메뉴 건너뛰기




Volumn 82, Issue , 2013, Pages 203-236

Structural basis of the translational elongation cycle

Author keywords

Decoding; Peptidyl transfer; Protein synthesis; Ribosome; Translation; Translocation

Indexed keywords

ANTIBIOTIC AGENT; ELONGATION FACTOR G; ELONGATION FACTOR TU; GUANOSINE TRIPHOSPHATASE; MESSENGER RNA; PEPTIDYLTRANSFERASE; PROTON; TRANSFER RNA;

EID: 84878924244     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-113009-092313     Document Type: Review
Times cited : (215)

References (195)
  • 1
    • 0001837275 scopus 로고
    • Ribosomes, ed. M Nomura, A Tissières, P Lengyel, Cold Spring Harb. , NY: Cold Spring Harb. Lab
    • Tissières A. 1974. Ribosome research: historical background. In Ribosomes, ed. M Nomura, A Tissières, P Lengyel, pp. 3-12. Cold Spring Harb. , NY: Cold Spring Harb. Lab.
    • (1974) Ribosome Research: Historical Background , pp. 3-12
    • Tissières, A.1
  • 2
    • 70350654363 scopus 로고    scopus 로고
    • What recent ribosome structures have revealed about the mechanism of translation
    • Schmeing TM, Ramakrishnan V. 2009. What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234-42
    • (2009) Nature , vol.461 , pp. 1234-1242
    • Schmeing, T.M.1    Ramakrishnan, V.2
  • 3
    • 79951510534 scopus 로고    scopus 로고
    • Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1
    • Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. 2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730-36
    • (2011) Science , vol.331 , pp. 730-736
    • Rabl, J.1    Leibundgut, M.2    Ataide, S.F.3    Haag, A.4    Ban, N.5
  • 4
    • 81555219350 scopus 로고    scopus 로고
    • Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6
    • Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. 2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941-48
    • (2011) Science , vol.334 , pp. 941-948
    • Klinge, S.1    Voigts-Hoffmann, F.2    Leibundgut, M.3    Arpagaus, S.4    Ban, N.5
  • 6
    • 0034075255 scopus 로고    scopus 로고
    • MRNA composition and control of bacterial gene expression
    • Liang ST, Xu YC, Dennis P, Bremer H. 2000. mRNA composition and control of bacterial gene expression. J. Bacteriol. 182:3037-44
    • (2000) J. Bacteriol. , vol.182 , pp. 3037-3044
    • Liang, S.T.1    Xu, Y.C.2    Dennis, P.3    Bremer, H.4
  • 7
    • 0033168212 scopus 로고    scopus 로고
    • Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome
    • Pape T, Wintermeyer W, Rodnina M. 1999. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18:3800-7
    • (1999) EMBO J. , vol.18 , pp. 3800-3807
    • Pape, T.1    Wintermeyer, W.2    Rodnina, M.3
  • 8
    • 21244465843 scopus 로고    scopus 로고
    • Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation
    • Diaconu M, Kothe U, Schlünzen F, Fischer N, Harms JM, et al. 2005. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121:991-1004
    • (2005) Cell , vol.121 , pp. 991-1004
    • Diaconu, M.1    Kothe, U.2    Schlünzen, F.3    Fischer, N.4    Harms, J.M.5
  • 9
    • 0030047916 scopus 로고    scopus 로고
    • Initial binding of the elongation factor TuTPminoacyl-tRNA complex preceding codon recognition on the ribosome
    • Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W. 1996. Initial binding of the elongation factor TuTPminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271:646-52
    • (1996) J. Biol. Chem. , vol.271 , pp. 646-652
    • Rodnina, M.V.1    Pape, T.2    Fricke, R.3    Kuhn, L.4    Wintermeyer, W.5
  • 11
    • 0035089079 scopus 로고    scopus 로고
    • A common structural motif in elongation factor Ts and ribosomal protein L7/12 may be involved in the interaction with elongation factor Tu
    • Wieden HJ, Wintermeyer W, Rodnina MV. 2001. A common structural motif in elongation factor Ts and ribosomal protein L7/12 may be involved in the interaction with elongation factor Tu. J. Mol. Evol. 52:129-36
    • (2001) J. Mol. Evol. , vol.52 , pp. 129-136
    • Wieden, H.J.1    Wintermeyer, W.2    Rodnina, M.V.3
  • 12
    • 1242339673 scopus 로고    scopus 로고
    • Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome
    • Kothe U, Wieden HJ, Mohr D, Rodnina MV. 2004. Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. J. Mol. Biol. 336:1011-21
    • (2004) J. Mol. Biol. , vol.336 , pp. 1011-1021
    • Kothe, U.1    Wieden, H.J.2    Mohr, D.3    Rodnina, M.V.4
  • 13
    • 70350588648 scopus 로고    scopus 로고
    • The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA
    • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV IV, et al. 2009. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326:688-94
    • (2009) Science , vol.326 , pp. 688-694
    • Schmeing, T.M.1    Voorhees, R.M.2    Kelley, A.C.3    Gao, Y.G.4    Murphy, F.V.5
  • 14
    • 0028109919 scopus 로고
    • Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu
    • Rodnina MV, Fricke R, Wintermeyer W. 1994. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33:12267-75
    • (1994) Biochemistry , vol.33 , pp. 12267-12275
    • Rodnina, M.V.1    Fricke, R.2    Wintermeyer, W.3
  • 15
    • 18844413446 scopus 로고    scopus 로고
    • Structural insights into translational fidelity
    • Ogle JM, Ramakrishnan V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74:129-77
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 129-177
    • Ogle, J.M.1    Ramakrishnan, V.2
  • 19
    • 0013936167 scopus 로고
    • Codon-anticodon pairing: The wobble hypothesis
    • Crick FHC. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19:548-55
    • (1966) J. Mol. Biol. , vol.19 , pp. 548-555
    • Crick, F.H.C.1
  • 20
    • 77957740230 scopus 로고    scopus 로고
    • Evolving views of DNA replication (in)fidelity
    • Kunkel TA. 2009. Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. Quant. Biol. 74:91-101
    • (2009) Cold Spring Harb. Symp. Quant. Biol. , vol.74 , pp. 91-101
    • Kunkel, T.A.1
  • 22
    • 0037184536 scopus 로고    scopus 로고
    • Selection of tRNA by the ribosome requires a transition from an open to a closed form
    • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721-32
    • (2002) Cell , vol.111 , pp. 721-732
    • Ogle, J.M.1    Murphy, F.V.2    Tarry, M.J.3    Ramakrishnan, V.4
  • 23
    • 0842267211 scopus 로고    scopus 로고
    • Kinetic determinants of high-fidelity tRNA discrimination on the ribosome
    • Gromadski KB, Rodnina MV. 2004. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13:191-200
    • (2004) Mol. Cell , vol.13 , pp. 191-200
    • Gromadski, K.B.1    Rodnina, M.V.2
