메뉴 건너뛰기




Volumn 1241, Issue 1, 2011, Pages 33-47

Macrolide antibiotics in the ribosome exit tunnel: Species-specific binding and action

Author keywords

Macrolide; Nascent peptide exit tunnel; Posttranscriptional modifications; Protein synthesis; Ribosome

Indexed keywords

ALKYL GROUP; AZITHROMYCIN; CARBOMYCIN; DIMETHYL SULFATE; ERYTHROMYCIN; JOSAMYCIN; KETOLIDE; MACROLIDE; PEPTIDYLTRANSFERASE; POLYPEPTIDE; RIBOSOME PROTEIN; RNA 23S; SPIRAMYCIN; TELITHROMYCIN; TETRACYCLINE; TROLEANDOMYCIN;

EID: 84255195557     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2011.06315.x     Document Type: Article
Times cited : (89)

References (75)
  • 2
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution
    • Ban, N., P. Nissen, J. Hansen, et al 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905-920.
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1    Nissen, P.2    Hansen, J.3
  • 4
    • 0034406527 scopus 로고    scopus 로고
    • Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin
    • Poulsen, S.M., C. Kofoed & B. Vester 2000. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J. Mol. Biol. 304: 471-481.
    • (2000) J. Mol. Biol. , vol.304 , pp. 471-481
    • Poulsen, S.M.1    Kofoed, C.2    Vester, B.3
  • 5
    • 0023604799 scopus 로고
    • Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA
    • Moazed, D. & H.F. Noller 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69: 879-884.
    • (1987) Biochimie , vol.69 , pp. 879-884
    • Moazed, D.1    Noller, H.F.2
  • 6
    • 0022357291 scopus 로고
    • Components of the macrolide binding site on the ribosome
    • Tejedor, F. & J.P. Ballesta 1985. Components of the macrolide binding site on the ribosome. J. Antimicrob. Chemother. 16(Suppl A): 53-62.
    • (1985) J. Antimicrob. Chemother. , vol.16 , Issue.SUPPL. A , pp. 53-62
    • Tejedor, F.1    Ballesta, J.P.2
  • 7
    • 0032950956 scopus 로고    scopus 로고
    • The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA
    • Hansen, L.H., P. Mauvais & S. Douthwaite 1999. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31: 623-631.
    • (1999) Mol. Microbiol. , vol.31 , pp. 623-631
    • Hansen, L.H.1    Mauvais, P.2    Douthwaite, S.3
  • 8
    • 0032904341 scopus 로고    scopus 로고
    • A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre
    • Xiong, L., S. Shah, P. Mauvais & A.S. Mankin 1999. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol. 31: 633-639.
    • (1999) Mol. Microbiol. , vol.31 , pp. 633-639
    • Xiong, L.1    Shah, S.2    Mauvais, P.3    Mankin, A.S.4
  • 9
    • 0015745765 scopus 로고
    • Biochemical and genetic studies on two different types of erythromycin resistant mutants ofEscherichia coliwith altered ribosomal proteins
    • Wittmann, H. G., G. Stöffler, D. Apirion, et al 1973. Biochemical and genetic studies on two different types of erythromycin resistant mutants ofEscherichia coliwith altered ribosomal proteins. Mol. Gen. Genet. 127: 175-189.
    • (1973) Mol. Gen. Genet. , vol.127 , pp. 175-189
    • Wittmann, H.G.1    Stöffler, G.2    Apirion, D.3
  • 10
    • 34250414642 scopus 로고
    • Genetic studies of erythromycin resistant mutants ofEscherichia coli
    • Pardo, D., and R. Rosset 1974. Genetic studies of erythromycin resistant mutants ofEscherichia coli. Mol. Gen. Genet. 135: 257-268.
