-
1
-
-
33644513420
-
Efficient auditory coding
-
E. C. Smith and M. S. Lewicki. Efficient auditory coding. Nature, 439:978-982, 2006.
-
(2006)
Nature
, vol.439
, pp. 978-982
-
-
Smith, E.C.1
Lewicki, M.S.2
-
2
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
3
-
-
80053205731
-
Shift-invariant sparse coding for audio classification
-
R. Grosse, R. Raina, H. Kwong, and A.Y. Ng. Shift-invariant sparse coding for audio classification. In UAI, 2007.
-
(2007)
UAI
-
-
Grosse, R.1
Raina, R.2
Kwong, H.3
Ng, A.Y.4
-
4
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
5
-
-
85112276587
-
Efficient learning of sparse representations with an energy-based model
-
M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006.
-
(2006)
NIPS
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
7
-
-
50249093806
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007.
-
(2007)
ICML
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
8
-
-
85161980001
-
Sparse deep belief network model for visual area V2
-
H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief network model for visual area V2. In NIPS, 2008.
-
(2008)
NIPS
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
9
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
11
-
-
70450159350
-
Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
-
M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In CVPR, 2009.
-
(2009)
CVPR
-
-
Norouzi, M.1
Ranjbar, M.2
Mori, G.3
-
12
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
14
-
-
51949106645
-
Self-taught learning: Transfer learning from unlabeled data
-
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007.
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
15
-
-
0032639886
-
On the use of support vector machines for phonetic classification
-
P. Clarkson and P. J. Moreno. On the use of support vector machines for phonetic classification. In ICASSP99, pages 585-588, 1999.
-
(1999)
ICASSP99
, pp. 585-588
-
-
Clarkson, P.1
Moreno, P.J.2
-
16
-
-
0029355999
-
Speaker identification and verification using Gaussian mixture speaker models
-
D. A. Reynolds. Speaker identification and verification using gaussian mixture speaker models. Speech Commun., 17(1-2):91-108, 1995.
-
(1995)
Speech Commun.
, vol.17
, Issue.1-2
, pp. 91-108
-
-
Reynolds, D.A.1
-
17
-
-
33947686745
-
Large margin Gaussian mixture modeling for phonetic classication and recognition
-
F. Sha and L. K. Saul. Large margin gaussian mixture modeling for phonetic classication and recognition. In ICASSP'06, 2006.
-
(2006)
ICASSP'06
-
-
Sha, F.1
Saul, L.K.2
-
18
-
-
85162054069
-
Regularization, adaptation, and non-independent features improve hidden conditional random fields for phone classification
-
Y.-H. Sung, C. Boulis, C. Manning, and D. Jurafsky. Regularization, adaptation, and non-independent features improve hidden conditional random fields for phone classification. In IEEE ASRU, 2007.
-
(2007)
IEEE ASRU
-
-
Sung, Y.-H.1
Boulis, C.2
Manning, C.3
Jurafsky, D.4
-
19
-
-
78649303866
-
Learning structured models for phone recognition
-
S. Petrov, A. Pauls, and D. Klein. Learning structured models for phone recognition. In EMNLP-CoNLL, 2007.
-
(2007)
EMNLP-conll
-
-
Petrov, S.1
Pauls, A.2
Klein, D.3
-
20
-
-
70450164063
-
Hidden conditional random field with distribution constraints for phone classification
-
D. Yu, L. Deng, and A. Acero. Hidden conditional random field with distribution constraints for phone classification. In Interspeech, 2009.
-
(2009)
Interspeech
-
-
Yu, D.1
Deng, L.2
Acero, A.3
|