메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Generating more realistic images using gated MRF's

Author keywords

[No Author keywords available]

Indexed keywords

DE-NOISING; HIGH-RESOLUTION IMAGES; INDIRECT TASKS; INPAINTING; LATENT VARIABLE; MEASURING PERFORMANCE; NATURAL IMAGES; PROBABILISTIC MODELS; REALISTIC IMAGES; SET MODELS;

EID: 85162052854     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (53)

References (33)
  • 3
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton and R. R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 4
    • 77955989954 scopus 로고    scopus 로고
    • Modeling pixel means and covariances using factorized third-order boltzmann machines
    • M. Ranzato and G.E. Hinton. Modeling pixel means and covariances using factorized third-order boltzmann machines. In CVPR, 2010.
    • (2010) CVPR
    • Ranzato, M.1    Hinton, G.E.2
  • 5
    • 84898965689 scopus 로고    scopus 로고
    • Scale mixtures of Gaussians and the statistics of natural images
    • M.J. Wainwright and E.P. Simoncelli. Scale mixtures of gaussians and the statistics of natural images. In NIPS, 2000.
    • (2000) NIPS
    • Wainwright, M.J.1    Simoncelli, E.P.2
  • 6
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • S. Roth and M.J. Black. Fields of experts: A framework for learning image priors. In CVPR, 2005.
    • (2005) CVPR
    • Roth, S.1    Black, M.J.2
  • 7
    • 77955989583 scopus 로고    scopus 로고
    • A generative perspective on MRFS in low-level vision
    • U. Schmidt, Q. Gao, and S. Roth. A generative perspective on mrfs in low-level vision. In CVPR, 2010.
    • (2010) CVPR
    • Schmidt, U.1    Gao, Q.2    Roth, S.3
  • 8
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. PAMI, 6:721-741, 1984.
    • (1984) PAMI , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 9
    • 84898970768 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of student-t distributions
    • M. Welling, G.E. Hinton, and S. Osindero. Learning sparse topographic representations with products of student-t distributions. In NIPS, 2003.
    • (2003) NIPS
    • Welling, M.1    Hinton, G.E.2    Osindero, S.3
  • 10
    • 0031270256 scopus 로고    scopus 로고
    • Prior learning and Gibbs reaction diffusion
    • S.C. Zhu and D. Mumford. Prior learning and gibbs reaction diffusion. PAMI, pages 1236-1250, 1997.
    • (1997) PAMI , pp. 1236-1250
    • Zhu, S.C.1    Mumford, D.2
  • 11
    • 33644900506 scopus 로고    scopus 로고
    • Topographic product models applied to natural scene statistics
    • S. Osindero, M.Welling, and G. E. Hinton. Topographic product models applied to natural scene statistics. Neural Comp., 18:344-381, 2006.
    • (2006) Neural Comp. , vol.18 , pp. 344-381
    • Osindero, S.1    Welling, M.2    Hinton, G.E.3
  • 12
    • 85161976678 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of Markov random fields
    • S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of markov random fields. In NIPS, 2008.
    • (2008) NIPS
    • Osindero, S.1    Hinton, G.E.2
  • 13
    • 58149234993 scopus 로고    scopus 로고
    • Emergence of complex cell properties by learning to generalize in natural scenes
    • Y. Karklin and M.S. Lewicki. Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 457:83-86, 2009.
    • (2009) Nature , vol.457 , pp. 83-86
    • Karklin, Y.1    Lewicki, M.S.2
  • 14
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research, 37:3311-3325, 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 15
    • 8344290493 scopus 로고    scopus 로고
    • Energy-based models for sparse overcomplete representations
    • Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse overcomplete representations. JMLR, 4:1235-1260, 2003.
    • (2003) JMLR , vol.4 , pp. 1235-1260
    • Teh, Y.W.1    Welling, M.2    Osindero, S.3    Hinton, G.E.4
  • 16
    • 35148861156 scopus 로고    scopus 로고
    • What makes a good model of natural images?
    • Y. Weiss and W.T. Freeman. What makes a good model of natural images? In CVPR, 2007.
    • (2007) CVPR
    • Weiss, Y.1    Freeman, W.T.2
  • 19
    • 77956542104 scopus 로고    scopus 로고
    • Deep networks for robust visual recognition
    • C. Tang and C. Eliasmith. Deep networks for robust visual recognition. In ICML, 2010.
    • (2010) ICML
    • Tang, C.1    Eliasmith, C.2
  • 20
    • 84879850729 scopus 로고    scopus 로고
    • Factored 3-way restricted boltzmann machines for modeling natural images
    • M. Ranzato, A. Krizhevsky, and G.E. Hinton. Factored 3-way restricted boltzmann machines for modeling natural images. In AISTATS, 2010.
    • (2010) AISTATS
    • Ranzato, M.1    Krizhevsky, A.2    Hinton, G.E.3
  • 21
    • 84898890413 scopus 로고    scopus 로고
    • Learning generative texture models with extended fields-ofexperts
    • N. Heess, C.K.I. Williams, and G.E. Hinton. Learning generative texture models with extended fields-ofexperts. In BMCV, 2009.
    • (2009) BMCV
    • Heess, N.1    Williams, C.K.I.2    Hinton, G.E.3
  • 24
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 71149084943 scopus 로고    scopus 로고
    • Using fast weights to improve persistent contrastive divergence
    • T. Tieleman and G.E. Hinton. Using fast weights to improve persistent contrastive divergence. In ICML, 2009.
    • (2009) ICML
    • Tieleman, T.1    Hinton, G.E.2
  • 26
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • R.M. Neal. Bayesian learning for neural networks. Springer-Verlag, 1996.
    • (1996) Springer-Verlag
    • Neal, R.M.1
  • 27
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In ICML, 2008.
    • (2008) ICML
    • Tieleman, T.1
  • 28
    • 85161982923 scopus 로고    scopus 로고
    • http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.
  • 29
    • 84899000641 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • M. Welling, M. Rosen-Zvi, and G.E. Hinton. Exponential family harmoniums with an application to information retrieval. In NIPS, 2005.
    • (2005) NIPS
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.E.3
  • 30
    • 85162046121 scopus 로고    scopus 로고
    • http://yann.lecun.com/exdb/mnist/.
  • 31
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML, 2009.
    • (2009) Proc. ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 32
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 33
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large dataset for non-parametric object and scene recognition
    • A. Torralba, R. Fergus, and W.T. Freeman. 80 million tiny images: a large dataset for non-parametric object and scene recognition. PAMI, 30:1958-1970, 2008.
    • (2008) PAMI , vol.30 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.