-
2
-
-
0000840323
-
Learning mixture models of spatial coherence
-
Becker, S., & Hinton, G. E. (1993). Learning mixture models of spatial coherence. Neural Computation, 5, 267-277.
-
(1993)
Neural Computation
, vol.5
, pp. 267-277
-
-
Becker, S.1
Hinton, G.E.2
-
4
-
-
27244444336
-
Slow feature analysis yields a rich repertoire of complex cell properties
-
Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5, 579-602.
-
(2005)
Journal of Vision
, vol.5
, pp. 579-602
-
-
Berkes, P.1
Wiskott, L.2
-
7
-
-
0036161034
-
Training invariant support vector machines
-
Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46, 161-190.
-
(2002)
Machine Learning
, vol.46
, pp. 161-190
-
-
Decoste, D.1
Schölkopf, B.2
-
8
-
-
79961226155
-
The difficulty of training deep architectures and the effect of unsupervised pre-training
-
Clearwater (Florida), USA
-
Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent, P. (2009). The difficulty of training deep architectures and the effect of unsupervised pre-training. AISTATS'2009 (pp. 153-160). Clearwater (Florida), USA.
-
(2009)
AISTATS'2009
, pp. 153-160
-
-
Erhan, D.1
Manzagol, P.-A.2
Bengio, Y.3
Bengio, S.4
Vincent, P.5
-
9
-
-
34848862419
-
Computational diversity in complex cells of cat primary visual cortex
-
Finn, I., & Ferster, D. (2007). Computational diversity in complex cells of cat primary visual cortex. Journal of Neuroscience, 27, 9638-48.
-
(2007)
Journal of Neuroscience
, vol.27
, pp. 9638-9648
-
-
Finn, I.1
Ferster, D.2
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
11
-
-
84879875363
-
Temporal coherence, natural image sequences, and the visual cortex
-
Hurri, J., & Hyvärinen, A. (2003). Temporal coherence, natural image sequences, and the visual cortex. Advances in Neural Information Processing Systems 15 (NIPS'02) (pp. 141-148).
-
(2003)
Advances in Neural Information Processing Systems 15 (NIPS'02)
, pp. 141-148
-
-
Hurri, J.1
Hyvärinen, A.2
-
12
-
-
18244431804
-
How are complex cell properties adapted to the statistics of natural stimuli?
-
Körding, K. P., Kayser, C., Einhäuser, W., & König, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology, 91, 206-212.
-
(2004)
Journal of Neurophysiology
, vol.91
, pp. 206-212
-
-
Körding, K.P.1
Kayser, C.2
Einhäuser, W.3
König, P.4
-
13
-
-
45749108562
-
A canonical neural circuit for cortical nonlinear operations
-
Kouh, M. M., & Poggio, T. T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Computation, 20, 1427-1451.
-
(2008)
Neural Computation
, vol.20
, pp. 1427-1451
-
-
Kouh, M.M.1
Poggio, T.T.2
-
14
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Corvallis, OR: ACM
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. ICML 2007 (pp. 473-480). Corvallis, OR: ACM.
-
(2007)
ICML 2007
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
15
-
-
85161980001
-
Sparse deep belief net model for visual area V2
-
Cambridge, MA: MIT Press
-
Lee, H., Ekanadham, C., & Ng, A. (2008). Sparse deep belief net model for visual area V2. In Advances in neural information processing systems 20 (nips'07). Cambridge, MA: MIT Press.
-
(2008)
Advances in Neural Information Processing Systems 20 (nips'07)
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.3
-
16
-
-
57849102080
-
Training invariant support vector machines using selective sampling
-
L. Bottou, O. Chapelle, D. DeCoste and J. Weston (Eds.) Cambridge, MA.: MIT Press
-
Loosli, G., Canu, S., & Bottou, L. (2007). Training invariant support vector machines using selective sampling. In L. Bottou, O. Chapelle, D. DeCoste and J. Weston (Eds.), Large scale kernel machines, 301-320. Cambridge, MA.: MIT Press.
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Loosli, G.1
Canu, S.2
Bottou, L.3
-
17
-
-
71149084945
-
Deep learning from temporal coherence in video
-
ACM. To appear
-
Mobahi, H., Collobert, R., & Weston, J. (2009). Deep learning from temporal coherence in video. ICML 2009. ACM. To appear.
-
(2009)
ICML 2009
-
-
Mobahi, H.1
Collobert, R.2
Weston, J.3
-
18
-
-
85161966246
-
Sparse feature learning for deep belief networks
-
Ranzato, M., Boureau, Y., & LeCun, Y. (2008). Sparse feature learning for deep belief networks. NIPS 20.
-
(2008)
NIPS
, vol.20
-
-
Ranzato, M.1
Boureau, Y.2
LeCun, Y.3
-
19
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. NIPS 19.
-
(2007)
NIPS
, vol.19
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
20
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019-1025.
-
(1999)
Nature Neuroscience
, vol.2
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
21
-
-
20444369637
-
Spatiotemporal elements of macaque V1 receptive fields
-
Rust, N., Schwartz, O., Movshon, J. A., & Simoncelli, E. (2005). Spatiotemporal elements of macaque V1 receptive fields. Neuron, 46, 945-956.
-
(2005)
Neuron
, vol.46
, pp. 945-956
-
-
Rust, N.1
Schwartz, O.2
Movshon, J.A.3
Simoncelli, E.4
-
22
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
ACM
-
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. ICML 2008 (pp. 1096-1103). ACM.
-
(2008)
ICML 2008
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
23
-
-
56449119888
-
Deep learning via semi-supervised embedding
-
New York, NY, USA: ACM
-
Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. ICML 2008 (pp. 1168-1175). New York, NY, USA: ACM.
-
(2008)
ICML 2008
, pp. 1168-1175
-
-
Weston, J.1
Ratle, F.2
Collobert, R.3
-
24
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14, 715-770.
-
(2002)
Neural Computation
, vol.14
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.2
|