-
1
-
-
85112276587
-
Efficient learning of sparse representations with an energy-based model
-
M.A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006.
-
(2006)
NIPS
-
-
Ranzato, M.A.1
Poultney, C.2
Chopra, S.3
Lecun, Y.4
-
2
-
-
51949106645
-
Self-taught learning: Transfer learning from unlabelled data
-
R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng. Self-taught learning: Transfer learning from unlabelled data. In ICML, 2007.
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
3
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
M. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
-
(2007)
CVPR
-
-
Ranzato, M.1
Huang, F.J.2
Boureau, Y.3
Lecun, Y.4
-
4
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
-
(2009)
CVPR
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.4
-
5
-
-
80052906448
-
Efficient highly over-complete sparse coding using a mixture model
-
J. Yang, K. Yu, and T. Huang. Efficient highly over-complete sparse coding using a mixture model. In ECCV, 2010.
-
(2010)
ECCV
-
-
Yang, J.1
Yu, K.2
Huang, T.3
-
6
-
-
80053446757
-
An analysis of single-layer networks in unsupervised feature learning
-
A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in unsupervised feature learning. In AISTATS 14, 2011.
-
(2011)
AISTATS
, vol.14
-
-
Coates, A.1
Lee, H.2
Ng, A.Y.3
-
7
-
-
80052889296
-
Learning image representations from pixel level via hierarchical sparse coding
-
K. Yu, Y. Lin, and J. Lafferty. Learning image representations from pixel level via hierarchical sparse coding. In CVPR, 2011.
-
(2011)
CVPR
-
-
Yu, K.1
Lin, Y.2
Lafferty, J.3
-
10
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996.
-
(1996)
Nature
-
-
Olshausen, B.1
Field, D.2
-
12
-
-
85161972005
-
Tiled convolutional neural networks
-
Q. V. Le, J. Ngiam, Z. Chen, D. Chia, P. W. Koh, and A. Y. Ng. Tiled convolutional neural networks. In NIPS, 2010.
-
(2010)
NIPS
-
-
Le, Q.V.1
Ngiam, J.2
Chen, Z.3
Chia, D.4
Koh, P.W.5
Ng, A.Y.6
-
13
-
-
80052874098
-
Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis
-
Q. V. Le, W. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011.
-
(2011)
CVPR
-
-
Le, Q.V.1
Zou, W.2
Yeung, S.Y.3
Ng, A.Y.4
-
14
-
-
80053437034
-
On optimization methods for deep learning
-
Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng. On optimization methods for deep learning. In ICML, 2011.
-
(2011)
ICML
-
-
Le, Q.V.1
Ngiam, J.2
Coates, A.3
Lahiri, A.4
Prochnow, B.5
Ng, A.Y.6
-
17
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by v1
-
B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1. Vision Research, 1997.
-
(1997)
Vision Research
-
-
Olshausen, B.1
Field, D.2
-
20
-
-
85162378294
-
-
M. Schmidt. minFunc, 2005
-
M. Schmidt. minFunc, 2005.
-
-
-
-
21
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
-
22
-
-
85161980001
-
Sparse deep belief net model for visual area V2
-
H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual area V2. In NIPS, 2008.
-
(2008)
NIPS
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
25
-
-
85162496464
-
A connection between score matching and denoising autoencoders
-
P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 2010.
-
(2010)
Neural Computation
-
-
Vincent, P.1
-
26
-
-
22044434800
-
Estimation of non-normalized statistical models using score matching
-
A. Hyvärinen. Estimation of non-normalized statistical models using score matching. JMLR, 2005.
-
(2005)
JMLR
-
-
Hyvärinen, A.1
-
27
-
-
70349657702
-
Is early vision optimized for extracting higher-order dependencies?
-
Y. Karklin and M.S. Lewicki. Is early vision optimized for extracting higher-order dependencies? In NIPS, 2006.
-
(2006)
NIPS
-
-
Karklin, Y.1
Lewicki, M.S.2
-
28
-
-
10044233701
-
Recognizing human actions: A local SVM approach
-
C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In ICPR, 2004.
-
(2004)
ICPR
-
-
Schuldt, C.1
Laptev, I.2
Caputo, B.3
-
29
-
-
70450203660
-
Recognizing realistic actions from videos in the Wild
-
J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos "in the Wild". In CVPR, 2009.
-
(2009)
CVPR
-
-
Liu, J.1
Luo, J.2
Shah, M.3
-
30
-
-
77958592879
-
Evaluation of local spatio-temporal features for action recognition
-
HengWang,MuhammadMuneeb Ullah, Alexander Klaser, Ivan Laptev, and Cordelia Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC, 2010.
-
(2010)
BMVC
-
-
Wang, H.1
Ullah, M.M.2
Klaser, A.3
Laptev, I.4
Schmid, C.5
|