메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Learning convolutional feature hierarchies for visual recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; EDGE DETECTION; IMAGE ENHANCEMENT;

EID: 85162460675     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (471)

References (28)
  • 1
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 2
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • Washington, DC, USA. IEEE Computer Society
    • Serre, T, Wolf, L, and Poggio, T. Object recognition with features inspired by visual cortex. In CVPR'05 - Volume 2, pages 994-1000, Washington, DC, USA, 2005. IEEE Computer Society.
    • (2005) CVPR'05 , vol.2 , pp. 994-1000
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 3
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • ACM
    • Lee, H, Grosse, R, Ranganath, R, and Ng, A. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML'09, pages 609-616. ACM, 2009.
    • (2009) ICML'09 , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.4
  • 4
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • MIT Press
    • Ranzato, M, Poultney, C, Chopra, S, and LeCun, Y. Efficient learning of sparse representations with an energy-based model. In NIPS'07. MIT Press, 2007.
    • (2007) NIPS'07
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 5
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • IEEE
    • Kavukcuoglu, K, Ranzato, M, Fergus, R, and LeCun, Y. Learning invariant features through topographic filter maps. In CVPR'09. IEEE, 2009.
    • (2009) CVPR'09
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    Lecun, Y.4
  • 7
  • 8
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • ACM
    • Mairal, J, Bach, F, Ponce, J, and Sapiro, G. Online dictionary learning for sparse coding. In ICML'09, pages 689-696. ACM, 2009.
    • (2009) ICML'09 , pp. 689-696
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 9
    • 84860607775 scopus 로고    scopus 로고
    • Coordinate descent optimization for l1 minimization with application to compressed sensing; A greedy algorithm
    • Li, Y and Osher, S. Coordinate Descent Optimization for l1 Minimization with Application to Compressed Sensing; a Greedy Algorithm. CAM Report, pages 09-17.
    • CAM Report , pp. 09-17
    • Li, Y.1    Osher, S.2
  • 10
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • Olshausen, B. A and Field, D. J. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research, 37(23):3311-3325, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 11
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci., 2(1):183-202, 2009.
    • (2009) SIAM J. Img. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 12
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Mallat, S and Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397:3415, 1993.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 13
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • July
    • Martin, D, Fowlkes, C, Tal, D, andMalik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV'01, volume 2, pages 416-423, July 2001.
    • (2001) ICCV'01 , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 14
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition? in
    • IEEE
    • Jarrett, K, Kavukcuoglu, K, Ranzato, M, and LeCun, Y. What is the best multi-stage architecture for object recognition? In ICCV'09. IEEE, 2009.
    • (2009) ICCV'09
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Lecun, Y.4
  • 17
    • 0034939633 scopus 로고    scopus 로고
    • Natural signal statistics and sensory gain control
    • August
    • Schwartz, O and Simoncelli, E. P. Natural signal statistics and sensory gain control. Nature Neuroscience, 4(8):819-825, August 2001.
    • (2001) Nature Neuroscience , vol.4 , Issue.8 , pp. 819-825
    • Schwartz, O.1    Simoncelli, E.P.2
  • 18
    • 52249097028 scopus 로고    scopus 로고
    • Nonlinear image representation using divisive normalization
    • IEEE Computer Society, Jun 23-28
    • Lyu, S and Simoncelli, E. P. Nonlinear image representation using divisive normalization. In CVPR'08. IEEE Computer Society, Jun 23-28 2008.
    • (2008) CVPR'08
    • Lyu, S.1    Simoncelli, E.P.2
  • 19
    • 33745118277 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L, Fergus, R, and Perona, P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In Workshop on Generative-Model Based Vision, 2004.
    • (2004) Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 20
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • 01
    • Pinto, N, Cox, D. D, and DiCarlo, J. J. Why is real-world visual object recognition hard? PLoS Comput Biol, 4(1):e27, 01 2008.
    • (2008) PLoS Comput Biol , vol.4 , Issue.1
    • Pinto, N.1    Cox, D.D.2    Dicarlo, J.J.3
  • 21
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Lazebnik, S, Schmid, C, and Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR'06, 2:2169-2178, 2006.
    • (2006) CVPR'06 , vol.2 , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 22
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • IEEE
    • Boureau, Y, Bach, F, LeCun, Y, and Ponce, J. Learning mid-level features for recognition. In CVPR'10. IEEE, 2010.
    • (2010) CVPR'10
    • Boureau, Y.1    Bach, F.2    Lecun, Y.3    Ponce, J.4
  • 23
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Schmid, C, Soatto, S, and Tomasi, C, editors, June
    • Dalal, N and Triggs, B. Histograms of oriented gradients for human detection. In Schmid, C, Soatto, S, and Tomasi, C, editors, CVPR'05, volume 2, pages 886-893, June 2005.
    • (2005) CVPR'05 , vol.2 , pp. 886-893
    • Dalal, N.1    Triggs, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.