    • (1974) Mol. Gen. Genet. , vol.135 , pp. 257-268
    • Pardo, D.1    Rosset, R.2
  • 11
    • 0343417099 scopus 로고
    • Erythromycin resistance due to a mutation in a ribosomal RNA operon ofEscherichia coli
    • Sigmund, C.D. & E.A. Morgan 1982. Erythromycin resistance due to a mutation in a ribosomal RNA operon ofEscherichia coli. Proc. Natl. Acad. Sci. USA 79: 5602-5606.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 5602-5606
    • Sigmund, C.D.1    Morgan, E.A.2
  • 12
    • 0021888455 scopus 로고
    • Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene ofEscherichia coli
    • Ettayebi, M., S.M. Prasad & E.A. Morgan 1985. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene ofEscherichia coli. J. Bacteriol. 162: 551-557.
    • (1985) J. Bacteriol. , vol.162 , pp. 551-557
    • Ettayebi, M.1    Prasad, S.M.2    Morgan, E.A.3
  • 13
    • 0028148698 scopus 로고
    • Ribosomal protein gene sequence changes in erythromycin-resistant mutants ofEscherichia coli
    • Chittum, H.S. & W.S. Champney 1994. Ribosomal protein gene sequence changes in erythromycin-resistant mutants ofEscherichia coli. J. Bacteriol. 176: 6192-6198.
    • (1994) J. Bacteriol. , vol.176 , pp. 6192-6198
    • Chittum, H.S.1    Champney, W.S.2
  • 14
    • 0023587832 scopus 로고
    • A plasmid-coded and site-directed mutation inEscherichia coli23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin
    • Vester, B. & R.A. Garrett 1987. A plasmid-coded and site-directed mutation inEscherichia coli23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie 69: 891-900.
    • (1987) Biochimie , vol.69 , pp. 891-900
    • Vester, B.1    Garrett, R.A.2
  • 15
    • 0023139432 scopus 로고
    • 23S ribosomal RNA mutations in halobacteria conferring resistance to the anti-80S ribosome targeted antibiotic anisomycin
    • Hummel, H. & A. Bock 1987. 23S ribosomal RNA mutations in halobacteria conferring resistance to the anti-80S ribosome targeted antibiotic anisomycin. Nucl. Acids Res. 15: 2431-2443.
    • (1987) Nucl. Acids Res. , vol.15 , pp. 2431-2443
    • Hummel, H.1    Bock, A.2
  • 16
    • 0025892855 scopus 로고
    • Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeonHalobacterium halobium
    • Mankin, A.S. & R.A. Garrett 1991. Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeonHalobacterium halobium. J. Bacteriol. 173: 3559-3563.
    • (1991) J. Bacteriol. , vol.173 , pp. 3559-3563
    • Mankin, A.S.1    Garrett, R.A.2
  • 17
    • 0028100019 scopus 로고
    • Resistance to drugs targeting protein synthesis in mycobacteria
    • Bottger, E.C. 1994. Resistance to drugs targeting protein synthesis in mycobacteria. Trends Microbiol. 2: 416-421.
    • (1994) Trends Microbiol. , vol.2 , pp. 416-421
    • Bottger, E.C.1
  • 18
    • 0035950132 scopus 로고    scopus 로고
    • Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria
    • Schlunzen, F., R. Zarivach, J. Harms, et al 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413: 814-821.
    • (2001) Nature , vol.413 , pp. 814-821
    • Schlunzen, F.1    Zarivach, R.2    Harms, J.3
  • 19
    • 0036342198 scopus 로고    scopus 로고
    • The structures of four macrolide antibiotics bound to the large ribosomal subunit
    • Hansen, J.L., J.A. Ippolito, N. Ban, et al 2002. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10: 117-128.
