-
1
-
-
0002970176
-
Formulae on finite structures
-
Ajtai, M., 1983. -formulae on finite structures. Annals of Pure and Applied Logic, 24 (1): 1 - 48.
-
(1983)
Annals of Pure and Applied Logic
, vol.24
, Issue.1
, pp. 1-48
-
-
Ajtai, M.1
-
2
-
-
69349090197
-
Learning deep architectures for AI. (1995)
-
Bengio, Y., 2009. Learning deep architectures for AI. (1995). Foundations and Trends in Machine Learning, 2 (1): 1 - 127.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
3
-
-
34547975052
-
Scaling learning algorithms towards AI
-
Edited by L. Bottou, O. Chapelle, D. DeCoste, and J. Weston. MIT Press, Cambridge, MA
-
Bengio, Y., and, Y. LeCun,. 2007. Scaling learning algorithms towards AI. In Large Scale Kernel Machines. Edited by, L. Bottou, O. Chapelle, D. DeCoste, and, J. Weston,. MIT Press, Cambridge, MA.
-
(2007)
Large Scale Kernel Machines
-
-
Bengio, Y.1
Lecun, Y.2
-
4
-
-
77954662106
-
The curse of highly variable functions for local kernel machines
-
Edited by Y. Weiss, B. Schölkopf, and J. Platt. MIT Press, Cambridge, MA
-
Bengio, Y., O. Delalleau, and, N. Le Roux,. 2006a. The curse of highly variable functions for local kernel machines. In Advances in Neural Information Processing Systems 18 (NIPS05). Edited by, Y. Weiss, B. Schölkopf, and, J. Platt,. MIT Press, Cambridge, MA, pp. 107 - 114.
-
(2006)
Advances in Neural Information Processing Systems 18 (NIPS05)
, pp. 107-114
-
-
Bengio, Y.1
Delalleau, O.2
Le Roux, N.3
-
5
-
-
33749451799
-
Non-local estimation of manifold structure
-
Bengio, Y., M. Monperrus, and, H. Larochelle,. 2006b. Non-local estimation of manifold structure. Neural Computation, 18 (10): 2509 - 2528.
-
(2006)
Neural Computation
, vol.18
, Issue.10
, pp. 2509-2528
-
-
Bengio, Y.1
Monperrus, M.2
Larochelle, H.3
-
6
-
-
84864042939
-
Non-local manifold parzen windows
-
Edited by Y. Weiss, B. Schölkopf, and J. Platt. MIT Press, Cambridge, MA
-
Bengio, Y., H. Larochelle, and, P. Vincent,. 2006c. Non-local manifold parzen windows. In Advances in Neural Information Processing Systems 18 (NIPS05). Edited by, Y. Weiss, B. Schölkopf, and, J. Platt,. MIT Press, Cambridge, MA, pp. 115 - 122.
-
(2006)
Advances in Neural Information Processing Systems 18 (NIPS05)
, pp. 115-122
-
-
Bengio, Y.1
Larochelle, H.2
Vincent, P.3
-
7
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Edited by B. Schölkopf, J. Platt, and T. Hoffman. MIT Press, Cambridge, MA
-
Bengio, Y., P. Lamblin, D. Popovici, and, H. Larochelle,. 2007. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems 19 (NIPS06). Edited by, B. Schölkopf, J. Platt, and, T. Hoffman,. MIT Press, Cambridge, MA, pp. 153 - 160.
-
(2007)
Advances in Neural Information Processing Systems 19 (NIPS06)
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
8
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
ACM, Pittsburgh, PA
-
Boser, B. E., I. M. Guyon, and, V. N. Vapnik,. 1992. A training algorithm for optimal margin classifiers. In Fifth Annual Workshop on Computational Learning Theory. ACM, Pittsburgh, PA, pp. 144 - 152.
-
(1992)
Fifth Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
9
-
-
0035478854
-
Random forests
-
Breiman, L., 2001. Random forests. Machine Learning, 45 (1): 5 - 32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
10
-
-
0003802343
-
-
Wadsworth International Group, Belmont, CA
-
Breiman, L., J. H. Friedman, R. A. Olshen, and, C. J. Stone,. 1984. Classification and Regression Trees. Wadsworth International Group, Belmont, CA.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
11
-
-
34249753618
-
Support vector networks
-
Cortes, C., and, V. Vapnik,. 1995. Support vector networks. Machine Learning, 20: 273 - 297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
0346728832
-
Complexity lower bounds for approximation algebraic computation trees
-
Cucker, F., and, D. Grigoriev,. 1999. Complexity lower bounds for approximation algebraic computation trees. Journal of Complexity, 15 (4): 499 - 512.
-
(1999)
Journal of Complexity
, vol.15
, Issue.4
, pp. 499-512
-
-
Cucker, F.1
Grigoriev, D.2
-
13
-
-
0002978642
-
Experiments with a new boosting algorithm
-
ACM, USA
-
Freund, Y., and, R. E. Schapire,. 1996. Experiments with a new boosting algorithm. In Machine Learning: Proceedings of Thirteenth International Conference. ACM, USA, pp. 148 - 156.
