메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 759-766

Self-taught learning: Transfer learning from unlabeled data

Author keywords

[No Author keywords available]

Indexed keywords

AUDIO SYSTEMS; IMAGE ANALYSIS; IMAGE CLASSIFICATION; INFORMATION USE; INTERNET; SUPPORT VECTOR MACHINES;

EID: 34547971961     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273592     Document Type: Conference Paper
Times cited : (1258)

References (23)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R. K., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6, 1817-1853.
    • (2005) JMLR , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 0010644122 scopus 로고    scopus 로고
    • Theoretical models of learning to learn
    • T. Mitchell and S. Thrun Eds
    • Baxter, J. (1997). Theoretical models of learning to learn. In T. Mitchell and S. Thrun (Eds.), Learning to learn.
    • (1997) Learning to learn
    • Baxter, J.1
  • 3
    • 84898995847 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • Blei, D., Ng, A. Y., & Jordan, M. (2002). Latent dirichlet allocation. NIPS.
    • (2002) NIPS
    • Blei, D.1    Ng, A.Y.2    Jordan, M.3
  • 4
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R. (1997). Multitask learning. ML Journal, 28.
    • (1997) ML Journal , vol.28
    • Caruana, R.1
  • 7
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. CVPR Workshop on Gen.-Model Based Vision.
    • (2004) CVPR Workshop on Gen.-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 9
    • 33745933878 scopus 로고    scopus 로고
    • Combining generative models and Fisher kernels for object class recognition
    • Holub, A., Welling, M., & Perona, P. (2005). Combining generative models and Fisher kernels for object class recognition. ICCV.
    • (2005) ICCV
    • Holub, A.1    Welling, M.2    Perona, P.3
  • 10
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. JMLR, 5, 1457-1469.
    • (2004) JMLR , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 11
    • 0002853450 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • Jaakkola, T., & Haussier, D. (1998). Exploiting generative models in discriminative classifiers. NIPS.
    • (1998) NIPS
    • Jaakkola, T.1    Haussier, D.2
  • 12
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Lazebnik, S., Schmid, C., &, Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 13
  • 14
    • 14344249889 scopus 로고    scopus 로고
    • 2 regularization, and rotational invariance. ICML.
    • 2 regularization, and rotational invariance. ICML.
  • 15
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39, 103-134.
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 16
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290.
    • (2000) Science , pp. 290
    • Roweis, S.T.1    Saul, L.K.2
  • 18
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • Serre, T., Wolf, L., & Poggio, T. (2005). Object recognition with features inspired by visual cortex. CVPR.
    • (2005) CVPR
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 19
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 20
    • 0041494227 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? NIPS.
    • (1996) NIPS
    • Thrun, S.1
  • 21
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B., 58, 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 1642338802 scopus 로고    scopus 로고
    • Marginalized kernels for biological sequences
    • Tsuda, K., Kin, T., & Asai, K. (2002). Marginalized kernels for biological sequences. Bioinformatics, 18.
    • (2002) Bioinformatics , vol.18
    • Tsuda, K.1    Kin, T.2    Asai, K.3
  • 23
    • 33845566162 scopus 로고    scopus 로고
    • SVM-KNN: Discriminative nearest neighbor classification for visual category recognition
    • Zhang, H., Berg, A., Maire, M., & Malik, J. (2006). SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. CVPR.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.2    Maire, M.3    Malik, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.