메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2551-2558

Modeling pixel means and covariances using factorized third-order Boltzmann machines

Author keywords

[No Author keywords available]

Indexed keywords

BOLTZMANN MACHINES; CELL ARCHITECTURES; CELL COMPLEXES; DATA SETS; EXTRACTING FEATURES; GENERATIVE MODEL; HIDDEN UNITS; NATURAL IMAGES; PROBABILISTIC FRAMEWORK; PROBABILISTIC MODELS; RECOGNITION ACCURACY; THIRD-ORDER; YIELD STATE;

EID: 77955989954     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539962     Document Type: Conference Paper
Times cited : (175)

References (33)
  • 3
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 5
    • 34948885292 scopus 로고    scopus 로고
    • Learning and incorporating top-down cues in image segmentation
    • 1
    • X. He, R. Zemel, and D. Ray. Learning and incorporating top-down cues in image segmentation. In ECCV, 2006. 1
    • (2006) ECCV
    • He, X.1    Zemel, R.2    Ray, D.3
  • 6
    • 84898890413 scopus 로고    scopus 로고
    • Learning generative texture models with extended fields-of-experts
    • 7
    • N. Heess, C. Williams, and G. Hinton. Learning generative texture models with extended fields-of-experts. In BMCV, 2009. 7
    • (2009) BMCV
    • Heess, N.1    Williams, C.2    Hinton, G.3
  • 7
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • 4
    • G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002. 4
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.1
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 7
    • G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Comp., 18:1527-1554, 2006. 7
    • (2006) Neural Comp. , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 1, 5
    • G. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504- 507, 2006. 1, 5
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.R.2
  • 11
    • 33748852900 scopus 로고    scopus 로고
    • Unsupervised discovery of non-linear structure using contrastive backpropagation
    • 4
    • G. E. Hinton, S. Osindero, M. Welling, and Y. Teh. Unsupervised discovery of non-linear structure using contrastive backpropagation. Cognitive Science, 30:725-731, 2006. 4
    • (2006) Cognitive Science , vol.30 , pp. 725-731
    • Hinton, G.E.1    Osindero, S.2    Welling, M.3    Teh, Y.4
  • 12
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • 1
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009. 1
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 13
    • 58149234993 scopus 로고    scopus 로고
    • Emergence of complex cell properties by learning to generalize in natural scenes
    • 1, 2
    • Y. Karklin and M. Lewicki. Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 457:83-86, 2009. 1, 2
    • (2009) Nature , vol.457 , pp. 83-86
    • Karklin, Y.1    Lewicki, M.2
  • 14
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • 1
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In CVPR, 2009. 1
    • (2009) CVPR
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    LeCun, Y.4
  • 15
    • 40749143650 scopus 로고    scopus 로고
    • A two-layer ica-like model estimated by score matching
    • 1
    • U. Koster and A. Hyvarinen. A two-layer ica-like model estimated by score matching. In ICANN, 2007. 1
    • (2007) ICANN
    • Koster, U.1    Hyvarinen, A.2
  • 17
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 1
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML, 2009. 1
    • (2009) Proc. ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1, 7
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 1, 7
    • (2004) IJCV
    • Lowe, D.1
  • 19
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order boltzmann machines
    • 7
    • R. Memisevic and G. Hinton. Learning to represent spatial transformations with factored higher-order boltzmann machines. Neural Comp., 2010. 7
    • (2010) Neural Comp.
    • Memisevic, R.1    Hinton, G.2
  • 21
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • 1, 7
    • A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 42:145- 175, 2001. 1, 7
    • (2001) IJCV , vol.42 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 22
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • 1
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research, 37:3311-3325, 1997. 1
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 23
    • 85161976678 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of markov random fields
    • 7
    • S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of markov random fields. In NIPS, 2008. 7
    • (2008) NIPS
    • Osindero, S.1    Hinton, G.E.2
  • 24
    • 33644900506 scopus 로고    scopus 로고
    • Topographic product models applied to natural scene statistics
    • 2, 5, 7
    • S. Osindero, M. Welling, and G. E. Hinton. Topographic product models applied to natural scene statistics. Neural Comp., 18:344-381, 2006. 2, 5, 7
    • (2006) Neural Comp. , vol.18 , pp. 344-381
    • Osindero, S.1    Welling, M.2    Hinton, G.E.3
  • 25
    • 57349098579 scopus 로고    scopus 로고
    • Selftaught learning: Transfer learning from unlabeled data
    • 7
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Selftaught learning: Transfer learning from unlabeled data. In ICML, 2007. 7
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.5
  • 26
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • 7
    • M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR'07, 2007. 7
    • (2007) CVPR'07
    • Ranzato, M.1    Huang, F.2    Boureau, Y.3    LeCun, Y.4
  • 27
    • 77956000948 scopus 로고    scopus 로고
    • Factored 3-way restricted boltzmann machines for modeling natural images
    • 2, 7
    • M. Ranzato, A. Krizhevsky, and G. Hinton. Factored 3-way restricted boltzmann machines for modeling natural images. In AISTATS, 2010. 2, 7
    • (2010) AISTATS
    • Ranzato, M.1    Krizhevsky, A.2    Hinton, G.3
  • 28
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • 1
    • S. Roth and M. Black. Fields of experts: A framework for learning image priors. In CVPR, 2005. 1
    • (2005) CVPR
    • Roth, S.1    Black, M.2
  • 29
    • 0002759961 scopus 로고
    • Higher-order boltzmann machines
    • AIP Conf. proc., 3
    • T. Sejnowski. Higher-order boltzmann machines. In AIP Conf. proc., Neural networks for computing, 1986. 3
    • (1986) Neural Networks for Computing
    • Sejnowski, T.1
  • 30
    • 54749092170 scopus 로고    scopus 로고
    • 80 Million tiny images: A large dataset for non-parametric object and scene recognition
    • 6
    • A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: a large dataset for non-parametric object and scene recognition. PAMI, 30:1958-1970, 2008. 6
    • (2008) PAMI , vol.30 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 31
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large databases for recognition
    • 7
    • A. Torralba, R. Fergus, and Y. Weiss. Small codes and large databases for recognition. In CVPR, 2008. 7
    • (2008) CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 32
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • 1
    • P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008. 1
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.4
  • 33
    • 84898965689 scopus 로고    scopus 로고
    • Scale mixtures of gaussians and the statistics of natural images
    • 4
    • M. Wainwright and E. Simoncelli. Scale mixtures of gaussians and the statistics of natural images. In NIPS, 2000. 4
    • (2000) NIPS
    • Wainwright, M.1    Simoncelli, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.