메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1855-1862

A generative process for sampling contractive auto-encoders

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ERRORS; DATA POINTS; DEEP BELIEF NETWORKS; HIGH-DENSITY REGIONS; INPUT DATAS; INPUT SPACE; JACOBIANS; LOCAL MANIFOLD STRUCTURE; LOCAL STRUCTURE; LOCAL VARIATIONS; RESTRICTED BOLTZMANN MACHINE; SECOND LAYER; SINGULAR VALUES; SINGULAR VECTORS;

EID: 84867136416     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (46)

References (19)
  • 1
  • 2
    • 84898947097 scopus 로고    scopus 로고
    • Non-local manifold tangent learning
    • MIT Press
    • Y. Bengio and M. Monperrus. Non-local manifold tangent learning. In NIPS'2004, pages 129-136. MIT Press, 2005.
    • (2005) NIPS'2004 , pp. 129-136
    • Bengio, Y.1    Monperrus, M.2
  • 3
    • 84864042939 scopus 로고    scopus 로고
    • Non-local manifold Parzen windows
    • MIT Press
    • Y. Bengio, H. Larochelle, and P. Vincent. Non-local manifold Parzen windows. In NIPS'2005, pages 115-122. MIT Press, 2006a.
    • (2006) NIPS'2005 , pp. 115-122
    • Bengio, Y.1    Larochelle, H.2    Vincent, P.3
  • 4
    • 33749451799 scopus 로고    scopus 로고
    • Nonlocal estimation of manifold structure
    • Y. Bengio, M. Monperrus, and H. Larochelle. Nonlocal estimation of manifold structure. Neural Computation, 18(10):2509-2528, 2006b.
    • (2006) Neural Computation , vol.18 , Issue.10 , pp. 2509-2528
    • Bengio, Y.1    Monperrus, M.2    Larochelle, H.3
  • 5
    • 79959650504 scopus 로고    scopus 로고
    • Quickly generating representative samples from an rbm-derived process
    • Aug.
    • O. Breuleux, Y. Bengio, and P. Vincent. Quickly generating representative samples from an rbm-derived process. Neural Computation, 23(8):2053-2073, Aug. 2011.
    • (2011) Neural Computation , vol.23 , Issue.8 , pp. 2053-2073
    • Breuleux, O.1    Bengio, Y.2    Vincent, P.3
  • 7
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In NIPS'2011, 2011.
    • (2011) NIPS'2011
    • Coates, A.1    Ng, A.Y.2
  • 8
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • I. Goodfellow, Q. Le, A. Saxe, and A. Ng. Measuring invariances in deep networks. In NIPS'2009, pages 646-654, 2009.
    • (2009) NIPS'2009 , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Ng, A.4
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 11
    • 85162064389 scopus 로고    scopus 로고
    • Sample complexity of testing the manifold hypothesis
    • H. Narayanan and S. Mitter. Sample complexity of testing the manifold hypothesis. In NIPS'2010. 2010.
    • (2010) NIPS'2010
    • Narayanan, H.1    Mitter, S.2
  • 12
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • M. Ranzato, J. Susskind, V. Mnih, and G. E. Hinton. On deep generative models with applications to recognition. In CVPR'11, pages 2857-2864, 2011.
    • (2011) CVPR'11 , pp. 2857-2864
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.E.4
  • 14
    • 80053460450 scopus 로고    scopus 로고
    • Contracting auto-encoders: Explicit invariance during feature extraction
    • S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contracting auto-encoders: Explicit invariance during feature extraction. In ICML'2011, 2011b.
    • (2011) ICML'2011
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 15
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec.
    • S. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.K.2
  • 16
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 17
    • 0001440803 scopus 로고
    • Tangent prop - A formalism for specifying selected invariances in an adaptive network
    • P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop - A formalism for specifying selected invariances in an adaptive network. In NIPS'1991, 1992.
    • (1992) NIPS'1991
    • Simard, P.1    Victorri, B.2    LeCun, Y.3    Denker, J.4
  • 18
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec.
    • J. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.C.3
  • 19
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analysers. Neural Computation, 11(2):443-482, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.