    • (2002) Mol. Cell , vol.10 , pp. 117-128
    • Hansen, J.L.1    Ippolito, J.A.2    Ban, N.3
  • 20
    • 78049250815 scopus 로고    scopus 로고
    • Revisiting the structures of several antibiotics bound to the bacterial ribosome
    • Bulkley, D., C.A. Innis, G. Blaha & T.A. Steitz 2010. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl. Acad. Sci. USA 107: 17158-17163.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 17158-17163
    • Bulkley, D.1    Innis, C.A.2    Blaha, G.3    Steitz, T.A.4
  • 21
    • 78049302075 scopus 로고    scopus 로고
    • Structures of theEscherichia coliribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action
    • Dunkle, J.A., L. Xiong, A.S. Mankin & J.H. Cate 2010. Structures of theEscherichia coliribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA 107: 17152-17157.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 17152-17157
    • Dunkle, J.A.1    Xiong, L.2    Mankin, A.S.3    Cate, J.H.4
  • 22
    • 77649339337 scopus 로고    scopus 로고
    • CEM-101, a novel fluoroketolide: antimicrobial activity against a diverse collection of Gram-positive and Gram-negative bacteria
    • Putnam, S.D., M. Castanheira, G.J. Moet, et al 2010. CEM-101, a novel fluoroketolide: antimicrobial activity against a diverse collection of Gram-positive and Gram-negative bacteria. Diagn. Microbiol. Infect. Dis. 66: 393-401.
    • (2010) Diagn. Microbiol. Infect. Dis. , vol.66 , pp. 393-401
    • Putnam, S.D.1    Castanheira, M.2    Moet, G.J.3
  • 23
    • 78649681337 scopus 로고    scopus 로고
    • Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis
    • Llano-Sotelo, B., J. Dunkle, D. Klepacki, et al 2010. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother. 54: 4961-4970.
    • (2010) Antimicrob. Agents Chemother. , vol.54 , pp. 4961-4970
    • Llano-Sotelo, B.1    Dunkle, J.2    Klepacki, D.3
  • 24
    • 0028963496 scopus 로고
    • Erythromycin resistance by ribosome modification
    • Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39: 577-585.
    • (1995) Antimicrob. Agents Chemother. , vol.39 , pp. 577-585
    • Weisblum, B.1
  • 25
    • 79960578029 scopus 로고    scopus 로고
    • Role of antibiotic ligand in nascent peptide-dependent ribosome stalling
    • Vazquez-Laslop, N., D. Klepacki, D.C. Mulhearn, et al 2011. Role of antibiotic ligand in nascent peptide-dependent ribosome stalling. Proc. Natl. Acad. Sci. USA 108: 10496-10501.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 10496-10501
    • Vazquez-Laslop, N.1    Klepacki, D.2    Mulhearn, D.C.3
  • 26
    • 0037069328 scopus 로고    scopus 로고
    • Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy
    • Liu, M. & S. Douthwaite 2002. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc. Natl. Acad. Sci. USA 99: 14658-14663.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 14658-14663
    • Liu, M.1    Douthwaite, S.2
  • 27
    • 34250629636 scopus 로고    scopus 로고
    • Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel
    • Pyetan, E., D. Baram, T. Auerbach-Nevo & A. Yonath 2007. Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel. Pure Appl. Chem. 79, 955-968.
    • (2007) Pure Appl. Chem. , vol.79 , pp. 955-968
    • Pyetan, E.1    Baram, D.2    Auerbach-Nevo, T.3    Yonath, A.4
  • 28
    • 77954185197 scopus 로고    scopus 로고
    • Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition
    • Starosta, A.L., V.V. Karpenko, A.V. Shishkina, et al 2010. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. Chem. Biol. 17: 504-514.
    • (2010) Chem. Biol. , vol.17 , pp. 504-514
    • Starosta, A.L.1    Karpenko, V.V.2    Shishkina, A.V.3
  • 29
    • 57449088414 scopus 로고    scopus 로고
    • Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22
    • Moore, S.D. & R.T. Sauer 2008. Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22. Proc. Natl. Acad. Sci. USA 105: 18261-18266.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 18261-18266
    • Moore, S.D.1    Sauer, R.T.2
  • 30
    • 62649162761 scopus 로고    scopus 로고
    • Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency
    • Lovmar, M., K. Nilsson, E. Lukk, et al 2009. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. EMBO J. 28: 736-744.