  • 24
    • 0032896612 scopus 로고    scopus 로고
    • Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium
    • Bjorkman J, Samuelsson P, Andersson DI, Hughes D. 1999. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol. Microbiol. 31:53-58
    • (1999) Mol. Microbiol. , vol.31 , pp. 53-58
    • Bjorkman, J.1    Samuelsson, P.2    Andersson, D.I.3    Hughes, D.4
  • 25
    • 66449107983 scopus 로고    scopus 로고
    • Accuracy modulating mutations of the ribosomal protein S4-S5 interface do not necessarily destabilize the rps4-rps5 protein-protein interaction
    • Vallabhaneni H, Farabaugh PJ. 2009. Accuracy modulating mutations of the ribosomal protein S4-S5 interface do not necessarily destabilize the rps4-rps5 protein-protein interaction. RNA 15:1100-9
    • (2009) RNA , vol.15 , pp. 1100-1109
    • Vallabhaneni, H.1    Farabaugh, P.J.2
  • 26
    • 77957320587 scopus 로고    scopus 로고
    • Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection
    • McClory SP, Leisring JM, Qin D, Fredrick K. 2010. Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection. RNA 16:1925-34
    • (2010) RNA , vol.16 , pp. 1925-1934
    • McClory, S.P.1    Leisring, J.M.2    Qin, D.3    Fredrick, K.4
  • 27
    • 58249120107 scopus 로고    scopus 로고
    • A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA
    • Gregory ST, Carr JF, Dahlberg AE. 2009. A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA. RNA 15:208-14
    • (2009) RNA , vol.15 , pp. 208-214
    • Gregory, S.T.1    Carr, J.F.2    Dahlberg, A.E.3
  • 28
    • 77954298382 scopus 로고    scopus 로고
    • Hyperaccurate and error-prone ribosomes exploit distinctmechanisms during tRNA selection
    • Zaher HS, Green R. 2010. Hyperaccurate and error-prone ribosomes exploit distinctmechanisms during tRNA selection. Mol. Cell 39:110-20
    • (2010) Mol. Cell , vol.39 , pp. 110-120
    • Zaher, H.S.1    Green, R.2
  • 30
    • 0014220434 scopus 로고
    • A strong suppressor specific for UGA
    • Sambrook JF, Fan DP, Brenner S. 1967. A strong suppressor specific for UGA. Nature 214:452-53
    • (1967) Nature , vol.214 , pp. 452-453
    • Sambrook, J.F.1    Fan, D.P.2    Brenner, S.3
  • 31
    • 0014931515 scopus 로고
    • Tryptophan tRNA of Escherichia coli
    • Hirsh D. 1970. Tryptophan tRNA of Escherichia coli. Nature 228:57
    • (1970) Nature , vol.228 , pp. 57
    • Hirsh, D.1
  • 32
    • 0015223081 scopus 로고
    • Tryptophan transfer RNA as the UGA suppressor
    • Hirsh D. 1971. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58:439-58
    • (1971) J. Mol. Biol. , vol.58 , pp. 439-458
    • Hirsh, D.1
  • 33
    • 0024589568 scopus 로고
    • Transfer RNA structure and coding specificity. II. AD-arm tertiary interaction that restricts coding range
    • Smith D, Yarus M. 1989. Transfer RNA structure and coding specificity. II. AD-arm tertiary interaction that restricts coding range. J. Mol. Biol. 206:503-11
    • (1989) J. Mol. Biol. , vol.206 , pp. 503-511
    • Smith, D.1    Yarus, M.2
  • 34
    • 0024596022 scopus 로고
    • Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome
    • Smith D, Yarus M. 1989. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. J. Mol. Biol. 206:489-501
    • (1989) J. Mol. Biol. , vol.206 , pp. 489-501
    • Smith, D.1    Yarus, M.2
  • 35
    • 77957317859 scopus 로고    scopus 로고
    • Functional elucidation of a key contact between tRNA and the large ribosomal subunit rRNA during decoding
    • Ortiz-Meoz RF, Green R. 2010. Functional elucidation of a key contact between tRNA and the large ribosomal subunit rRNA during decoding. RNA 16:2002-13
    • (2010) RNA , vol.16 , pp. 2002-2013
    • Ortiz-Meoz, R.F.1    Green, R.2
  • 36
    • 64049100740 scopus 로고    scopus 로고
    • A sequence element that tunes Escherichia coli tRNAAla GGC to ensure accurate decoding
    • Ledoux S, Olejniczak M, Uhlenbeck OC. 2009. A sequence element that tunes Escherichia coli tRNAAla GGC to ensure accurate decoding. Nat. Struct. Mol. Biol. 16:359-64
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 359-364
    • Ledoux, S.1    Olejniczak, M.2    Uhlenbeck, O.C.3
  • 37
    • 0024334898 scopus 로고
    • Interaction of tRNA with 23S rRNA in the ribosomal A, P, and e sites
    • Moazed D, Noller HF. 1989. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57:585-97
    • (1989) Cell , vol.57 , pp. 585-597
    • Moazed, D.1    Noller, H.F.2
  • 39
    • 0036646535 scopus 로고    scopus 로고
    • Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process
    • Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, et al. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21:3557-67
    • (2002) EMBO J. , vol.21 , pp. 3557-3567
    • Valle, M.1    Sengupta, J.2    Swami, N.K.3    Grassucci, R.A.4    Burkhardt, N.5
  • 41
    • 18844408328 scopus 로고    scopus 로고
    • An active role for tRNA in decoding beyond codon:anticodon pairing
    • Cochella L, Green R. 2005. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308:1178-80
    • (2005) Science , vol.308 , pp. 1178-1180
    • Cochella, L.1    Green, R.2
  • 42
    • 9744230656 scopus 로고    scopus 로고
    • Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites
    • Fahlman RP, Dale T, Uhlenbeck OC. 2004. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol. Cell 16:799-805
    • (2004) Mol. Cell , vol.16 , pp. 799-805
    • Fahlman, R.P.1    Dale, T.2    Uhlenbeck, O.C.3
  • 43
    • 46149104347 scopus 로고    scopus 로고
    • Different aa-tRNAs are selected uniformly on the ribosome
    • Ledoux S, Uhlenbeck OC. 2008. Different aa-tRNAs are selected uniformly on the ribosome. Mol. Cell 31:114-23
    • (2008) Mol. Cell , vol.31 , pp. 114-123
    • Ledoux, S.1    Uhlenbeck, O.C.2
  • 44
    • 33747871555 scopus 로고    scopus 로고
    • TRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition
    • Olejniczak M, Uhlenbeck OC. 2006. tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition. Biochimie 88:943-50
    • (2006) Biochimie , vol.88 , pp. 943-950
    • Olejniczak, M.1    Uhlenbeck, O.C.2
  • 45
    • 0035907234 scopus 로고    scopus 로고
    • Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-TuGDP and aurodox
    • Vogeley L, Palm GJ, Mesters JR, Hilgenfeld R. 2001. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-TuGDP and aurodox. J. Biol. Chem. 276:17149-55
    • (2001) J. Biol. Chem. , vol.276 , pp. 17149-17155
    • Vogeley, L.1    Palm, G.J.2    Mesters, J.R.3    Hilgenfeld, R.4
  • 47
    • 0041735420 scopus 로고    scopus 로고
    • Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome
    • Daviter T, Wieden HJ, Rodnina MV. 2003. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J. Mol. Biol. 332:689-99
    • (2003) J. Mol. Biol. , vol.332 , pp. 689-699
    • Daviter, T.1    Wieden, H.J.2    Rodnina, M.V.3
  • 48
    • 0029804685 scopus 로고    scopus 로고
    • The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome
    • Vorstenbosch E, Pape T, Rodnina MV, Kraal B, Wintermeyer W. 1996. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. EMBO J. 15:6766-74
    • (1996) EMBO J. , vol.15 , pp. 6766-6774
    • Vorstenbosch, E.1    Pape, T.2    Rodnina, M.V.3    Kraal, B.4    Wintermeyer, W.5
  • 49
  • 50
    • 49349091956 scopus 로고    scopus 로고
    • Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy
    • Sengupta J, Nilsson J, Gursky R, Kjeldgaard M, Nissen P, Frank J. 2008. Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy. J. Mol. Biol. 382:179-87
    • (2008) J. Mol. Biol. , vol.382 , pp. 179-187
    • Sengupta, J.1    Nilsson, J.2    Gursky, R.3    Kjeldgaard, M.4    Nissen, P.5    Frank, J.6
  • 52
  • 53
    • 0023405923 scopus 로고
    • Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors
    • Hausner TP, Atmadja J, Nierhaus KH. 1987. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69:911-23
    • (1987) Biochimie , vol.69 , pp. 911-923
    • Hausner, T.P.1    Atmadja, J.2    Nierhaus, K.H.3
  • 55
    • 0028078797 scopus 로고
    • Mutations in 23S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence
    • Bilgin N, Ehrenberg M. 1994. Mutations in 23S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J. Mol. Biol. 235:813-24
    • (1994) J. Mol. Biol. , vol.235 , pp. 813-824
    • Bilgin, N.1    Ehrenberg, M.2
  • 56
    • 84860767838 scopus 로고    scopus 로고
    • Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis
    • Shi X, Khade PK, Sanbonmatsu KY, Joseph S. 2012. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J. Mol. Biol. 419:125-38
    • (2012) J. Mol. Biol. , vol.419 , pp. 125-138
    • Shi, X.1    Khade, P.K.2    Sanbonmatsu, K.Y.3    Joseph, S.4
  • 57
    • 0017897685 scopus 로고
    • Guanosinetriphosphatase activity dependent on elongation factor Tu and ribosomal protein L7/L12
    • Donner D, Villems R, Liljas A, Kurland CG. 1978. Guanosinetriphosphatase activity dependent on elongation factor Tu and ribosomal protein L7/L12. Proc. Natl. Acad. Sci. USA 75:3192-95
    • (1978) Proc. Natl. Acad. Sci. USA , vol.75 , pp. 3192-3195
    • Donner, D.1    Villems, R.2    Liljas, A.3    Kurland, C.G.4
  • 58
    • 0037108102 scopus 로고    scopus 로고
    • GTPase activation of elongation factors Tu and G on the ribosome
    • Mohr D, Wintermeyer W, Rodnina MV. 2002. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41:12520-28
    • (2002) Biochemistry , vol.41 , pp. 12520-12528
    • Mohr, D.1    Wintermeyer, W.2    Rodnina, M.V.3
  • 59
    • 0028981381 scopus 로고
    • Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression in Saccharomyces cerevisiae
    • Remacha M, Jimenez-Diaz A, Bermejo B, Rodriguez-Gabriel MA, Guarinos E, Ballesta JP. 1995. Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:4754-62
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 4754-4762
    • Remacha, M.1    Jimenez-Diaz, A.2    Bermejo, B.3    Rodriguez-Gabriel, M.A.4    Guarinos, E.5    Ballesta, J.P.6
  • 60
    • 84862908487 scopus 로고    scopus 로고
    • Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome
    • Zhou J, Lancaster L, Trakhanov S, Noller HF. 2012. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA 18:230-40
    • (2012) RNA , vol.18 , pp. 230-240
    • Zhou, J.1    Lancaster, L.2    Trakhanov, S.3    Noller, H.F.4
  • 61
    • 0035933781 scopus 로고    scopus 로고
    • The importance of structural transitions of the switch II region for the functions of elongation factor Tu on the ribosome
    • Knudsen C, Wieden HJ, Rodnina MV. 2001. The importance of structural transitions of the switch II region for the functions of elongation factor Tu on the ribosome. J. Biol. Chem. 276:22183-90
    • (2001) J. Biol. Chem. , vol.276 , pp. 22183-22190
    • Knudsen, C.1    Wieden, H.J.2    Rodnina, M.V.3
  • 62
    • 79959817796 scopus 로고    scopus 로고
    • The mechanism for activation of GTP hydrolysis on the ribosome
    • Liljas A, Ehrenberg M, Aqvist J. 2011. Comment on "The mechanism for activation of GTP hydrolysis on the ribosome." Science 333:37
    • (2011) Science , vol.333 , pp. 37
    • Liljas, A.1    Ehrenberg, M.2    Aqvist, J.3
  • 64
    • 79959935915 scopus 로고    scopus 로고
    • Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome
    • Adamczyk AJ, Warshel A. 2011. Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome. Proc. Natl. Acad. Sci. USA 108:9827-32
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 9827-9832
    • Adamczyk, A.J.1    Warshel, A.2
  • 65
    • 33750380262 scopus 로고    scopus 로고
    • Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome
    • Kothe U, Rodnina MV. 2006. Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome. Biochemistry 45:12767-74
    • (2006) Biochemistry , vol.45 , pp. 12767-12774
    • Kothe, U.1    Rodnina, M.V.2
  • 66
    • 0019019622 scopus 로고
    • Free-energy dissipation constraints on the accuracy of enzymatic selections
    • Blomberg C, Ehrenberg M, Kurland CG. 1980. Free-energy dissipation constraints on the accuracy of enzymatic selections. Q. Rev. Biophys. 13:231-54
    • (1980) Q. Rev. Biophys. , vol.13 , pp. 231-254
    • Blomberg, C.1    Ehrenberg, M.2    Kurland, C.G.3
  • 67
    • 0000359208 scopus 로고
    • Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity
    • Hopfield JJ. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71:4135-39
    • (1974) Proc. Natl. Acad. Sci. USA , vol.71 , pp. 4135-4139
    • Hopfield, J.J.1
  • 68
    • 0016793283 scopus 로고
    • Kinetic amplification of enzyme discrimination
    • Ninio J. 1975. Kinetic amplification of enzyme discrimination. Biochimie 57:587-95
    • (1975) Biochimie , vol.57 , pp. 587-595
    • Ninio, J.1
  • 69
    • 0004955452 scopus 로고
    • Proofreading of the codon-anticodon interaction on ribosomes
    • Thompson RC, Stone PJ. 1977. Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl. Acad. Sci. USA 74:198-202
    • (1977) Proc. Natl. Acad. Sci. USA , vol.74 , pp. 198-202
    • Thompson, R.C.1    Stone, P.J.2
  • 70
    • 0020337390 scopus 로고
    • Is there proofreading during polypeptide synthesis?
