메뉴 건너뛰기




Volumn , Issue , 2011, Pages

ICA with reconstruction cost for efficient overcomplete feature learning

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; CONVOLUTION; COSTS; NEURAL NETWORKS; OBJECT RECOGNITION; OPTIMIZATION;

EID: 85162310599     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (297)

References (30)
  • 1
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M.A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006.
    • (2006) NIPS
    • Ranzato, M.A.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 2
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabelled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng. Self-taught learning: Transfer learning from unlabelled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 3
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • M. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.J.2    Boureau, Y.3    Lecun, Y.4
  • 4
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 5
    • 80052906448 scopus 로고    scopus 로고
    • Efficient highly over-complete sparse coding using a mixture model
    • J. Yang, K. Yu, and T. Huang. Efficient highly over-complete sparse coding using a mixture model. In ECCV, 2010.
    • (2010) ECCV
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 6
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in unsupervised feature learning. In AISTATS 14, 2011.
    • (2011) AISTATS , vol.14
    • Coates, A.1    Lee, H.2    Ng, A.Y.3
  • 7
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from pixel level via hierarchical sparse coding
    • K. Yu, Y. Lin, and J. Lafferty. Learning image representations from pixel level via hierarchical sparse coding. In CVPR, 2011.
    • (2011) CVPR
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 10
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996.
    • (1996) Nature
    • Olshausen, B.1    Field, D.2
  • 13
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis
    • Q. V. Le, W. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011.
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.2    Yeung, S.Y.3    Ng, A.Y.4
  • 17
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1. Vision Research, 1997.
    • (1997) Vision Research
    • Olshausen, B.1    Field, D.2
  • 20
    • 85162378294 scopus 로고    scopus 로고
    • M. Schmidt. minFunc, 2005
    • M. Schmidt. minFunc, 2005.
  • 21
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.A.4
  • 22
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual area V2. In NIPS, 2008.
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 25
    • 85162496464 scopus 로고    scopus 로고
    • A connection between score matching and denoising autoencoders
    • P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 2010.
    • (2010) Neural Computation
    • Vincent, P.1
  • 26
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of non-normalized statistical models using score matching
    • A. Hyvärinen. Estimation of non-normalized statistical models using score matching. JMLR, 2005.
    • (2005) JMLR
    • Hyvärinen, A.1
  • 27
    • 70349657702 scopus 로고    scopus 로고
    • Is early vision optimized for extracting higher-order dependencies?
    • Y. Karklin and M.S. Lewicki. Is early vision optimized for extracting higher-order dependencies? In NIPS, 2006.
    • (2006) NIPS
    • Karklin, Y.1    Lewicki, M.S.2
  • 28
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In ICPR, 2004.
    • (2004) ICPR
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3
  • 29
    • 70450203660 scopus 로고    scopus 로고
    • Recognizing realistic actions from videos in the Wild
    • J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos "in the Wild". In CVPR, 2009.
    • (2009) CVPR
    • Liu, J.1    Luo, J.2    Shah, M.3
  • 30
    • 77958592879 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • HengWang,MuhammadMuneeb Ullah, Alexander Klaser, Ivan Laptev, and Cordelia Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC, 2010.
    • (2010) BMVC
    • Wang, H.1    Ullah, M.M.2    Klaser, A.3    Laptev, I.4    Schmid, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.