    • (2009) EMBO J , vol.28 , pp. 736-744
    • Lovmar, M.1    Nilsson, K.2    Lukk, E.3
  • 31
    • 0016710554 scopus 로고
    • Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A
    • Otaka, T. & A. Kaji 1975. Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A. Proc. Natl. Acad. Sci. USA 72: 2649-2652.
    • (1975) Proc. Natl. Acad. Sci. USA , vol.72 , pp. 2649-2652
    • Otaka, T.1    Kaji, A.2
  • 32
    • 0020322533 scopus 로고
    • Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes
    • Menninger, J.R. & D.P. Otto 1982. Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes. Antimicrob. Agents Chemother. 21: 811-818.
    • (1982) Antimicrob. Agents Chemother. , vol.21 , pp. 811-818
    • Menninger, J.R.1    Otto, D.P.2
  • 33
    • 0038690158 scopus 로고    scopus 로고
    • The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome
    • Tenson, T., M. Lovmar & M. Ehrenberg 2003. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 330: 1005-1014.
    • (2003) J. Mol. Biol. , vol.330 , pp. 1005-1014
    • Tenson, T.1    Lovmar, M.2    Ehrenberg, M.3
  • 34
    • 11144238888 scopus 로고    scopus 로고
    • Kinetics of macrolide action: the josamycin and erythromycin cases
    • Lovmar, M., T. Tenson & M. Ehrenberg 2004. Kinetics of macrolide action: the josamycin and erythromycin cases. J. Biol. Chem. 279: 53506-53515.
    • (2004) J. Biol. Chem. , vol.279 , pp. 53506-53515
    • Lovmar, M.1    Tenson, T.2    Ehrenberg, M.3
  • 35
    • 0023545284 scopus 로고
    • Elongating ribosomes in vivo are refractory to erythromycin
    • Andersson, S. & C.G. Kurland 1987. Elongating ribosomes in vivo are refractory to erythromycin. Biochimie 69: 901-904.
    • (1987) Biochimie , vol.69 , pp. 901-904
    • Andersson, S.1    Kurland, C.G.2
  • 36
    • 33646574678 scopus 로고    scopus 로고
    • The molecular mechanism of peptide-mediated erythromycin resistance
    • Lovmar, M., K. Nilsson, V. Vimberg, et al 2006. The molecular mechanism of peptide-mediated erythromycin resistance. J. Biol. Chem. 281: 6742-6750.
    • (2006) J. Biol. Chem. , vol.281 , pp. 6742-6750
    • Lovmar, M.1    Nilsson, K.2    Vimberg, V.3
  • 37
    • 0030748654 scopus 로고    scopus 로고
    • Erythromycin resistance peptides selected from random peptide libraries
    • Tenson, T., L. Xiong, P. Kloss & A.S. Mankin 1997. Erythromycin resistance peptides selected from random peptide libraries. J. Biol. Chem. 272: 17425-17430.
    • (1997) J. Biol. Chem. , vol.272 , pp. 17425-17430
    • Tenson, T.1    Xiong, L.2    Kloss, P.3    Mankin, A.S.4
  • 38
    • 0032493758 scopus 로고    scopus 로고
    • Ketolide resistance conferred by short peptides
    • Tripathi, S., P.S. Kloss & A.S. Mankin 1998. Ketolide resistance conferred by short peptides. J. Biol. Chem. 273: 20073-20077.
    • (1998) J. Biol. Chem. , vol.273 , pp. 20073-20077
    • Tripathi, S.1    Kloss, P.S.2    Mankin, A.S.3
  • 39
    • 17444421169 scopus 로고    scopus 로고
    • BK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance
    • BK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121: 257-270.