    • Ruusala T, Ehrenberg M, Kurland CG. 1982. Is there proofreading during polypeptide synthesisEMBO J. 1:741-45
    • (1982) EMBO J. , vol.1 , pp. 741-745
    • Ruusala, T.1    Ehrenberg, M.2    Kurland, C.G.3
  • 71
    • 58149354143 scopus 로고    scopus 로고
    • Quality control by the ribosome following peptide bond formation
    • Zaher HS, Green R. 2009. Quality control by the ribosome following peptide bond formation. Nature 457:161-66
    • (2009) Nature , vol.457 , pp. 161-166
    • Zaher, H.S.1    Green, R.2
  • 72
    • 77954814800 scopus 로고    scopus 로고
    • Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome
    • Geggier P, Dave R, Feldman MB, Terry DS, Altman RB, et al. 2010. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J. Mol. Biol. 399:576-95
    • (2010) J. Mol. Biol. , vol.399 , pp. 576-595
    • Geggier, P.1    Dave, R.2    Feldman, M.B.3    Terry, D.S.4    Altman, R.B.5
  • 73
    • 42049086762 scopus 로고    scopus 로고
    • Rate and accuracy of bacterial protein synthesis revisited
    • Johansson M, Lovmar M, Ehrenberg M. 2008. Rate and accuracy of bacterial protein synthesis revisited. Curr. Opin. Microbiol. 11:141-47
    • (2008) Curr. Opin. Microbiol. , vol.11 , pp. 141-147
    • Johansson, M.1    Lovmar, M.2    Ehrenberg, M.3
  • 74
    • 78651083730 scopus 로고    scopus 로고
    • PH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA
    • Johansson M, Ieong KW, Trobro S, Strazewski P, Aqvist J, et al. 2011. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Proc. Natl. Acad. Sci. USA 108:79-84
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 79-84
    • Johansson, M.1    Ieong, K.W.2    Trobro, S.3    Strazewski, P.4    Aqvist, J.5
  • 75
    • 78149280508 scopus 로고    scopus 로고
    • Optimization of speed and accuracy of decoding in translation
    • Wohlgemuth I, Pohl C, Rodnina MV. 2010. Optimization of speed and accuracy of decoding in translation. EMBO J. 29:3701-9
    • (2010) EMBO J. , vol.29 , pp. 3701-3709
    • Wohlgemuth, I.1    Pohl, C.2    Rodnina, M.V.3
  • 76
    • 84862963791 scopus 로고    scopus 로고
    • Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection
    • Johansson M, Zhang J, Ehrenberg M. 2012. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. Proc. Natl. Acad. Sci. USA 109:131-36
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 131-136
    • Johansson, M.1    Zhang, J.2    Ehrenberg, M.3
  • 77
    • 27644502679 scopus 로고    scopus 로고
    • Simulating movement of tRNA into the ribosome during decoding
    • Sanbonmatsu KY, Joseph S, Tung CS. 2005. Simulating movement of tRNA into the ribosome during decoding. Proc. Natl. Acad. Sci. USA 102:15854-59
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 15854-15859
    • Sanbonmatsu, K.Y.1    Joseph, S.2    Tung, C.S.3
  • 78
    • 77956026059 scopus 로고    scopus 로고
    • Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination
    • Burakovsky DE, Sergiev PV, Steblyanko MA, Kubarenko AV, Konevega AL, et al. 2010. Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination. RNA 16:1848-53
    • (2010) RNA , vol.16 , pp. 1848-1853
    • Burakovsky, D.E.1    Sergiev, P.V.2    Steblyanko, M.A.3    Kubarenko, A.V.4    Konevega, A.L.5
  • 79
    • 79955025171 scopus 로고    scopus 로고
    • Mutations of highly conserved bases in the peptidyltransferase center induce compensatory rearrangements in yeast ribosomes
    • Rakauskaite R, Dinman JD. 2011. Mutations of highly conserved bases in the peptidyltransferase center induce compensatory rearrangements in yeast ribosomes. RNA 17:855-64
    • (2011) RNA , vol.17 , pp. 855-864
    • Rakauskaite, R.1    Dinman, J.D.2
  • 80
  • 81
    • 79953159145 scopus 로고    scopus 로고
    • Distortion of tRNA upon near-cognate codon recognition on the ribosome
    • Mittelstaet J, Konevega AL, Rodnina MV. 2011. Distortion of tRNA upon near-cognate codon recognition on the ribosome. J. Biol. Chem. 286:8158-64
    • (2011) J. Biol. Chem. , vol.286 , pp. 8158-8164
    • Mittelstaet, J.1    Konevega, A.L.2    Rodnina, M.V.3
  • 82
    • 0018972459 scopus 로고
    • Ribosomal protein L7/L12 is required for optimal translation
    • Pettersson I, Kurland CG. 1980. Ribosomal protein L7/L12 is required for optimal translation. Proc. Natl. Acad. Sci. USA 77:4007-10
    • (1980) Proc. Natl. Acad. Sci. USA , vol.77 , pp. 4007-4010
    • Pettersson, I.1    Kurland, C.G.2
  • 83
    • 0019395516 scopus 로고
    • Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyltRNAs in protein biosynthesis
    • Thompson RC, Dix DB, Gerson RB, Karim AM. 1981. Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyltRNAs in protein biosynthesis. J. Biol. Chem. 256:6676-81
    • (1981) J. Biol. Chem. , vol.256 , pp. 6676-6681
    • Thompson, R.C.1    Dix, D.B.2    Gerson, R.B.3    Karim, A.M.4
  • 84
    • 0024835265 scopus 로고
    • Selection of the initiator tRNA by Escherichia coli initiation factors
    • Hartz D, McPheeters DS, Gold L. 1989. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 3:1899-912
    • (1989) Genes Dev. , vol.3 , pp. 1899-1912
    • Hartz, D.1    McPheeters, D.S.2    Gold, L.3
  • 85
    • 0024603313 scopus 로고
    • The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA
    • Gnirke A, Geigenmuller U, Rheinberger HJ, Nierhaus LH. 1989. The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA. J. Biol. Chem. 264:7291-301
    • (1989) J. Biol. Chem. , vol.264 , pp. 7291-7301
    • Gnirke, A.1    Geigenmuller, U.2    Rheinberger, H.J.3    Nierhaus, L.H.4
  • 87
    • 0026639881 scopus 로고
    • Unusual resistance of peptidyl transferase to protein extraction procedures
    • Noller HF, Hoffarth V, Zimniak L. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416-19
    • (1992) Science , vol.256 , pp. 1416-1419
    • Noller, H.F.1    Hoffarth, V.2    Zimniak, L.3
  • 88
    • 66149157000 scopus 로고    scopus 로고
    • Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome
    • Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V. 2009. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16:528-33
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 528-533
    • Voorhees, R.M.1    Weixlbaumer, A.2    Loakes, D.3    Kelley, A.C.4    Ramakrishnan, V.5
  • 89
    • 0034637161 scopus 로고    scopus 로고
    • The structural basis of ribosome activity in peptide bond synthesis
    • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920-30
    • (2000) Science , vol.289 , pp. 920-930
    • Nissen, P.1    Hansen, J.2    Ban, N.3    Moore, P.B.4    Steitz, T.A.5
  • 90
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2. 4 ä resolution
    • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2. 4 ä resolution. Science 289:905-20
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1    Nissen, P.2    Hansen, J.3    Moore, P.B.4    Steitz, T.A.5
  • 91
    • 28544452248 scopus 로고    scopus 로고
    • An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA
    • Schmeing TM, Huang KS, Strobel SA, Steitz TA. 2005. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438:520-24
    • (2005) Nature , vol.438 , pp. 520-524
    • Schmeing, T.M.1    Huang, K.S.2    Strobel, S.A.3    Steitz, T.A.4
  • 92
