메뉴 건너뛰기




Volumn , Issue , 2011, Pages

The manifold tangent classifier

Author keywords

[No Author keywords available]

Indexed keywords

DOMAIN KNOWLEDGE;

EID: 85162427692     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (242)

References (30)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Also published as a book. Now Publishers, 2009
    • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1-127. Also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 2
    • 84898947097 scopus 로고    scopus 로고
    • Non-local manifold tangent learning
    • MIT Press
    • Bengio, Y. and Monperrus, M. (2005). Non-local manifold tangent learning. In NIPS'04, pages 129-136. MIT Press.
    • (2005) NIPS'04 , pp. 129-136
    • Bengio, Y.1    Monperrus, M.2
  • 3
    • 84864042939 scopus 로고    scopus 로고
    • Non-local manifold parzen windows
    • MIT Press
    • Bengio, Y., Larochelle, H., and Vincent, P. (2006). Non-local manifold parzen windows. In NIPS'05, pages 115-122. MIT Press.
    • (2006) NIPS'05 , pp. 115-122
    • Bengio, Y.1    Larochelle, H.2    Vincent, P.3
  • 5
    • 84898990205 scopus 로고    scopus 로고
    • Charting a manifold
    • MIT Press
    • Brand, M. (2003). Charting a manifold. In NIPS'02, pages 961-968. MIT Press.
    • (2003) NIPS'02 , pp. 961-968
    • Brand, M.1
  • 7
    • 0026953305 scopus 로고
    • Improving generalisation performance using double back-propagation
    • Drucker, H. and LeCun, Y. (1992). Improving generalisation performance using double back-propagation. IEEE Transactions on Neural Networks, 3(6), 991-997.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 991-997
    • Drucker, H.1    Lecun, Y.2
  • 9
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Goodfellow, I., Le, Q., Saxe, A., and Ng, A. (2009). Measuring invariances in deep networks. In NIPS'09, pages 646-654.
    • (2009) NIPS'09 , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Ng, A.4
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 14
    • 85162064389 scopus 로고    scopus 로고
    • Sample complexity of testing the manifold hypothesis
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors
    • Narayanan, H. and Mitter, S. (2010). Sample complexity of testing the manifold hypothesis. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1786-1794.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1786-1794
    • Narayanan, H.1    Mitter, S.2
  • 15
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2007a). Efficient learning of sparse representations with an energy-based model. In NIPS'06.
    • (2007) NIPS'06
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 19
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.K.2
  • 20
    • 70049096835 scopus 로고    scopus 로고
    • Learning a nonlinear embedding by preserving class neighbourhood structure
    • San Juan, Porto Rico. Omnipress
    • Salakhutdinov, R. and Hinton, G. E. (2007). Learning a nonlinear embedding by preserving class neighbourhood structure. In AISTATS'2007, San Juan, Porto Rico. Omnipress.
    • (2007) AISTATS'2007
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 21
    • 84862286946 scopus 로고    scopus 로고
    • Deep Boltzmann machines
    • Salakhutdinov, R. and Hinton, G. E. (2009). Deep Boltzmann machines. In AISTATS'2009, volume 5, pages 448-455.
    • (2009) AISTATS'2009 , vol.5 , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 22
    • 0001440803 scopus 로고
    • Tangent prop - A formalism for specifying selected invariances in an adaptive network
    • San Mateo, CA. Morgan Kaufmann
    • Simard, P., Victorri, B., LeCun, Y., and Denker, J. (1992). Tangent prop - A formalism for specifying selected invariances in an adaptive network. In NIPS'91, pages 895-903, San Mateo, CA. Morgan Kaufmann.
    • (1992) NIPS'91 , pp. 895-903
    • Simard, P.1    Victorri, B.2    Lecun, Y.3    Denker, J.4
  • 23
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a new transformation distance
    • Morgan Kaufmann, San Mateo
    • Simard, P. Y., LeCun, Y., and Denker, J. (1993). Efficient pattern recognition using a new transformation distance. In NIPS'92, pages 50-58. Morgan Kaufmann, San Mateo.
    • (1993) NIPS'92 , pp. 50-58
    • Simard, P.Y.1    Lecun, Y.2    Denker, J.3
  • 24
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J., de Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.C.3
  • 25
    • 46849114555 scopus 로고    scopus 로고
    • Application of distributed SVM architectures in classifying forest data cover types
    • Trebar, M. and Steele, N. (2008). Application of distributed svm architectures in classifying forest data cover types. Computers and Electronics in Agriculture, 63(2), 119-130.
    • (2008) Computers and Electronics in Agriculture , vol.63 , Issue.2 , pp. 119-130
    • Trebar, M.1    Steele, N.2
  • 26
    • 84899021258 scopus 로고    scopus 로고
    • Manifold parzen windows
    • MIT Press
    • Vincent, P. and Bengio, Y. (2003). Manifold parzen windows. In NIPS'02. MIT Press.
    • (2003) NIPS'02
    • Vincent, P.1    Bengio, Y.2
  • 27
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11(3371-3408).
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 28
    • 56449119888 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • New York, NY, USA
    • Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised embedding. In ICML 2008, pages 1168-1175, New York, NY, USA.
    • (2008) ICML 2008 , pp. 1168-1175
    • Weston, J.1    Ratle, F.2    Collobert, R.3
  • 30
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Yu, K., Zhang, T., and Gong, Y. (2009). Nonlinear learning using local coordinate coding. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 2223-2231.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 2223-2231
    • Yu, K.1    Zhang, T.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.