메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1105-1112

Learning deep energy models

Author keywords

[No Author keywords available]

Indexed keywords

COMPACT REPRESENTATION; DATA SETS; ENERGY LANDSCAPE; ENERGY MODEL; GENERATIVE MODEL; HIDDEN LAYERS; LAYER-WISE; MULTIPLE LAYERS; NATURAL IMAGES; PROBABILISTIC MODELS; SIGMOIDAL NEURAL NETWORKS; STUDENT-T DISTRIBUTION;

EID: 80053445973     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (167)

References (31)
  • 3
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • Coates, A., Lee, H., and Ng, A. Y. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011.
    • (2011) AISTATS
    • Coates, A.1    Lee, H.2    Ng, A.Y.3
  • 4
    • 85162069624 scopus 로고    scopus 로고
    • Phone recognition with the mean-covariance restricted Boltzmann machine
    • Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E. Phone recognition with the mean-covariance restricted Boltzmann machine. In NIPS. 2010.
    • (2010) NIPS
    • Dahl, G.E.1    Ranzato, M.2    Mohamed, A.3    Hinton, G.E.4
  • 5
    • 78049405439 scopus 로고    scopus 로고
    • Parallel tempering for training of restricted boltzmann machines
    • Desjardins, G., Courville, A., and Bengio, Y. Parallel tempering for training of restricted boltzmann machines. In AISTATS, 2010.
    • (2010) AISTATS
    • Desjardins, G.1    Courville, A.2    Bengio, Y.3
  • 6
    • 84862625194 scopus 로고    scopus 로고
    • Wormholes improve contrastive divergence
    • Hinton, G. E., Welling, M., and Mnih, A. Wormholes improve contrastive divergence. In NIPS, 2004.
    • (2004) NIPS
    • Hinton, G.E.1    Welling, M.2    Mnih, A.3
  • 7
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • Hinton, G. E., Osindero, S., and Teh, Y. W. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7):1527-1554, July 2006a. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 8
    • 33748852900 scopus 로고    scopus 로고
    • Unsupervised discovery of nonlinear structure using contrastive backpropagation
    • DOI 10.1207/s15516709cog0000-76
    • Hinton, G. E., Osindero, S., Welling, M., and Teh, Y. W. Unsupervised Discovery of Non-linear Structure using Contrastive Backpropagation. Cognitive Science, 30(4): 725-731, 2006b. (Pubitemid 44420054)
    • (2006) Cognitive Science , vol.30 , Issue.4 , pp. 725-731
    • Hinton, G.1    Osindero, S.2    Welling, M.3    Teh, Y.-W.4
  • 9
    • 33845597145 scopus 로고    scopus 로고
    • Large-Scale Learning with SVM and Convolutional Nets for Generic Object Categorization
    • Huang, F. J. and LeCun, Y. Large-Scale Learning with SVM and Convolutional Nets for Generic Object Categorization. In CVPR, 2006.
    • (2006) CVPR
    • Huang, F.J.1    LeCun, Y.2
  • 10
    • 85162419825 scopus 로고    scopus 로고
    • Regularized estimation of image statistics by score matching
    • Kingma, D. P. and LeCun, Y. Regularized estimation of image statistics by score matching. In NIPS, 2010.
    • (2010) NIPS
    • Kingma, D.P.1    LeCun, Y.2
  • 11
    • 78149334300 scopus 로고    scopus 로고
    • A two-layer model of natural stimuli estimated with score matching
    • Köster, U. and Hyvärinen, A. A two-layer model of natural stimuli estimated with score matching. Neural Computation, 22(9):2308-2333, 2010.
    • (2010) Neural Computation , vol.22 , Issue.9 , pp. 2308-2333
    • Köster, U.1    Hyvärinen, A.2
  • 12
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted boltzmann machines
    • Larochelle, H. and Bengio, Y. Classification using discriminative restricted boltzmann machines. In ICML, 2008.
    • (2008) ICML
    • Larochelle, H.1    Bengio, Y.2
  • 14
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • LeCun, Y., Huang, F.J., and Bottou, L. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, 2004.
    • (2004) CVPR
    • LeCun, Y.1    Huang, F.J.2    Bottou, L.3
  • 15
    • 33745932881 scopus 로고    scopus 로고