-
(1996)
Machine Learning: Proceedings of Thirteenth International Conference
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
14
-
-
0032259532
-
An exponential lower bound on the size of algebraic decision trees for MAX
-
Grigoriev, D., M. Karpinski, and, A. C.-C. Yao,. 1995. An exponential lower bound on the size of algebraic decision trees for MAX. Electronic Colloquium on Computational Complexity (ECCC), 2 (057): 193 - 203.
-
(1995)
Electronic Colloquium on Computational Complexity (ECCC)
, vol.2
, Issue.57
, pp. 193-203
-
-
Grigoriev, D.1
Karpinski, M.2
Yao, A.C.-C.3
-
16
-
-
0001295178
-
On the power of small-depth threshold circuits
-
Håstad, J., and, M. Goldmann,. 1991. On the power of small-depth threshold circuits. Computational Complexity, 1: 113 - 129.
-
(1991)
Computational Complexity
, vol.1
, pp. 113-129
-
-
Håstad, J.1
Goldmann, M.2
-
17
-
-
0002623785
-
Learning distributed representations of concepts
-
Lawrence Erlbaum, Hillsdale, NJ, Amherst, MA
-
Hinton, G. E., 1986. Learning distributed representations of concepts. In Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum, Hillsdale, NJ, Amherst, MA, pp. 1 - 12.
-
(1986)
Proceedings of the Eighth Annual Conference of the Cognitive Science Society
, pp. 1-12
-
-
Hinton, G.E.1
-
19
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., S. Osindero, and, Y. Teh,. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18: 1527 - 1554.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
21
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., M. Stinchcombe, and, H. White,. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2: 359 - 366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
23
-
-
0001902056
-
Three approaches to the quantitative definition of information
-
Kolmogorov, A. N., 1965. Three approaches to the quantitative definition of information. Problems of Information and Transmission, 1 (1): 1 - 7.
-
(1965)
Problems of Information and Transmission
, vol.1
, Issue.1
, pp. 1-7
-
-
Kolmogorov, A.N.1
-
25
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
IEEE Computer Society, Los Alamitos, CA
-
LeCun, Y., F.-J. Huang, and, L. Bottou,. 2004. Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR04), Vol. 2. IEEE Computer Society, Los Alamitos, CA, pp. 97 - 104.
-
(2004)
Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR04)
, vol.2
, pp. 97-104
-
-
Lecun, Y.1
Huang, F.-J.2
Bottou, L.3
-
27
-
-
0031312210
-
Split selection methods for classification trees
-
Loh, W.-Y., and, Y.-S. Shih,. 1997. Split selection methods for classification trees. Statistica Sinica, 7: 815 - 840.
-
(1997)
Statistica Sinica
, vol.7
, pp. 815-840
-
-
Loh, W.-Y.1
Shih, Y.-S.2
-
28
-
-
0033683815
-
Extracting distributed representations of concepts and relations from positive and negative propositions
-
IEEE, New York
-
Paccanaro, A., and, G. E. Hinton,. 2000. Extracting distributed representations of concepts and relations from positive and negative propositions. In International Joint Conference on Neural Networks (IJCNN), Como, Italy. IEEE, New York.
-
(2000)
International Joint Conference on Neural Networks (IJCNN), Como, Italy
-
-
Paccanaro, A.1
Hinton, G.E.2
-
29
-
-
4243730545
-
Learning despite concept variation by finding structure in attribute-based data
-
Edited by L. Saitta. Morgan Kaufmann, San Francisco
-
Pérez, E., and, L. A. Rendell,. 1996. Learning despite concept variation by finding structure in attribute-based data. In Proceedings of the Thirteenth International Conference on Machine Learning (ICML96). Edited by, L. Saitta,. Morgan Kaufmann, San Francisco, pp. 391 - 399.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning (ICML96)
, pp. 391-399
-
-
Pérez, E.1
Rendell, L.A.2
-
30
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Edited by B. Schölkopf, J. Platt, and T. Hoffman. MIT Press, Cambridge, MA
-
Ranzato, M., C. Poultney, S. Chopra, and, LeCun, Y,. 2007. Efficient learning of sparse representations with an energy-based model. In Advances in Neural Information Processing Systems 19 (NIPS06). Edited by, B. Schölkopf, J. Platt, and, T. Hoffman,. MIT Press, Cambridge, MA, pp. 1137 - 1144.
-
(2007)
Advances in Neural Information Processing Systems 19 (NIPS06)
, pp. 1137-1144
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
31
-
-
4544279425
-
A formal theory of inductive inference
-
Solomonoff, R. J., 1964. A formal theory of inductive inference. Information and Control, 7: 1-22, 224-254.
-
(1964)
Information and Control
, vol.7
, pp. 1-22
-
-
Solomonoff, R.J.1
-
32
-
-
84947938951
-
Global data analysis and the fragmentation problem in decision tree induction
-
Springer-Verlag, Berlin
-
Vilalta, R., G. Blix, and, L. Rendell,. 1997. Global data analysis and the fragmentation problem in decision tree induction. In Proceedings of the Ninth European Conference on Machine Learning (ECML97). Springer-Verlag, Berlin, pp. 312 - 327.
-
(1997)
Proceedings of the Ninth European Conference on Machine Learning (ECML97)
, pp. 312-327
-
-
Vilalta, R.1
Blix, G.2
Rendell, L.3
|