    • 33745633573 scopus 로고    scopus 로고
    • Rapid peptide bond formation on isolated 50S ribosomal subunits
    • Wohlgemuth I, Beringer M, Rodnina MV. 2006. Rapid peptide bond formation on isolated 50S ribosomal subunits. EMBO Rep. 7:699-703
    • (2006) EMBO Rep. , vol.7 , pp. 699-703
    • Wohlgemuth, I.1    Beringer, M.2    Rodnina, M.V.3
  • 93
    • 33748582906 scopus 로고    scopus 로고
    • Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements
    • Korostelev A, Trakhanov S, Laurberg M, Noller HF. 2006. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065-77
    • (2006) Cell , vol.126 , pp. 1065-1077
    • Korostelev, A.1    Trakhanov, S.2    Laurberg, M.3    Noller, H.F.4
  • 94
    • 0037249473 scopus 로고    scopus 로고
    • Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression
    • Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, et al. 2003. Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11:91-102
    • (2003) Mol. Cell , vol.11 , pp. 91-102
    • Bashan, A.1    Agmon, I.2    Zarivach, R.3    Schluenzen, F.4    Harms, J.5
  • 95
    • 0036810254 scopus 로고    scopus 로고
    • Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3
    • Zavialov AV, Mora L, Buckingham RH, Ehrenberg M. 2002. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10:789-98
    • (2002) Mol. Cell , vol.10 , pp. 789-798
    • Zavialov, A.V.1    Mora, L.2    Buckingham, R.H.3    Ehrenberg, M.4
  • 97
    • 29844448116 scopus 로고    scopus 로고
    • The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity
    • Brunelle JL, Youngman EM, Sharma D, Green R. 2006. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12:33-39
    • (2006) RNA , vol.12 , pp. 33-39
    • Brunelle, J.L.1    Youngman, E.M.2    Sharma, D.3    Green, R.4
  • 99
    • 55849143658 scopus 로고    scopus 로고
    • Insights into translational termination from the structure of RF2 bound to the ribosome
    • Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, et al. 2008. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953-56
    • (2008) Science , vol.322 , pp. 953-956
    • Weixlbaumer, A.1    Jin, H.2    Neubauer, C.3    Voorhees, R.M.4    Petry, S.5
  • 100
    • 0034637102 scopus 로고    scopus 로고
    • A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center
    • Muth GW, Ortoleva-Donnelly L, Strobel SA. 2000. A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science 289:947-50
    • (2000) Science , vol.289 , pp. 947-950
    • Muth, G.W.1    Ortoleva-Donnelly, L.2    Strobel, S.A.3
  • 101
    • 0345099498 scopus 로고    scopus 로고
    • Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH to activity
    • Dorner S, Panuschka C, Schmid W, Barta A. 2003. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH to activity. Nucleic Acids Res. 31:6536-42
    • (2003) Nucleic Acids Res. , vol.31 , pp. 6536-6542
    • Dorner, S.1    Panuschka, C.2    Schmid, W.3    Barta, A.4
  • 103
    • 0035942753 scopus 로고    scopus 로고
    • Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide
    • Polacek N, Gaynor M, Yassin A, Mankin AS. 2001. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411:498-501
    • (2001) Nature , vol.411 , pp. 498-501
    • Polacek, N.1    Gaynor, M.2    Yassin, A.3    Mankin, A.S.4
  • 104
    • 0038359320 scopus 로고    scopus 로고
    • TheG2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation
    • Beringer M, Adio S, Wintermeyer W, Rodnina M. 2003. TheG2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. RNA 9:919-22
    • (2003) RNA , vol.9 , pp. 919-922
    • Beringer, M.1    Adio, S.2    Wintermeyer, W.3    Rodnina, M.4
  • 105
    • 2542470615 scopus 로고    scopus 로고
    • The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release
    • Youngman EM, Brunelle JL, Kochaniak AB, Green R. 2004. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117:589-99
    • (2004) Cell , vol.117 , pp. 589-599
    • Youngman, E.M.1    Brunelle, J.L.2    Kochaniak, A.B.3    Green, R.4
  • 106
    • 23944472625 scopus 로고    scopus 로고
    • What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?
    • Sharma PK, Xiang Y, Kato M, Warshel A. 2005. What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome? Biochemistry 44:11307-14
    • (2005) Biochemistry , vol.44 , pp. 11307-11314
    • Sharma, P.K.1    Xiang, Y.2    Kato, M.3    Warshel, A.4
  • 107
    • 15044352268 scopus 로고    scopus 로고
    • Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451
    • Erlacher MD, Lang K, Shankaran N, Wotzel B, Huttenhofer A, et al. 2005. Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451. Nucleic Acids Res. 33:1618-27
    • (2005) Nucleic Acids Res. , vol.33 , pp. 1618-1627
    • Erlacher, M.D.1    Lang, K.2    Shankaran, N.3    Wotzel, B.4    Huttenhofer, A.5
  • 108
    • 27644557445 scopus 로고    scopus 로고
    • Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction
    • Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA. 2005. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20:437-48
    • (2005) Mol. Cell , vol.20 , pp. 437-448
    • Schmeing, T.M.1    Huang, K.S.2    Kitchen, D.E.3    Strobel, S.A.4    Steitz, T.A.5
  • 109
    • 24644461086 scopus 로고    scopus 로고
    • Mechanism of peptide bond synthesis on the ribosome
    • Trobro S, Aqvist J. 2005. Mechanism of peptide bond synthesis on the ribosome. Proc. Natl. Acad. Sci. USA 102:12395-400
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 12395-12400
    • Trobro, S.1    Aqvist, J.2
  • 110
    • 33745048734 scopus 로고    scopus 로고
    • Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer
    • Trobro S, Aqvist J. 2006. Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45:7049-56
    • (2006) Biochemistry , vol.45 , pp. 7049-7056
    • Trobro, S.1    Aqvist, J.2
  • 112
    • 33745071762 scopus 로고    scopus 로고
    • Peptide bond formation does not involve acid-base catalysis by ribosomal residues
    • Bieling P, Beringer M, Adio S, Rodnina MV. 2006. Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat. Struct. Mol. Biol. 13:423-28
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 423-428
    • Bieling, P.1    Beringer, M.2    Adio, S.3    Rodnina, M.V.4
  • 113
    • 53249123416 scopus 로고    scopus 로고
    • Peptide-bond synthesis on the ribosome: No free vicinal hydroxy group required on the terminal ribose residue of peptidyl-tRNA
    • Koch M, Huang Y, Sprinzl M. 2008. Peptide-bond synthesis on the ribosome: no free vicinal hydroxy group required on the terminal ribose residue of peptidyl-tRNA. Angew. Chem. Int. Ed. 47:7242-45
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 7242-7245
    • Koch, M.1    Huang, Y.2    Sprinzl, M.3
  • 114
    • 79958829880 scopus 로고    scopus 로고
    • The 2′-OH group of the peptidyl-tRNA stabilizes an active conformation of the ribosomal PTC
    • Zaher HS, Shaw JJ, Strobel SA, Green R. 2011. The 2′-OH group of the peptidyl-tRNA stabilizes an active conformation of the ribosomal PTC. EMBO J. 30:2445-53
    • (2011) EMBO J. , vol.30 , pp. 2445-2453
    • Zaher, H.S.1    Shaw, J.J.2    Strobel, S.A.3    Green, R.4
  • 115
    • 0016405364 scopus 로고
    • The mechanism of the aminolysis of acetate esters
