-
1
-
-
67651049775
-
Justifying and generalizing contrastive divergence
-
Bengio,Y.,&Delalleau,O. (2009). Justifying and generalizing contrastive divergence. Neural Computation, 21, 1601-1621.
-
(2009)
Neural Computation
, vol.21
, pp. 1601-1621
-
-
Bengio, Y.1
Delalleau, O.2
-
3
-
-
79959652387
-
Unlearning for better mixing
-
(Tech Rep. 1349)Montreal: Université de Montréal/DIRO
-
Breuleux, O., Bengio, Y., & Vincent, P. (2010). Unlearning for better mixing (Tech. Rep. 1349). Montreal: Université de Montréal/DIRO.
-
(2010)
-
-
Breuleux, O.1
Bengio, Y.2
Vincent, P.3
-
4
-
-
84862293204
-
Tempered Markov chain Monte Carlo for training of restricted Boltzmann machine
-
Available online at
-
Desjardins, G., Courville, A., Bengio, Y., Vincent, P., & Delalleau, O. (2010). Tempered Markov chain Monte Carlo for training of restricted Boltzmann machine. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010) (pp. 145-152). Available online at http://jmlr.csail.mit.edu/proceedings/papers/v9/.
-
(2010)
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010)
, pp. 145-152
-
-
Desjardins, G.1
Courville, A.2
Bengio, Y.3
Vincent, P.4
Delalleau, O.5
-
6
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771-1800.
-
(2002)
Neural Computation
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
8
-
-
0004243089
-
Boltzmann machines: Constraint satisfaction networks that learn (Tech
-
Pittsburgh, PA: Carnegie-Mellon University, Department of Computer Science
-
Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint satisfaction networks that learn (Tech. Rep. TR-CMU-CS-84-119). Pittsburgh, PA: Carnegie-Mellon University, Department of Computer Science.
-
(1984)
Rep. TR-CMU-CS-84-119)
-
-
Hinton, G.E.1
Sejnowski, T.J.2
Ackley, D.H.3
-
9
-
-
56449086223
-
Training restricted Boltzmann machines using approximations to the likelihood gradient
-
Madison,WI: Omnipress
-
Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In Proceedings of the 25th International Conference on Machine Learning (pp. 1064-1071). Madison,WI: Omnipress.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 1064-1071
-
-
Tieleman, T.1
-
13
-
-
33644756784
-
On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
-
Younes, L. (1998). On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics and Stochastics Reports, 65, 177-228.
-
(1998)
Stochastics and Stochastics Reports
, vol.65
, pp. 177-228
-
-
Younes, L.1
|