메뉴 건너뛰기




Volumn , Issue , 2009, Pages 99-107

Slow, decorrelated features for pretraining complex cell-like networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; ITERATIVE METHODS; NEURAL NETWORKS; PHYSIOLOGICAL MODELS;

EID: 84858720675     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (60)

References (24)
  • 2
    • 0000840323 scopus 로고
    • Learning mixture models of spatial coherence
    • Becker, S., & Hinton, G. E. (1993). Learning mixture models of spatial coherence. Neural Computation, 5, 267-277.
    • (1993) Neural Computation , vol.5 , pp. 267-277
    • Becker, S.1    Hinton, G.E.2
  • 4
    • 27244444336 scopus 로고    scopus 로고
    • Slow feature analysis yields a rich repertoire of complex cell properties
    • Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5, 579-602.
    • (2005) Journal of Vision , vol.5 , pp. 579-602
    • Berkes, P.1    Wiskott, L.2
  • 7
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46, 161-190.
    • (2002) Machine Learning , vol.46 , pp. 161-190
    • Decoste, D.1    Schölkopf, B.2
  • 8
    • 79961226155 scopus 로고    scopus 로고
    • The difficulty of training deep architectures and the effect of unsupervised pre-training
    • Clearwater (Florida), USA
    • Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent, P. (2009). The difficulty of training deep architectures and the effect of unsupervised pre-training. AISTATS'2009 (pp. 153-160). Clearwater (Florida), USA.
    • (2009) AISTATS'2009 , pp. 153-160
    • Erhan, D.1    Manzagol, P.-A.2    Bengio, Y.3    Bengio, S.4    Vincent, P.5
  • 9
    • 34848862419 scopus 로고    scopus 로고
    • Computational diversity in complex cells of cat primary visual cortex
    • Finn, I., & Ferster, D. (2007). Computational diversity in complex cells of cat primary visual cortex. Journal of Neuroscience, 27, 9638-48.
    • (2007) Journal of Neuroscience , vol.27 , pp. 9638-9648
    • Finn, I.1    Ferster, D.2
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 12
    • 18244431804 scopus 로고    scopus 로고
    • How are complex cell properties adapted to the statistics of natural stimuli?
    • Körding, K. P., Kayser, C., Einhäuser, W., & König, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology, 91, 206-212.
    • (2004) Journal of Neurophysiology , vol.91 , pp. 206-212
    • Körding, K.P.1    Kayser, C.2    Einhäuser, W.3    König, P.4
  • 13
    • 45749108562 scopus 로고    scopus 로고
    • A canonical neural circuit for cortical nonlinear operations
    • Kouh, M. M., & Poggio, T. T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Computation, 20, 1427-1451.
    • (2008) Neural Computation , vol.20 , pp. 1427-1451
    • Kouh, M.M.1    Poggio, T.T.2
  • 14
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • Corvallis, OR: ACM
    • Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. ICML 2007 (pp. 473-480). Corvallis, OR: ACM.
    • (2007) ICML 2007 , pp. 473-480
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 16
    • 57849102080 scopus 로고    scopus 로고
    • Training invariant support vector machines using selective sampling
    • L. Bottou, O. Chapelle, D. DeCoste and J. Weston (Eds.) Cambridge, MA.: MIT Press
    • Loosli, G., Canu, S., & Bottou, L. (2007). Training invariant support vector machines using selective sampling. In L. Bottou, O. Chapelle, D. DeCoste and J. Weston (Eds.), Large scale kernel machines, 301-320. Cambridge, MA.: MIT Press.
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Loosli, G.1    Canu, S.2    Bottou, L.3
  • 17
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • ACM. To appear
    • Mobahi, H., Collobert, R., & Weston, J. (2009). Deep learning from temporal coherence in video. ICML 2009. ACM. To appear.
    • (2009) ICML 2009
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 18
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Ranzato, M., Boureau, Y., & LeCun, Y. (2008). Sparse feature learning for deep belief networks. NIPS 20.
    • (2008) NIPS , vol.20
    • Ranzato, M.1    Boureau, Y.2    LeCun, Y.3
  • 19
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. NIPS 19.
    • (2007) NIPS , vol.19
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 20
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019-1025.
    • (1999) Nature Neuroscience , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 21
    • 20444369637 scopus 로고    scopus 로고
    • Spatiotemporal elements of macaque V1 receptive fields
    • Rust, N., Schwartz, O., Movshon, J. A., & Simoncelli, E. (2005). Spatiotemporal elements of macaque V1 receptive fields. Neuron, 46, 945-956.
    • (2005) Neuron , vol.46 , pp. 945-956
    • Rust, N.1    Schwartz, O.2    Movshon, J.A.3    Simoncelli, E.4
  • 22
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • ACM
    • Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. ICML 2008 (pp. 1096-1103). ACM.
    • (2008) ICML 2008 , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 23
    • 56449119888 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • New York, NY, USA: ACM
    • Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. ICML 2008 (pp. 1168-1175). New York, NY, USA: ACM.
    • (2008) ICML 2008 , pp. 1168-1175
    • Weston, J.1    Ratle, F.2    Collobert, R.3
  • 24
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14, 715-770.
    • (2002) Neural Computation , vol.14 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.