    • Satterthwait AC, Jencks WP. 1974. The mechanism of the aminolysis of acetate esters. J. Am. Chem. Soc. 96:7018-31
    • (1974) J. Am. Chem. Soc. , vol.96 , pp. 7018-7031
    • Satterthwait, A.C.1    Jencks, W.P.2
  • 116
    • 14844352639 scopus 로고    scopus 로고
    • Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction
    • Seila AC, Okuda K, Nunez S, Seila AF, Strobel SA. 2005. Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction. Biochemistry 44:4018-27
    • (2005) Biochemistry , vol.44 , pp. 4018-4027
    • Seila, A.C.1    Okuda, K.2    Nunez, S.3    Seila, A.F.4    Strobel, S.A.5
  • 117
    • 43149097604 scopus 로고    scopus 로고
    • An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction
    • Kingery DA, Pfund E, Voorhees RM, Okuda K, Wohlgemuth I, et al. 2008. An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Chem. Biol. 15:493-500
    • (2008) Chem. Biol. , vol.15 , pp. 493-500
    • Kingery, D.A.1    Pfund, E.2    Voorhees, R.M.3    Okuda, K.4    Wohlgemuth, I.5
  • 118
    • 80051926335 scopus 로고    scopus 로고
    • Different substrate-dependent transition states in the active site of the ribosome
    • Kuhlenkoetter S, Wintermeyer W, Rodnina MV. 2011. Different substrate-dependent transition states in the active site of the ribosome. Nature 476:351-54
    • (2011) Nature , vol.476 , pp. 351-354
    • Kuhlenkoetter, S.1    Wintermeyer, W.2    Rodnina, M.V.3
  • 119
    • 80051678327 scopus 로고    scopus 로고
    • A two-step chemical mechanism for ribosome-catalysed peptide bond formation
    • Hiller DA, Singh V, Zhong M, Strobel SA. 2011. A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Nature 476:236-39
    • (2011) Nature , vol.476 , pp. 236-239
    • Hiller, D.A.1    Singh, V.2    Zhong, M.3    Strobel, S.A.4
  • 120
    • 9744244276 scopus 로고    scopus 로고
    • The use of isotope effects to determine enzyme mechanisms
    • Cleland WW. 2005. The use of isotope effects to determine enzyme mechanisms. Arch. Biochem. Biophys. 433:2-12
    • (2005) Arch. Biochem. Biophys. , vol.433 , pp. 2-12
    • Cleland, W.W.1
  • 121
    • 0014422075 scopus 로고
    • Translocation in protein synthesis a hybrid structure model
    • Bretscher MS. 1968. Translocation in protein synthesis: a hybrid structure model. Nature 218:675-77
    • (1968) Nature , vol.218 , pp. 675-677
    • Bretscher, M.S.1
  • 122
    • 0024458904 scopus 로고
    • Intermediate states in the movement of transfer RNA in the ribosome
    • Moazed D, Noller HF. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142-48
    • (1989) Nature , vol.342 , pp. 142-148
    • Moazed, D.1    Noller, H.F.2
  • 124
    • 0033762347 scopus 로고    scopus 로고
    • Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome
    • Semenkov YP, Rodnina MV, Wintermeyer W. 2000. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat. Struct. Biol. 7:1027-31
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 1027-1031
    • Semenkov, Y.P.1    Rodnina, M.V.2    Wintermeyer, W.3
  • 125
    • 0346362324 scopus 로고    scopus 로고
    • EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding
    • Sharma D, Southworth DR, Green R. 2004. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA 10:102-13
    • (2004) RNA , vol.10 , pp. 102-113
    • Sharma, D.1    Southworth, D.R.2    Green, R.3
  • 126
    • 54049116765 scopus 로고    scopus 로고
    • Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome
    • Agirrezabala X, Lei J, Brunelle JL, Ortiz-Meoz RF, Green R, Frank J. 2008. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32:190-97
    • (2008) Mol. Cell , vol.32 , pp. 190-197
    • Agirrezabala, X.1    Lei, J.2    Brunelle, J.L.3    Ortiz-Meoz, R.F.4    Green, R.5    Frank, J.6
  • 128
    • 0142178293 scopus 로고    scopus 로고
    • Structures of deacylated tRNA mimics bound to the e site of the large ribosomal subunit
    • Schmeing TM, Moore PB, Steitz TA. 2003. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9:1345-52
    • (2003) RNA , vol.9 , pp. 1345-1352
    • Schmeing, T.M.1    Moore, P.B.2    Steitz, T.A.3
  • 129
    • 33847024820 scopus 로고    scopus 로고
    • Kinetically competent intermediates in the translocation step of protein synthesis
    • Pan D, Kirillov SV, Cooperman BS. 2007. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25:519-29
    • (2007) Mol. Cell , vol.25 , pp. 519-529
    • Pan, D.1    Kirillov, S.V.2    Cooperman, B.S.3
  • 131
    • 0034691576 scopus 로고    scopus 로고
    • A ratchet-like inter-subunit reorganization of the ribosome during translocation
    • Frank J, Agrawal RK. 2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:319-22
    • (2000) Nature , vol.406 , pp. 319-322
    • Frank, J.1    Agrawal, R.K.2
  • 134
    • 42949126723 scopus 로고    scopus 로고
    • Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation
    • Fei J, Kosuri P, MacDougall DD, Gonzalez RL Jr. 2008. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30:348-59
    • (2008) Mol. Cell , vol.30 , pp. 348-359
    • Fei, J.1    Kosuri, P.2    Macdougall, D.D.3    Gonzalez Jr., R.L.4
  • 135
    • 80052446046 scopus 로고    scopus 로고
    • Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis
    • Fei J, Richard AC, Bronson JE, Gonzalez RLJ. 2011. Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis. Nat. Struct. Mol. Biol. 18:1043-51
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1043-1051
    • Fei, J.1    Richard, A.C.2    Bronson, J.E.3    Gonzalez, R.L.J.4
  • 137
    • 78149443288 scopus 로고    scopus 로고
    • Single-molecule study of viomycins inhibition mechanism on ribosome translocation
    • Ly CT, Altuntop ME, Wang Y. 2010. Single-molecule study of viomycins inhibition mechanism on ribosome translocation. Biochemistry 49:9732-38
    • (2010) Biochemistry , vol.49 , pp. 9732-9738
    • Ly, C.T.1    Altuntop, M.E.2    Wang, Y.3
  • 138
    • 79956303529 scopus 로고    scopus 로고
    • Structures of the bacterial ribosome in classical and hybrid states of tRNA binding
    • Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, et al. 2011. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981-84
    • (2011) Science , vol.332 , pp. 981-984
    • Dunkle, J.A.1    Wang, L.2    Feldman, M.B.3    Pulk, A.4    Chen, V.B.5
  • 139
    • 80053155455 scopus 로고    scopus 로고
    • Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3
    • Jin H, Kelley AC, Ramakrishnan V. 2011. Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc. Natl. Acad. Sci. USA 108:15798-803
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 15798-15803
    • Jin, H.1    Kelley, A.C.2    Ramakrishnan, V.3
  • 140
    • 79953777970 scopus 로고    scopus 로고
    • MRNA translocation occurs during the second step of ribosomal intersubunit rotation
    • Ermolenko DN, Noller HF. 2011. mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat. Struct. Mol. Biol. 18:457-62
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 457-462
    • Ermolenko, D.N.1    Noller, H.F.2
  • 141
    • 0037459218 scopus 로고    scopus 로고
    • Rapid kinetic analysis of EF-G-dependentmRNAtranslocation in the ribosome
    • Studer SM, Feinberg JS, Joseph S. 2003. Rapid kinetic analysis of EF-G-dependentmRNAtranslocation in the ribosome. J. Mol. Biol. 327:369-81
