메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1025-1032

Factored conditional restricted Boltzmann machines for modeling motion style

Author keywords

[No Author keywords available]

Indexed keywords

COMPACT MODEL; COMPUTATIONAL PROPERTIES; DYNAMIC STATE; EFFECTIVE INTERACTIONS; EXACT INFERENCE; HIDDEN STATE; HUMAN MOTIONS; MOTION STYLES; MULTIPLICATIVE MODEL; NEW MODEL; RESTRICTED BOLTZMANN MACHINE;

EID: 71149118574     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (301)

References (20)
  • 3
    • 0345368881 scopus 로고
    • Unsupervised learning of distributions of binary vectors using 2-layer networks
    • Freund, Y., & Haussler, D. (1992). Unsupervised learning of distributions of binary vectors using 2-layer networks. Adv. in Neural Inf. Proc. Sys. (pp. 912-919).
    • (1992) Adv. in Neural Inf. Proc. Sys , pp. 912-919
    • Freund, Y.1    Haussler, D.2
  • 4
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. (2002). Training products of experts by minimizing contrastive divergence. Neural Comput, 14, 1771-1800.
    • (2002) Neural Comput , vol.14 , pp. 1771-1800
    • Hinton, G.1
  • 5
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Comput, 18, 1527-1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 8
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • Lawrence, N. (2004). Gaussian process latent variable models for visualisation of high dimensional data. Adv. in Neural Inf. Proc. Sys. (pp. 329-326).
    • (2004) Adv. in Neural Inf. Proc. Sys , pp. 329-326
    • Lawrence, N.1
  • 12
    • 85161976678 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of Markov random fields
    • Osindero, S., & Hinton, G. (2008). Modeling image patches with a directed hierarchy of Markov random fields. Adv. in Neural Inf. Proc. Sys. (pp. 1121-1128).
    • (2008) Adv. in Neural Inf. Proc. Sys , pp. 1121-1128
    • Osindero, S.1    Hinton, G.2
  • 13
    • 34547983260 scopus 로고    scopus 로고
    • Restricted Boltzmann machines for collaborative filtering-filtering
    • Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted Boltzmann machines for collaborative filtering-filtering. Proc. Int. Conf. on Mach. Learn. (pp. 791-798).
    • (2007) Proc. Int. Conf. on Mach. Learn , pp. 791-798
    • Salakhutdinov, R.1    Mnih, A.2    Hinton, G.3
  • 15
    • 71149109858 scopus 로고    scopus 로고
    • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland et al. (Eds.), Parallel distributed processing: 1: Foundations, 194-281. Cambridge: MIT Press.
    • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland et al. (Eds.), Parallel distributed processing: Volume 1: Foundations, 194-281. Cambridge: MIT Press.
  • 17
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. Proc. Int. Conf. on Mach. Learn. (pp. 1064-1071).
    • (2008) Proc. Int. Conf. on Mach. Learn , pp. 1064-1071
    • Tieleman, T.1
  • 18
  • 19
    • 34547979938 scopus 로고    scopus 로고
    • Multifac-tor gaussian process models for style-content separation
    • Wang, J., Fleet, D., & Hertzmann, A. (2007). Multifac-tor gaussian process models for style-content separation. Proc. Int. Conf. on Mach. Learn. (pp. 975-982).
    • (2007) Proc. Int. Conf. on Mach. Learn , pp. 975-982
    • Wang, J.1    Fleet, D.2    Hertzmann, A.3
  • 20
    • 84899000641 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • Welling, M., Rosen-Zvi, M., & Hinton, G. (2005). Exponential family harmoniums with an application to information retrieval. Adv. in Neural Inf. Proc. Sys. (pp. 1481-1488).
    • (2005) Adv. in Neural Inf. Proc. Sys , pp. 1481-1488
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.