    • (2005) Cell , vol.121 , pp. 257-270
    • Tu, D.1    Blaha, G.2    Moore, P.B.3    Steitz, T.A.4
  • 40
    • 9644265316 scopus 로고    scopus 로고
    • Effects of a number of classes of 50S inhibitors on stop codon readthrough during protein synthesis
    • Thompson, J., C.A. Pratt & A.E. Dahlberg 2004. Effects of a number of classes of 50S inhibitors on stop codon readthrough during protein synthesis. Antimicrob. Agents Chemother. 48: 4889-4891.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 4889-4891
    • Thompson, J.1    Pratt, C.A.2    Dahlberg, A.E.3
  • 41
    • 0036617086 scopus 로고    scopus 로고
    • Inhibition of 50S ribosomal subunit assembly inHaemophilus influenzaecells by azithromycin and erythromycin
    • Champney, W.S. & M. Miller 2002. Inhibition of 50S ribosomal subunit assembly inHaemophilus influenzaecells by azithromycin and erythromycin. Curr. Microbiol. 44: 418-424.
    • (2002) Curr. Microbiol. , vol.44 , pp. 418-424
    • Champney, W.S.1    Miller, M.2
  • 42
    • 59749083182 scopus 로고    scopus 로고
    • Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition
    • Siibak, T., L. Peil, L. Xiong, et al 2009. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob. Agents Chemother. 53: 563-571.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 563-571
    • Siibak, T.1    Peil, L.2    Xiong, L.3
  • 43
    • 0025739922 scopus 로고
    • Nuclear magnetic resonance studies on the mode of action of erythromycin A
    • Gyi, J.I. & J. Barber 1991. Nuclear magnetic resonance studies on the mode of action of erythromycin A. Biochem. Soc. Trans. 19: 313S.
    • (1991) Biochem. Soc. Trans. , vol.19
    • Gyi, J.I.1    Barber, J.2
  • 44
    • 0030722151 scopus 로고    scopus 로고
    • Solid-state investigations of erythromycin A dihydrate: structure, NMR spectroscopy, and hygroscopicity
    • Stephenson, G.A., J.G. Stowell, P.H. Toma, et al 1997. Solid-state investigations of erythromycin A dihydrate: structure, NMR spectroscopy, and hygroscopicity. J. Pharm. Sci. 86: 1239-1244.
    • (1997) J. Pharm. Sci. , vol.86 , pp. 1239-1244
    • Stephenson, G.A.1    Stowell, J.G.2    Toma, P.H.3
  • 45
    • 29044436081 scopus 로고    scopus 로고
    • Species-specific antibiotic-ribosome interactions: implications for drug development
    • Wilson, D.N., J.M. Harms, K.H. Nierhaus, et al 2005. Species-specific antibiotic-ribosome interactions: implications for drug development. Biol. Chem. 386: 1239-1252.
    • (2005) Biol. Chem. , vol.386 , pp. 1239-1252
    • Wilson, D.N.1    Harms, J.M.2    Nierhaus, K.H.3
  • 46
    • 0036137010 scopus 로고    scopus 로고
    • Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin inStreptococcus pneumoniae
    • Canu, A., B. Malbruny, M. Coquemont, et al 2002. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin inStreptococcus pneumoniae. Antimicrob. Agents Chemother. 46: 125-131.
    • (2002) Antimicrob. Agents Chemother. , vol.46 , pp. 125-131
    • Canu, A.1    Malbruny, B.2    Coquemont, M.3
  • 47
    • 0038492422 scopus 로고    scopus 로고
    • Structural insight into the antibiotic action of telithromycin against resistant mutants
    • Berisio, R., J. Harms, F. Schluenzen, et al 2003. Structural insight into the antibiotic action of telithromycin against resistant mutants. J. Bacteriol. 185: 4276-4279.
    • (2003) J. Bacteriol. , vol.185 , pp. 4276-4279
    • Berisio, R.1    Harms, J.2    Schluenzen, F.3
  • 48
    • 0037334850 scopus 로고    scopus 로고
    • Structural basis for the antibiotic activity of ketolides and azalides
    • Schlunzen, F., J.M. Harms, F. Franceschi, et al 2003. Structural basis for the antibiotic activity of ketolides and azalides. Structure 11: 329-338.
    • (2003) Structure , vol.11 , pp. 329-338
    • Schlunzen, F.1    Harms, J.M.2    Franceschi, F.3
  • 49
    • 34547696927 scopus 로고    scopus 로고
    • Structural basis for aminoglycoside inhibition of bacterial ribosome recycling
    • Borovinskaya, M.A., R.D. Pai, W. Zhang, et al 2007. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Biol. 14: 727-732.