    • (2003) J. Mol. Biol. , vol.327 , pp. 369-381
    • Studer, S.M.1    Feinberg, J.S.2    Joseph, S.3
  • 144
    • 69249112231 scopus 로고    scopus 로고
    • Structures of the ribosome in intermediate states of ratcheting
    • Zhang W, Dunkle JA, Cate JH. 2009. Structures of the ribosome in intermediate states of ratcheting. Science 325:1014-17
    • (2009) Science , vol.325 , pp. 1014-1017
    • Zhang, W.1    Dunkle, J.A.2    Cate, J.H.3
  • 145
    • 78649873931 scopus 로고    scopus 로고
    • Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites
    • Ratje AH, Loerke J, Mikolajka A, Brunner M, Hildebrand PW, et al. 2010. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468:713-16
    • (2010) Nature , vol.468 , pp. 713-716
    • Ratje, A.H.1    Loerke, J.2    Mikolajka, A.3    Brunner, M.4    Hildebrand, P.W.5
  • 146
    • 84870928681 scopus 로고    scopus 로고
    • Rotation of the head of the 30S ribosomal subunit duringmRNAtranslocation
    • Guo Z, Noller HF. 2012. Rotation of the head of the 30S ribosomal subunit duringmRNAtranslocation. Proc. Natl. Acad. Sci. USA 109:20391-94
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 20391-20394
    • Guo, Z.1    Noller, H.F.2
  • 147
    • 77954650144 scopus 로고    scopus 로고
    • Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy
    • Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. 2010. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329-33
    • (2010) Nature , vol.466 , pp. 329-333
    • Fischer, N.1    Konevega, A.L.2    Wintermeyer, W.3    Rodnina, M.V.4    Stark, H.5
  • 148
    • 79953216748 scopus 로고    scopus 로고
    • Cryoelectron microscopy structures of the ribosome complex in intermediate states during tRNA translocation
    • Fu J, Munro JB, Blanchard SC, Frank J. 2011. Cryoelectron microscopy structures of the ribosome complex in intermediate states during tRNA translocation. Proc. Natl. Acad. Sci. USA 108:4817-21
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 4817-4821
    • Fu, J.1    Munro, J.B.2    Blanchard, S.C.3    Frank, J.4
  • 149
    • 33845484606 scopus 로고    scopus 로고
    • The E-site story: The importance of maintaining two tRNAs on the ribosome during protein synthesis
    • Wilson DN, Nierhaus KH. 2006. The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis. Cell. Mol. Life Sci. 63:2725-37
    • (2006) Cell. Mol. Life Sci. , vol.63 , pp. 2725-2737
    • Wilson, D.N.1    Nierhaus, K.H.2
  • 152
    • 84859489139 scopus 로고    scopus 로고
    • Further in vitro exploration fails to support the allosteric three-site model
    • Petropoulos AD, Green R. 2012. Further in vitro exploration fails to support the allosteric three-site model. J. Biol. Chem. 287:11642-48
    • (2012) J. Biol. Chem. , vol.287 , pp. 11642-11648
    • Petropoulos, A.D.1    Green, R.2
  • 153
    • 84864567876 scopus 로고    scopus 로고
    • Problems with the analyses of the ribosomal allosteric three-site model
    • Nierhaus KH, Pech M. 2012. Problems with the analyses of the ribosomal allosteric three-site model. J. Biol. Chem. 287:27049
    • (2012) J. Biol. Chem. , vol.287 , pp. 27049
    • Nierhaus, K.H.1    Pech, M.2
  • 154
    • 58249104517 scopus 로고    scopus 로고
    • A role for the 30S subunit e site in maintenance of the translational reading frame
    • Devaraj A, Shoji S, Holbrook ED, Fredrick K. 2009. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15:255-65
    • (2009) RNA , vol.15 , pp. 255-265
    • Devaraj, A.1    Shoji, S.2    Holbrook, E.D.3    Fredrick, K.4
  • 155
    • 84886634813 scopus 로고
    • Factor-free ("nonenzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes
    • Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS. 1976. Factor-free ("nonenzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol. 101:537-52
    • (1976) J. Mol. Biol. , vol.101 , pp. 537-552
    • Gavrilova, L.P.1    Kostiashkina, O.E.2    Koteliansky, V.E.3    Rutkevitch, N.M.4    Spirin, A.S.5
  • 156
    • 0028812785 scopus 로고
    • Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog
    • Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, et al. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464-72
    • (1995) Science , vol.270 , pp. 1464-1472
    • Nissen, P.1    Kjeldgaard, M.2    Thirup, S.3    Polekhina, G.4    Reshetnikova, L.5
  • 157
    • 0032568584 scopus 로고    scopus 로고
    • Visualization of elongation factor G on the Escherichia coli 70S ribosome: The mechanism of translocation
    • Agrawal RK, Penczek P, Grassucci RA, Frank J. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95:6134-38
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 6134-6138
    • Agrawal, R.K.1    Penczek, P.2    Grassucci, R.A.3    Frank, J.4
  • 158
    • 33644798018 scopus 로고    scopus 로고
    • The hybrid state of tRNA binding is an authentic translation elongation intermediate
    • Dorner S, Brunelle JL, Sharma D, Green R. 2006. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol. 13:234-41
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 234-241
    • Dorner, S.1    Brunelle, J.L.2    Sharma, D.3    Green, R.4
  • 159
    • 34548339675 scopus 로고    scopus 로고
    • Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome
    • Spiegel PC, Ermolenko DN, Noller HF. 2007. Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA 13:1473-82
    • (2007) RNA , vol.13 , pp. 1473-1482
    • Spiegel, P.C.1    Ermolenko, D.N.2    Noller, H.F.3
  • 161
    • 79955494464 scopus 로고    scopus 로고
    • Single-molecule fluorescence measurements of ribosomal translocation dynamics. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors
    • Chen C, Stevens B, Kaur J, Cabral D, Liu H, et al. 2011. Single-molecule fluorescence measurements of ribosomal translocation dynamics. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 42:367-77
    • (2011) Mol. Cell , vol.42 , pp. 367-377
    • Chen, C.1    Stevens, B.2    Kaur, J.3    Cabral, D.4    Liu, H.5
  • 162
    • 33847358277 scopus 로고    scopus 로고
    • Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors
    • Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, et al. 2007. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25:751-64
    • (2007) Mol. Cell , vol.25 , pp. 751-764
    • Connell, S.R.1    Takemoto, C.2    Wilson, D.N.3    Wang, H.4    Murayama, K.5
  • 163
    • 0031028688 scopus 로고    scopus 로고
    • Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome
    • Rodnina MV, Savelsbergh A, Katunin VI, Wintermeyer W. 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385:37-41
    • (1997) Nature , vol.385 , pp. 37-41
    • Rodnina, M.V.1    Savelsbergh, A.2    Katunin, V.I.3    Wintermeyer, W.4
  • 165
    • 77954383845 scopus 로고    scopus 로고
    • Following the intersubunit conformation of the ribosome during translation in real time
    • Aitken CE, Puglisi JD. 2010. Following the intersubunit conformation of the ribosome during translation in real time. Nat. Struct. Mol. Biol. 17:793-800
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 793-800
    • Aitken, C.E.1    Puglisi, J.D.2
  • 166
    • 84861381646 scopus 로고    scopus 로고
    • How should we think about the ribosome?
