-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
Ando, R. K., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6, 1817-1853.
-
(2005)
JMLR
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
2
-
-
0010644122
-
Theoretical models of learning to learn
-
T. Mitchell and S. Thrun Eds
-
Baxter, J. (1997). Theoretical models of learning to learn. In T. Mitchell and S. Thrun (Eds.), Learning to learn.
-
(1997)
Learning to learn
-
-
Baxter, J.1
-
4
-
-
0031189914
-
Multitask learning
-
Caruana, R. (1997). Multitask learning. ML Journal, 28.
-
(1997)
ML Journal
, vol.28
-
-
Caruana, R.1
-
5
-
-
84989525001
-
Indexing by latent semantic analysis
-
Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Indexing by latent semantic analysis. J. Am. Soc. Info. Sci., 41, 391-407.
-
(1990)
J. Am. Soc. Info. Sci
, vol.41
, pp. 391-407
-
-
Deerwester, S.C.1
Dumais, S.T.2
Landauer, T.K.3
Furnas, G.W.4
Harshman, R.A.5
-
6
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Ann. Stat., 32, 407-499.
-
(2004)
Ann. Stat
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
7
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. CVPR Workshop on Gen.-Model Based Vision.
-
(2004)
CVPR Workshop on Gen.-Model Based Vision
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
8
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
9
-
-
33745933878
-
Combining generative models and Fisher kernels for object class recognition
-
Holub, A., Welling, M., & Perona, P. (2005). Combining generative models and Fisher kernels for object class recognition. ICCV.
-
(2005)
ICCV
-
-
Holub, A.1
Welling, M.2
Perona, P.3
-
10
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. JMLR, 5, 1457-1469.
-
(2004)
JMLR
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
11
-
-
0002853450
-
Exploiting generative models in discriminative classifiers
-
Jaakkola, T., & Haussier, D. (1998). Exploiting generative models in discriminative classifiers. NIPS.
-
(1998)
NIPS
-
-
Jaakkola, T.1
Haussier, D.2
-
12
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
Lazebnik, S., Schmid, C., &, Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
13
-
-
84864036295
-
Efficient sparse coding algorithms
-
Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2007). Efficient sparse coding algorithms. NIPS.
-
(2007)
NIPS
-
-
Lee, H.1
Battle, A.2
Raina, R.3
Ng, A.Y.4
-
14
-
-
14344249889
-
-
2 regularization, and rotational invariance. ICML.
-
2 regularization, and rotational invariance. ICML.
-
-
-
-
15
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39, 103-134.
-
(2000)
Machine Learning
, vol.39
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
16
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
17
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290.
-
(2000)
Science
, pp. 290
-
-
Roweis, S.T.1
Saul, L.K.2
-
18
-
-
24644511277
-
Object recognition with features inspired by visual cortex
-
Serre, T., Wolf, L., & Poggio, T. (2005). Object recognition with features inspired by visual cortex. CVPR.
-
(2005)
CVPR
-
-
Serre, T.1
Wolf, L.2
Poggio, T.3
-
19
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2323.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
20
-
-
0041494227
-
Is learning the n-th thing any easier than learning the first?
-
Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? NIPS.
-
(1996)
NIPS
-
-
Thrun, S.1
-
21
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B., 58, 267-288.
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
22
-
-
1642338802
-
Marginalized kernels for biological sequences
-
Tsuda, K., Kin, T., & Asai, K. (2002). Marginalized kernels for biological sequences. Bioinformatics, 18.
-
(2002)
Bioinformatics
, vol.18
-
-
Tsuda, K.1
Kin, T.2
Asai, K.3
-
23
-
-
33845566162
-
SVM-KNN: Discriminative nearest neighbor classification for visual category recognition
-
Zhang, H., Berg, A., Maire, M., & Malik, J. (2006). SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. CVPR.
-
(2006)
CVPR
-
-
Zhang, H.1
Berg, A.2
Maire, M.3
Malik, J.4
|