메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1096-1104

Unsupervised feature learning for audio classification using convolutional deep belief networks

Author keywords

[No Author keywords available]

Indexed keywords

AUDIO ACOUSTICS; CLASSIFICATION (OF INFORMATION); DEEP LEARNING;

EID: 84863380535     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (910)

References (20)
  • 1
    • 33644513420 scopus 로고    scopus 로고
    • Efficient auditory coding
    • E. C. Smith and M. S. Lewicki. Efficient auditory coding. Nature, 439:978-982, 2006.
    • (2006) Nature , vol.439 , pp. 978-982
    • Smith, E.C.1    Lewicki, M.S.2
  • 2
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 3
    • 80053205731 scopus 로고    scopus 로고
    • Shift-invariant sparse coding for audio classification
    • R. Grosse, R. Raina, H. Kwong, and A.Y. Ng. Shift-invariant sparse coding for audio classification. In UAI, 2007.
    • (2007) UAI
    • Grosse, R.1    Raina, R.2    Kwong, H.3    Ng, A.Y.4
  • 4
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 5
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006.
    • (2006) NIPS
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 7
    • 50249093806 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007.
    • (2007) ICML
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 8
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief network model for visual area V2
    • H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief network model for visual area V2. In NIPS, 2008.
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 9
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 11
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
    • M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In CVPR, 2009.
    • (2009) CVPR
    • Norouzi, M.1    Ranjbar, M.2    Mori, G.3
  • 12
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 14
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 15
    • 0032639886 scopus 로고    scopus 로고
    • On the use of support vector machines for phonetic classification
    • P. Clarkson and P. J. Moreno. On the use of support vector machines for phonetic classification. In ICASSP99, pages 585-588, 1999.
    • (1999) ICASSP99 , pp. 585-588
    • Clarkson, P.1    Moreno, P.J.2
  • 16
    • 0029355999 scopus 로고
    • Speaker identification and verification using Gaussian mixture speaker models
    • D. A. Reynolds. Speaker identification and verification using gaussian mixture speaker models. Speech Commun., 17(1-2):91-108, 1995.
    • (1995) Speech Commun. , vol.17 , Issue.1-2 , pp. 91-108
    • Reynolds, D.A.1
  • 17
    • 33947686745 scopus 로고    scopus 로고
    • Large margin Gaussian mixture modeling for phonetic classication and recognition
    • F. Sha and L. K. Saul. Large margin gaussian mixture modeling for phonetic classication and recognition. In ICASSP'06, 2006.
    • (2006) ICASSP'06
    • Sha, F.1    Saul, L.K.2
  • 18
    • 85162054069 scopus 로고    scopus 로고
    • Regularization, adaptation, and non-independent features improve hidden conditional random fields for phone classification
    • Y.-H. Sung, C. Boulis, C. Manning, and D. Jurafsky. Regularization, adaptation, and non-independent features improve hidden conditional random fields for phone classification. In IEEE ASRU, 2007.
    • (2007) IEEE ASRU
    • Sung, Y.-H.1    Boulis, C.2    Manning, C.3    Jurafsky, D.4
  • 19
    • 78649303866 scopus 로고    scopus 로고
    • Learning structured models for phone recognition
    • S. Petrov, A. Pauls, and D. Klein. Learning structured models for phone recognition. In EMNLP-CoNLL, 2007.
    • (2007) EMNLP-conll
    • Petrov, S.1    Pauls, A.2    Klein, D.3
  • 20
    • 70450164063 scopus 로고    scopus 로고
    • Hidden conditional random field with distribution constraints for phone classification
    • D. Yu, L. Deng, and A. Acero. Hidden conditional random field with distribution constraints for phone classification. In Interspeech, 2009.
    • (2009) Interspeech
    • Yu, D.1    Deng, L.2    Acero, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.