메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 552-560

Better mixing via deep representations

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; MARKOV PROCESSES;

EID: 84882266451     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (329)

References (34)
  • 2
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/information theoretic model of learning via multiple task sampling
    • Baxter, J. (1997). A Bayesian/information theoretic model of learning via multiple task sampling. Machine Learning, 28, 7-40.
    • (1997) Machine Learning , vol.28 , pp. 7-40
    • Baxter, J.1
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Also published as a book. Now Publishers, 2009
    • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1-127. Also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 84876218939 scopus 로고    scopus 로고
    • On the expressive power of deep architectures
    • Bengio, Y. and Delalleau, O. (2011). On the expressive power of deep architectures. In ALT'2011.
    • (2011) ALT'2011
    • Bengio, Y.1    Delalleau, O.2
  • 5
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, MIT Press
    • Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press.
    • (2007) Large Scale Kernel Machines
    • Bengio, Y.1    LeCun, Y.2
  • 6
    • 77954662106 scopus 로고    scopus 로고
    • The curse of highly variable functions for local kernel machines
    • MIT Press, Cambridge, MA
    • Bengio, Y., Delalleau, O., and Le Roux, N. (2006). The curse of highly variable functions for local kernel machines. In NIPS'05, pages 107-114. MIT Press, Cambridge, MA.
    • (2006) NIPS'05 , pp. 107-114
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 8
    • 79959650504 scopus 로고    scopus 로고
    • Quickly generating representative samples from an rbm-derived process
    • Breuleux, O., Bengio, Y., and Vincent, P. (2011). Quickly generating representative samples from an rbm-derived process. Neural Computation, 23(8), 2053-2073.
    • (2011) Neural Computation , vol.23 , Issue.8 , pp. 2053-2073
    • Breuleux, O.1    Bengio, Y.2    Vincent, P.3
  • 9
    • 85153936556 scopus 로고
    • Learning many related tasks at the same time with backpropagation
    • Cambridge, MA. MIT Press
    • Caruana, R. (1995). Learning many related tasks at the same time with backpropagation. In NIPS'94, pages 657-664, Cambridge, MA. MIT Press.
    • (1995) NIPS'94 , pp. 657-664
    • Caruana, R.1
  • 12
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ACM
    • Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ICML 2008, pages 160-167. ACM.
    • (2008) ICML 2008 , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 14
    • 0042922948 scopus 로고    scopus 로고
    • Remapping somatosensory cortex after injury
    • Flor, H. (2003). Remapping somatosensory cortex after injury. Advances in Neurology, 83, 195-204.
    • (2003) Advances in Neurology , vol.83 , pp. 195-204
    • Flor, H.1
  • 16
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Goodfellow, I., Le, Q., Saxe, A., and Ng, A. (2009). Measuring invariances in deep networks. In NIPS'2009, pages 646-654.
    • (2009) NIPS'2009 , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Ng, A.4
  • 18
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • Håstad, J. and Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational Complexity, 1, 113-129.
    • (1991) Computational Complexity , vol.1 , pp. 113-129
    • Håstad, J.1    Goldmann, M.2
  • 19
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and helmholtz free energy
    • Morgan Kaufmann Publishers, Inc.
    • Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length, and helmholtz free energy. In NIPS'93, pages 3-10. Morgan Kaufmann Publishers, Inc.
    • (1994) NIPS'93 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 24
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Lee, H., Pham, P., Largman, Y., and Ng, A. (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS'2009.
    • (2009) NIPS'2009
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.4
  • 26
    • 85162064389 scopus 로고    scopus 로고
    • Sample complexity of testing the manifold hypothesis
    • Narayanan, H. and Mitter, S. (2010). Sample complexity of testing the manifold hypothesis. In NIPS'2010.
    • (2010) NIPS'2010
    • Narayanan, H.1    Mitter, S.2
  • 30
    • 84867136416 scopus 로고    scopus 로고
    • A generative process for sampling contractive autoencoders
    • Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A generative process for sampling contractive autoencoders. In ICML'2012.
    • (2012) ICML'2012
    • Rifai, S.1    Bengio, Y.2    Dauphin, Y.3    Vincent, P.4
  • 32
    • 84858735575 scopus 로고    scopus 로고
    • Learning in Markov random fields using tempered transitions
    • Salakhutdinov, R. (2010b). Learning in Markov random fields using tempered transitions. In NIPS'09.
    • (2010) NIPS'09
    • Salakhutdinov, R.1
  • 33
    • 84862286946 scopus 로고    scopus 로고
    • Deep Boltzmann machines
    • Salakhutdinov, R. and Hinton, G. E. (2009). Deep Boltzmann machines. In AISTATS'2009, volume 5, pages 448-455.
    • (2009) AISTATS'2009 , vol.5 , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.