    • Learning nonlinear constraints with contrastive backpropagation
    • Mnih, A. and Hinton, G. E. Learning nonlinear constraints with contrastive backpropagation. In IJCNN, 2005.
    • (2005) IJCNN
    • Mnih, A.1    Hinton, G.E.2
  • 16
    • 85126846488 scopus 로고    scopus 로고
    • Implicit mixtures of restricted boltzmann machines
    • Nair, V. and Hinton, G. E. Implicit mixtures of restricted boltzmann machines. In NIPS, 2008.
    • (2008) NIPS
    • Nair, V.1    Hinton, G.E.2
  • 17
    • 78149306047 scopus 로고    scopus 로고
    • 3-d object recognition with deep belief nets
    • Nair, V. and Hinton, G. E. 3-d object recognition with deep belief nets. In NIPS, 2009.
    • (2009) NIPS
    • Nair, V.1    Hinton, G.E.2
  • 19
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • DOI 10.1023/A:1008923215028
    • Neal, R. M. Annealed Importance Sampling. Statistics and Computing, 11:125-139, 1998. (Pubitemid 33638185)
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.M.1
  • 20
    • 71149105669 scopus 로고    scopus 로고
    • Largescale deep unsupervised learning using graphics processors
    • Raina, R., Madhavan, A., and Ng, A. Y. Largescale deep unsupervised learning using graphics processors. In ICML, 2009.
    • (2009) ICML
    • Raina, R.1    Madhavan, A.2    Ng, A.Y.3
  • 21
    • 77955989954 scopus 로고    scopus 로고
    • Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines
    • Ranzato, M. and Hinton, G. E. Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. In CVPR, 2010.
    • (2010) CVPR
    • Ranzato, M.1    Hinton, G.E.2
  • 22
    • 85162052854 scopus 로고    scopus 로고
    • Generating more realistic images using gated mrf's
    • Ranzato, M., Mnih, V., and Hinton, G. E. Generating more realistic images using gated mrf's. In NIPS. 2010.
    • (2010) NIPS
    • Ranzato, M.1    Mnih, V.2    Hinton, G.E.3
  • 24
    • 84862293074 scopus 로고    scopus 로고
    • Efficient learning of deep boltzmann machines
    • Salakhutdinov, R. and Larochelle, H. Efficient learning of deep boltzmann machines. In AISTATS, 2010.
    • (2010) AISTATS
    • Salakhutdinov, R.1    Larochelle, H.2
  • 25
    • 56449102578 scopus 로고    scopus 로고
    • On the quantitative analysis of deep belief networks
    • Salakhutdinov, R. and Murray, I. On the quantitative analysis of deep belief networks. In ICML, 2008.
    • (2008) ICML
    • Salakhutdinov, R.1    Murray, I.2
  • 27
    • 8344290493 scopus 로고    scopus 로고
    • Energy-based models for sparse overcomplete representations
    • Teh, Y., Welling, M., and Osindero, S. Energy-based models for sparse overcomplete representations. JMLR, 4:1235-1260, 2003.
    • (2003) JMLR , vol.4 , pp. 1235-1260
    • Teh, Y.1    Welling, M.2    Osindero, S.3
  • 28
    • 56449086223 scopus 로고    scopus 로고
    • Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient
    • Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. In ICML, 2008.
    • (2008) ICML
    • Tieleman, T.1
  • 29
    • 71149084943 scopus 로고    scopus 로고
    • Using fast weights to improve persistent contrastive divergence
    • Tieleman, T. and Hinton, G. E. Using fast weights to improve persistent contrastive divergence. In ICML, 2009.
    • (2009) ICML
    • Tieleman, T.1    Hinton, G.E.2
  • 30
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • van Hateren, J. H. and van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings: Biological Sciences, 265(1394):359-366, 1998.
    • (1998) Proceedings: Biological Sciences , vol.265 , Issue.1394 , pp. 359-366
    • Van Hateren, J.H.1    Van Der Schaaf, A.2
  • 31
    • 84898970768 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of student-t distributions
    • Welling, M., Hinton, G. E., and Osindero, S. Learning sparse topographic representations with products of student-t distributions. In NIPS, 2003.
    • (2003) NIPS
    • Welling, M.1    Hinton, G.E.2    Osindero, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.