-
1
-
-
69349090197
-
Learning Deep Architectures for AI
-
January
-
Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn., 2:1-127, January 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
3
-
-
79959388970
-
Parallel Tempering is Efficient for Learning Restricted Boltzmann Machines
-
Cho, K., Raiko, T., and Ilin, A. Parallel Tempering is Efficient for Learning Restricted Boltzmann Machines. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2010), July 2010.
-
Proceedings of the International Joint Conference on Neural Networks (IJCNN 2010), July 2010
-
-
Cho, K.1
Raiko, T.2
Ilin, A.3
-
4
-
-
79959451058
-
-
Technical Report 1345, Universitée de Montréal
-
Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O. Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines. Technical Report 1345, Universitée de Montréal, 2009.
-
(2009)
Tempered Markov Chain Monte Carlo for Training of Restricted Boltzmann Machines
-
-
Desjardins, G.1
Courville, A.2
Bengio, Y.3
Vincent, P.4
Delalleau, O.5
-
5
-
-
84862293204
-
Parallel Tempering for Training of Restricted Boltzmann Machines
-
Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O. Parallel Tempering for Training of Restricted Boltzmann Machines. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 145-152, 2010.
-
(2010)
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics
, pp. 145-152
-
-
Desjardins, G.1
Courville, A.2
Bengio, Y.3
Vincent, P.4
Delalleau, O.5
-
6
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., and Bengio, S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11:625-660, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
8
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
August
-
Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, August 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
10
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
DOI 10.1126/science.1127647
-
Hinton, G. E. and Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786):504-507, July 2006. (Pubitemid 44148451)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
11
-
-
0032203257
-
Gradient-Based Learning Applied to Document Recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-Based Learning Applied to Document Recognition. In Proceedings of the IEEE, volume 86, pp. 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
12
-
-
85161980001
-
Sparse deep belief net model for visual area V2
-
Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep belief net model for visual area V2. In Advances in Neural Information Processing Systems 20, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
13
-
-
80053455323
-
Inductive Principles for Restricted Boltzmann Machine Learning
-
Marlin, B. M., Swersky, K., Chen, B., and De Freitas, N. Inductive Principles for Restricted Boltzmann Machine Learning. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 509-516, 2010.
-
(2010)
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics
, pp. 509-516
-
-
Marlin, B.M.1
Swersky, K.2
Chen, B.3
De Freitas, N.4
-
17
-
-
84862106341
-
Investigating Convergence of Restricted Boltzmann Machine Learning
-
Schulz, H., Müller, A., and Behnke, S. Investigating Convergence of Restricted Boltzmann Machine Learning. In NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning, 2010.
-
NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning, 2010
-
-
Schulz, H.1
Müller, A.2
Behnke, S.3
-
18
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
foundations, MIT Press, Cambridge, MA, USA
-
Smolensky, P. Information processing in dynamical systems: foundations of harmony theory. In Parallel distributed processing: explorations in the micro structure of cognition, vol. 1: foundations, pp. 194-281. MIT Press, Cambridge, MA, USA, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Micro Structure of Cognition
, vol.1
, pp. 194-281
-
-
Smolensky, P.1
|