    • Moore PB. 2012. How should we think about the ribosome? Annu. Rev. Biophys. 41:1-19
    • (2012) Annu. Rev. Biophys. , vol.41 , pp. 1-19
    • Moore, P.B.1
  • 167
    • 41149155366 scopus 로고    scopus 로고
    • Following translation by single ribosomes one codon at a time
    • Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH, et al. 2008. Following translation by single ribosomes one codon at a time. Nature 452:598-603
    • (2008) Nature , vol.452 , pp. 598-603
    • Wen, J.D.1    Lancaster, L.2    Hodges, C.3    Zeri, A.C.4    Yoshimura, S.H.5
  • 171
    • 77949266567 scopus 로고    scopus 로고
    • The structures of the antituberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome
    • Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA. 2010. The structures of the antituberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol. 17:289-93
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 289-293
    • Stanley, R.E.1    Blaha, G.2    Grodzicki, R.L.3    Strickler, M.D.4    Steitz, T.A.5
  • 172
    • 70350602056 scopus 로고    scopus 로고
    • The structure of the ribosome with elongation factor G trapped in the posttranslocational state
    • Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. 2009. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694-99
    • (2009) Science , vol.326 , pp. 694-699
    • Gao, Y.G.1    Selmer, M.2    Dunham, C.M.3    Weixlbaumer, A.4    Kelley, A.C.5    Ramakrishnan, V.6
  • 173
    • 0020134907 scopus 로고
    • Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: Immune mapping of the nascent chain
    • Bernabeu C, Lake JA. 1982. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc. Natl. Acad. Sci. USA 79:3111-15
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 3111-3115
    • Bernabeu, C.1    Lake, J.A.2
  • 174
    • 0022588613 scopus 로고
    • Location of exit channel for nascent protein in 80S ribosome
    • Milligan RA, Unwin PN. 1986. Location of exit channel for nascent protein in 80S ribosome. Nature 319:693-95
    • (1986) Nature , vol.319 , pp. 693-695
    • Milligan, R.A.1    Unwin, P.N.2
  • 175
    • 0023212383 scopus 로고
    • A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction
    • Yonath A, Leonard KR, Wittmann HG. 1987. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236:813-16
    • (1987) Science , vol.236 , pp. 813-816
    • Yonath, A.1    Leonard, K.R.2    Wittmann, H.G.3
  • 176
    • 0029100747 scopus 로고
    • A model of protein synthesis based on cryoelectron microscopy of the E. coli ribosome
    • Frank J, Zhu J, Penczek P, Li Y, Srivastava S, et al. 1995. A model of protein synthesis based on cryoelectron microscopy of the E. coli ribosome. Nature 376:441-44
    • (1995) Nature , vol.376 , pp. 441-444
    • Frank, J.1    Zhu, J.2    Penczek, P.3    Li, Y.4    Srivastava, S.5
  • 179
    • 0037040406 scopus 로고    scopus 로고
    • Regulatory nascent peptides in the ribosomal tunnel
    • Tenson T, Ehrenberg M. 2002. Regulatory nascent peptides in the ribosomal tunnel. Cell 108:591-94
    • (2002) Cell , vol.108 , pp. 591-594
    • Tenson, T.1    Ehrenberg, M.2
  • 180
    • 0037072627 scopus 로고    scopus 로고
    • Instruction of translating ribosome by nascent peptide
    • Gong F, Yanofsky C. 2002. Instruction of translating ribosome by nascent peptide. Science 297:1864-67
    • (2002) Science , vol.297 , pp. 1864-1867
    • Gong, F.1    Yanofsky, C.2
  • 181
    • 71549124362 scopus 로고    scopus 로고
    • Structural insight into nascent polypeptide chain-mediated translational stalling
    • Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, et al. 2009. Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326:1412-15
    • (2009) Science , vol.326 , pp. 1412-1415
    • Seidelt, B.1    Innis, C.A.2    Wilson, D.N.3    Gartmann, M.4    Armache, J.P.5
  • 185
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead CA, McCormick PJ, Johnson AE. 2004. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725-36
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.A.1    McCormick, P.J.2    Johnson, A.E.3
  • 186
    • 77957233636 scopus 로고    scopus 로고
    • The conformation of a nascent polypeptide inside the ribosome tunnel affects protein targeting and protein folding
    • Peterson JH, Woolhead CA, Bernstein HD. 2010. The conformation of a nascent polypeptide inside the ribosome tunnel affects protein targeting and protein folding. Mol. Microbiol. 78:203-17
    • (2010) Mol. Microbiol. , vol.78 , pp. 203-217
    • Peterson, J.H.1    Woolhead, C.A.2    Bernstein, H.D.3
  • 187
    • 84255195557 scopus 로고    scopus 로고
    • Macrolide antibiotics in the ribosome exit tunnel: Species-specific binding and action
    • Kannan K, Mankin AS. 2011. Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann. N. Y. Acad. Sci. 1241:33-47
    • (2011) Ann. N. Y. Acad. Sci. , vol.1241 , pp. 33-47
    • Kannan, K.1    Mankin, A.S.2
  • 188
    • 0034406527 scopus 로고    scopus 로고
    • Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin
    • Poulsen SM, Kofoed C, Vester B. 2000. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J. Mol. Biol. 304:471-81
    • (2000) J. Mol. Biol. , vol.304 , pp. 471-481
    • Poulsen, S.M.1    Kofoed, C.2    Vester, B.3
  • 189
    • 62649162761 scopus 로고    scopus 로고
    • Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency
    • Lovmar M, Nilsson K, Lukk E, Vimberg V, Tenson T, Ehrenberg M. 2009. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. EMBO J. 28:736-44
    • (2009) EMBO J. , vol.28 , pp. 736-744
    • Lovmar, M.1    Nilsson, K.2    Lukk, E.3    Vimberg, V.4    Tenson, T.5    Ehrenberg, M.6
  • 190
    • 0035950132 scopus 로고    scopus 로고
    • Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria
    • Schlünzen F, Zarivach R, Harms R, Bashan A, Tocilj A, et al. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:81421
    • (2001) Nature , vol.413 , pp. 81421
    • Schlünzen, F.Z.1
  • 191
    • 0038013670 scopus 로고    scopus 로고
    • Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit
    • Hansen JL, Moore PB, Steitz TA. 2003. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330:1061-75
    • (2003) J. Mol. Biol. , vol.330 , pp. 1061-1075
    • Hansen, J.L.1    Moore, P.B.2    Steitz, T.A.3
  • 192
    • 17444421169 scopus 로고    scopus 로고
    • Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance
    • Tu D, Blaha G, Moore PB, Steitz TA. 2005. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257-70
    • (2005) Cell , vol.121 , pp. 257-270
    • Tu, D.1    Blaha, G.2    Moore, P.B.3    Steitz, T.A.4
  • 193
    • 78049250815 scopus 로고    scopus 로고
    • Revisiting the structures of several antibiotics bound to the bacterial ribosome
    • Bulkley D, Innis CA, Blaha G, Steitz TA. 2010. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl. Acad. Sci. USA 107:17158-63
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 17158-17163
    • Bulkley, D.1    Innis, C.A.2    Blaha, G.3    Steitz, T.A.4
  • 194
    • 78049302075 scopus 로고    scopus 로고
    • Structures of the Escherichia coli ribosomewith antibiotics bound near the peptidyl transferase center explain spectra of drug action
    • Dunkle JA, Xiong L, Mankin AS, Cate JH. 2010. Structures of the Escherichia coli ribosomewith antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA 107:17152-57
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 17152-17157
    • Dunkle, J.A.1    Xiong, L.2    Mankin, A.S.3    Cate, J.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.