메뉴 건너뛰기




Volumn 26, Issue 4, 2010, Pages 449-467

Decision trees do not generalize to new variations

Author keywords

Curse of dimensionality; Decision trees; Parity function

Indexed keywords

CURSE OF DIMENSIONALITY; DECISION TREE LEARNING ALGORITHM; DISTRIBUTED REPRESENTATION; INPUT SPACE; NON-PARAMETRIC STATISTICAL METHODS; PARITY FUNCTIONS; TRAINING DATA; TRAINING SETS;

EID: 78649265006     PISSN: 08247935     EISSN: 14678640     Source Type: Journal    
DOI: 10.1111/j.1467-8640.2010.00366.x     Document Type: Article
Times cited : (65)

References (32)
  • 1
    • 0002970176 scopus 로고
    • Formulae on finite structures
    • Ajtai, M., 1983. -formulae on finite structures. Annals of Pure and Applied Logic, 24 (1): 1 - 48.
    • (1983) Annals of Pure and Applied Logic , vol.24 , Issue.1 , pp. 1-48
    • Ajtai, M.1
  • 2
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI. (1995)
    • Bengio, Y., 2009. Learning deep architectures for AI. (1995). Foundations and Trends in Machine Learning, 2 (1): 1 - 127.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 3
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Edited by L. Bottou, O. Chapelle, D. DeCoste, and J. Weston. MIT Press, Cambridge, MA
    • Bengio, Y., and, Y. LeCun,. 2007. Scaling learning algorithms towards AI. In Large Scale Kernel Machines. Edited by, L. Bottou, O. Chapelle, D. DeCoste, and, J. Weston,. MIT Press, Cambridge, MA.
    • (2007) Large Scale Kernel Machines
    • Bengio, Y.1    Lecun, Y.2
  • 4
    • 77954662106 scopus 로고    scopus 로고
    • The curse of highly variable functions for local kernel machines
    • Edited by Y. Weiss, B. Schölkopf, and J. Platt. MIT Press, Cambridge, MA
    • Bengio, Y., O. Delalleau, and, N. Le Roux,. 2006a. The curse of highly variable functions for local kernel machines. In Advances in Neural Information Processing Systems 18 (NIPS05). Edited by, Y. Weiss, B. Schölkopf, and, J. Platt,. MIT Press, Cambridge, MA, pp. 107 - 114.
    • (2006) Advances in Neural Information Processing Systems 18 (NIPS05) , pp. 107-114
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 5
    • 33749451799 scopus 로고    scopus 로고
    • Non-local estimation of manifold structure
    • Bengio, Y., M. Monperrus, and, H. Larochelle,. 2006b. Non-local estimation of manifold structure. Neural Computation, 18 (10): 2509 - 2528.
    • (2006) Neural Computation , vol.18 , Issue.10 , pp. 2509-2528
    • Bengio, Y.1    Monperrus, M.2    Larochelle, H.3
  • 6
    • 84864042939 scopus 로고    scopus 로고
    • Non-local manifold parzen windows
    • Edited by Y. Weiss, B. Schölkopf, and J. Platt. MIT Press, Cambridge, MA
    • Bengio, Y., H. Larochelle, and, P. Vincent,. 2006c. Non-local manifold parzen windows. In Advances in Neural Information Processing Systems 18 (NIPS05). Edited by, Y. Weiss, B. Schölkopf, and, J. Platt,. MIT Press, Cambridge, MA, pp. 115 - 122.
    • (2006) Advances in Neural Information Processing Systems 18 (NIPS05) , pp. 115-122
    • Bengio, Y.1    Larochelle, H.2    Vincent, P.3
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., 2001. Random forests. Machine Learning, 45 (1): 5 - 32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., and, V. Vapnik,. 1995. Support vector networks. Machine Learning, 20: 273 - 297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0346728832 scopus 로고    scopus 로고
    • Complexity lower bounds for approximation algebraic computation trees
    • Cucker, F., and, D. Grigoriev,. 1999. Complexity lower bounds for approximation algebraic computation trees. Journal of Complexity, 15 (4): 499 - 512.
    • (1999) Journal of Complexity , vol.15 , Issue.4 , pp. 499-512
    • Cucker, F.1    Grigoriev, D.2
  • 16
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • Håstad, J., and, M. Goldmann,. 1991. On the power of small-depth threshold circuits. Computational Complexity, 1: 113 - 129.
    • (1991) Computational Complexity , vol.1 , pp. 113-129
    • Håstad, J.1    Goldmann, M.2
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., S. Osindero, and, Y. Teh,. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18: 1527 - 1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., M. Stinchcombe, and, H. White,. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2: 359 - 366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 0001902056 scopus 로고
    • Three approaches to the quantitative definition of information
    • Kolmogorov, A. N., 1965. Three approaches to the quantitative definition of information. Problems of Information and Transmission, 1 (1): 1 - 7.
    • (1965) Problems of Information and Transmission , vol.1 , Issue.1 , pp. 1-7
    • Kolmogorov, A.N.1
  • 25
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • IEEE Computer Society, Los Alamitos, CA
    • LeCun, Y., F.-J. Huang, and, L. Bottou,. 2004. Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR04), Vol. 2. IEEE Computer Society, Los Alamitos, CA, pp. 97 - 104.
    • (2004) Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR04) , vol.2 , pp. 97-104
    • Lecun, Y.1    Huang, F.-J.2    Bottou, L.3
  • 27
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.-Y., and, Y.-S. Shih,. 1997. Split selection methods for classification trees. Statistica Sinica, 7: 815 - 840.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 29
    • 4243730545 scopus 로고    scopus 로고
    • Learning despite concept variation by finding structure in attribute-based data
    • Edited by L. Saitta. Morgan Kaufmann, San Francisco
    • Pérez, E., and, L. A. Rendell,. 1996. Learning despite concept variation by finding structure in attribute-based data. In Proceedings of the Thirteenth International Conference on Machine Learning (ICML96). Edited by, L. Saitta,. Morgan Kaufmann, San Francisco, pp. 391 - 399.
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning (ICML96) , pp. 391-399
    • Pérez, E.1    Rendell, L.A.2
  • 30
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Edited by B. Schölkopf, J. Platt, and T. Hoffman. MIT Press, Cambridge, MA
    • Ranzato, M., C. Poultney, S. Chopra, and, LeCun, Y,. 2007. Efficient learning of sparse representations with an energy-based model. In Advances in Neural Information Processing Systems 19 (NIPS06). Edited by, B. Schölkopf, J. Platt, and, T. Hoffman,. MIT Press, Cambridge, MA, pp. 1137 - 1144.
    • (2007) Advances in Neural Information Processing Systems 19 (NIPS06) , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 31
    • 4544279425 scopus 로고
    • A formal theory of inductive inference
    • Solomonoff, R. J., 1964. A formal theory of inductive inference. Information and Control, 7: 1-22, 224-254.
    • (1964) Information and Control , vol.7 , pp. 1-22
    • Solomonoff, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.