메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 621-628

Factored 3-way restricted Boltzmann machines for modeling natural images

Author keywords

[No Author keywords available]

Indexed keywords

BINARY FEATURES; CELL ARCHITECTURES; COVARIANCE STRUCTURES; DATA SETS; HAND-WRITTEN CHARACTERS; HIDDEN UNITS; LOCAL COVARIANCE; NATURAL IMAGES; PROBABILISTIC FRAMEWORK; REAL IMAGES; REAL-VALUED DATA; RESTRICTED BOLTZMANN MACHINE;

EID: 84862277721     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (127)

References (37)
  • 1
    • 0030194054 scopus 로고    scopus 로고
    • On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
    • M. Black and A. Rangarajan. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. IJCV, 19(1):57-92, 1996.
    • (1996) IJCV , vol.19 , Issue.1 , pp. 57-92
    • Black, M.1    Rangarajan, A.2
  • 3
    • 0020331278 scopus 로고
    • Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
    • K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 1982.
    • (1982) Pattern Recognition
    • Fukushima, K.1    Miyake, S.2
  • 4
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE PAMI, 6: 721-741, 1984.
    • (1984) IEEE PAMI , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 5
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.1
  • 6
    • 75449104637 scopus 로고    scopus 로고
    • Learning to represent visual input
    • G. Hinton. Learning to represent visual input. Phil. Trans. R. Soc., 365(1537):177-184, 2010.
    • (2010) Phil. Trans. R. Soc. , vol.365 , Issue.1537 , pp. 177-184
    • Hinton, G.1
  • 7
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.R.2
  • 8
    • 3843121539 scopus 로고    scopus 로고
    • Discovering multiple constraints that are frequently approximately satisfied
    • G. Hinton and Y. Teh. Discovering multiple constraints that are frequently approximately satisfied. In UAI, 2001.
    • (2001) UAI
    • Hinton, G.1    Teh, Y.2
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006a.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 10
    • 68649097627 scopus 로고    scopus 로고
    • Boltzmann machine
    • G. E. Hinton. Boltzmann machine, 2007. Scholarpedia, 2(5):1668.
    • (2007) Scholarpedia , vol.2 , Issue.5 , pp. 1668
    • Hinton, G.E.1
  • 11
    • 33748852900 scopus 로고    scopus 로고
    • Unsupervised discovery of non-linear structure using contrastive backpropagation
    • G. E. Hinton, S. Osindero, M. Welling, and Y. Teh. Unsupervised discovery of non-linear structure using contrastive backpropagation. Cognitive Science, 30:725-731, 2006b.
    • (2006) Cognitive Science , vol.30 , pp. 725-731
    • Hinton, G.E.1    Osindero, S.2    Welling, M.3    Teh, Y.4
  • 13
    • 58149234993 scopus 로고    scopus 로고
    • Emergence of complex cell properties by learning to generalize in natural scenes
    • Y. Karklin and M. Lewicki. Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 457:83-86, 2009.
    • (2009) Nature , vol.457 , pp. 83-86
    • Karklin, Y.1    Lewicki, M.2
  • 14
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In CVPR, 2009.
    • (2009) CVPR
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    Lecun, Y.4
  • 15
    • 40749143650 scopus 로고    scopus 로고
    • A two-layer ica-like model estimated by score matching
    • U. Koster and A. Hyvarinen. A two-layer ica-like model estimated by score matching. In ICANN, 2007.
    • (2007) ICANN
    • Koster, U.1    Hyvarinen, A.2
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. of IEEE, 86 (11):2278-2324, 1998.
    • (1998) Proc. of IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML, 2009.
    • (2009) Proc. ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.1
  • 20
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order boltzmann machines
    • R. Memisevic and G. Hinton. Learning to represent spatial transformations with factored higher-order boltzmann machines. Neural Comp., pages 1-20, 2010.
    • (2010) Neural Comp. , pp. 1-20
    • Memisevic, R.1    Hinton, G.2
  • 23
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 42:145-175, 2001.
    • (2001) IJCV , vol.42 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 24
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research, 37:3311-3325, 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 25
    • 85161976678 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of markov random fields
    • S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of markov random fields. In NIPS, 2008.
    • (2008) NIPS
    • Osindero, S.1    Hinton, G.E.2
  • 26
    • 33644900506 scopus 로고    scopus 로고
    • Topographic product models applied to natural scene statistics
    • S. Osindero, M. Welling, and G. E. Hinton. Topographic product models applied to natural scene statistics. Neural Comp., 18: 344-381, 2006.
    • (2006) Neural Comp. , vol.18 , pp. 344-381
    • Osindero, S.1    Welling, M.2    Hinton, G.E.3
  • 28
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.5
  • 29
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.2    Boureau, Y.3    Lecun, Y.4
  • 31
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • T. Serre, L.Wolf, and T. Poggio. Object recognition with features inspired by visual cortex. In CVPR, 2005.
    • (2005) CVPR
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 32
  • 33
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted boltzmann machines for modeling motion style
    • G. W. Taylor and G. E. Hinton. Factored conditional restricted boltzmann machines for modeling motion style. In ICML, 2009.
    • (2009) ICML
    • Taylor, G.W.1    Hinton, G.E.2
  • 34
    • 8344290493 scopus 로고    scopus 로고
    • Energybased models for sparse overcomplete representations
    • Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energybased models for sparse overcomplete representations. JMLR, 4:1235-1260, 2003.
    • (2003) JMLR , vol.4 , pp. 1235-1260
    • Teh, Y.W.1    Welling, M.2    Osindero, S.3    Hinton, G.E.4
  • 35
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large dataset for non-parametric object and scene recognition
    • A. Torralba, R. Fergus, andW. Freeman. 80 million tiny images: a large dataset for non-parametric object and scene recognition. PAMI, 30:1958-1970, 2008a.
    • (2008) PAMI , vol.30 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 37
    • 84898965689 scopus 로고    scopus 로고
    • Scale mixtures of gaussians and the statistics of natural images
    • M. Wainwright and E. Simoncelli. Scale mixtures of gaussians and the statistics of natural images. In NIPS, 2000.
    • (2000) NIPS
    • Wainwright, M.1    Simoncelli, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.