-
1
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio. Learning deep architectures for AI. Foundations & Trends in Mach. Learn., 2(1):1-127, 2009.
-
(2009)
Foundations & Trends in Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
2
-
-
84898947097
-
Non-local manifold tangent learning
-
MIT Press
-
Y. Bengio and M. Monperrus. Non-local manifold tangent learning. In NIPS'2004, pages 129-136. MIT Press, 2005.
-
(2005)
NIPS'2004
, pp. 129-136
-
-
Bengio, Y.1
Monperrus, M.2
-
3
-
-
84864042939
-
Non-local manifold Parzen windows
-
MIT Press
-
Y. Bengio, H. Larochelle, and P. Vincent. Non-local manifold Parzen windows. In NIPS'2005, pages 115-122. MIT Press, 2006a.
-
(2006)
NIPS'2005
, pp. 115-122
-
-
Bengio, Y.1
Larochelle, H.2
Vincent, P.3
-
4
-
-
33749451799
-
Nonlocal estimation of manifold structure
-
Y. Bengio, M. Monperrus, and H. Larochelle. Nonlocal estimation of manifold structure. Neural Computation, 18(10):2509-2528, 2006b.
-
(2006)
Neural Computation
, vol.18
, Issue.10
, pp. 2509-2528
-
-
Bengio, Y.1
Monperrus, M.2
Larochelle, H.3
-
5
-
-
79959650504
-
Quickly generating representative samples from an rbm-derived process
-
Aug.
-
O. Breuleux, Y. Bengio, and P. Vincent. Quickly generating representative samples from an rbm-derived process. Neural Computation, 23(8):2053-2073, Aug. 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.8
, pp. 2053-2073
-
-
Breuleux, O.1
Bengio, Y.2
Vincent, P.3
-
7
-
-
85162494200
-
Selecting receptive fields in deep networks
-
A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In NIPS'2011, 2011.
-
(2011)
NIPS'2011
-
-
Coates, A.1
Ng, A.Y.2
-
8
-
-
84860644702
-
Measuring invariances in deep networks
-
I. Goodfellow, Q. Le, A. Saxe, and A. Ng. Measuring invariances in deep networks. In NIPS'2009, pages 646-654, 2009.
-
(2009)
NIPS'2009
, pp. 646-654
-
-
Goodfellow, I.1
Le, Q.2
Saxe, A.3
Ng, A.4
-
9
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
10
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
11
-
-
85162064389
-
Sample complexity of testing the manifold hypothesis
-
H. Narayanan and S. Mitter. Sample complexity of testing the manifold hypothesis. In NIPS'2010. 2010.
-
(2010)
NIPS'2010
-
-
Narayanan, H.1
Mitter, S.2
-
12
-
-
80052877144
-
On deep generative models with applications to recognition
-
M. Ranzato, J. Susskind, V. Mnih, and G. E. Hinton. On deep generative models with applications to recognition. In CVPR'11, pages 2857-2864, 2011.
-
(2011)
CVPR'11
, pp. 2857-2864
-
-
Ranzato, M.1
Susskind, J.2
Mnih, V.3
Hinton, G.E.4
-
13
-
-
85162427692
-
The manifold tangent classifier
-
Student paper award
-
S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller. The manifold tangent classifier. In NIPS'2011, 2011a. Student paper award.
-
(2011)
NIPS'2011
-
-
Rifai, S.1
Dauphin, Y.2
Vincent, P.3
Bengio, Y.4
Muller, X.5
-
14
-
-
80053460450
-
Contracting auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contracting auto-encoders: Explicit invariance during feature extraction. In ICML'2011, 2011b.
-
(2011)
ICML'2011
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
15
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Dec.
-
S. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, Dec. 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.K.2
-
16
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
17
-
-
0001440803
-
Tangent prop - A formalism for specifying selected invariances in an adaptive network
-
P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop - A formalism for specifying selected invariances in an adaptive network. In NIPS'1991, 1992.
-
(1992)
NIPS'1991
-
-
Simard, P.1
Victorri, B.2
LeCun, Y.3
Denker, J.4
-
18
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Dec.
-
J. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, Dec. 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.1
De Silva, V.2
Langford, J.C.3
-
19
-
-
0033556788
-
Mixtures of probabilistic principal component analysers
-
M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analysers. Neural Computation, 11(2):443-482, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
|