nets to learn covariance kernels for Gaussian processes
-
Salakhutdinov, R., & Hinton, G. (2008). Using Deep Belief Nets to learn covariance kernels for Gaussian processes. Adv. Neural Inf. Proc. Sys. 20 (pp. 1249-1256).
-
(2008)
Adv. Neural Inf. Proc. Sys
, vol.20
, pp. 1249-1256
-
-
Salakhutdinov, R.1
Hinton, G.2
-
24
-
-
0028443865
-
Neural network learning control of robot manipulators using gradually increasing task difficulty
-
Sanger, T. D. (1994). Neural network learning control of robot manipulators using gradually increasing task difficulty. IEEE Trans. on Robotics and Automation, 10.
-
(1994)
IEEE Trans. on Robotics and Automation
, vol.10
-
-
Sanger, T.D.1
-
25
-
-
0036293862
-
Connection-ist language modeling for large vocabulary continuous speech recognition
-
Orlando, Florida
-
Schwenk, H., & Gauvain, J.-L. (2002). Connection-ist language modeling for large vocabulary continuous speech recognition. International Conference on Acoustics, Speech and Signal Processing (pp. 765-768). Orlando, Florida.
-
(2002)
International Conference on Acoustics, Speech and Signal Processing
, pp. 765-768
-
-
Schwenk, H.1
Gauvain, J.-L.2
-
28
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Int. Conf. Mach. Learn. (pp. 1096-1103).
-
(2008)
Int. Conf. Mach. Learn
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
30
-
-
0031285908
-
Global continuation for distance geometry problems
-
Wu, Z. (1997). Global continuation for distance geometry problems. SIAM Journal of Optimization, 7, 814-836.
-
(1997)
SIAM Journal of Optimization
, vol.7
, pp. 814-836
-
-
Wu, Z.1
|