    • (2007) Nat. Struct. Biol. , vol.14 , pp. 727-732
    • Borovinskaya, M.A.1    Pai, R.D.2    Zhang, W.3
  • 50
    • 17744377418 scopus 로고    scopus 로고
    • Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3
    • Pioletti, M., F. Schlunzen, J. Harms, et al 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20: 1829-1839.
    • (2001) EMBO J , vol.20 , pp. 1829-1839
    • Pioletti, M.1    Schlunzen, F.2    Harms, J.3
  • 51
    • 0034704217 scopus 로고    scopus 로고
    • The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit
    • Brodersen, D.E., W.M. Clemons, Jr, A.P. Carter, et al 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103: 1143-1154.
    • (2000) Cell , vol.103 , pp. 1143-1154
    • Brodersen, D.E.1    Clemons Jr, W.M.2    Carter, A.P.3
  • 52
    • 33745628037 scopus 로고    scopus 로고
    • The geometry of the ribosomal polypeptide exit tunnel
    • Voss, N.R., M. Gerstein, T.A. Steitz & P.B. Moore 2006. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360: 893-906.
    • (2006) J. Mol. Biol. , vol.360 , pp. 893-906
    • Voss, N.R.1    Gerstein, M.2    Steitz, T.A.3    Moore, P.B.4
  • 53
    • 78049449160 scopus 로고    scopus 로고
    • Structural signatures of antibiotic binding sites on the ribosome
    • David-Eden, H., A.S. Mankin & Y. Mandel-Gutfreund 2010. Structural signatures of antibiotic binding sites on the ribosome. Nucl. Acids Res. 38: 5982-5994.
    • (2010) Nucl. Acids Res. , vol.38 , pp. 5982-5994
    • David-Eden, H.1    Mankin, A.S.2    Mandel-Gutfreund, Y.3
  • 54
    • 58149326730 scopus 로고    scopus 로고
    • Time-resolved binding of azithromycin toEscherichia coliribosomes
    • Petropoulos, A.D., E.C. Kouvela, A.L. Starosta, et al 2009. Time-resolved binding of azithromycin toEscherichia coliribosomes. J. Mol. Biol. 385: 1179-1192.
    • (2009) J. Mol. Biol. , vol.385 , pp. 1179-1192
    • Petropoulos, A.D.1    Kouvela, E.C.2    Starosta, A.L.3
  • 55
    • 84255197120 scopus 로고    scopus 로고
    • 43rd Intersci. Conf. Antimicrob. Agents Chemother.Abstract F-1193
    • Wang, G., Y. Qiu, D. Niu, et al 43rd Intersci. Conf. Antimicrob. Agents Chemother.Abstract F-1193, 2003.
    • (2003)
    • Wang, G.1    Qiu, Y.2    Niu, D.3
  • 56
    • 11244307407 scopus 로고    scopus 로고
    • Binding site of the bridged macrolides in theEscherichia coliribosome
    • Xiong, L., Y. Korkhin & A.S. Mankin 2005. Binding site of the bridged macrolides in theEscherichia coliribosome. Antimicrob. Agents Chemother. 49: 281-288.
    • (2005) Antimicrob. Agents Chemother. , vol.49 , pp. 281-288
    • Xiong, L.1    Korkhin, Y.2    Mankin, A.S.3
  • 57
    • 0037407668 scopus 로고    scopus 로고
    • Structural insight into the role of the ribosomal tunnel in cellular regulation
    • Berisio, R., F. Schluenzen, J. Harms, et al 2003. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Biol. 10: 366-370.
    • (2003) Nat. Struct. Biol. , vol.10 , pp. 366-370
    • Berisio, R.1    Schluenzen, F.2    Harms, J.3
  • 58
    • 71249162369 scopus 로고    scopus 로고
    • Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit ofHaloarcula marismortui
    • Gurel, G., G. Blaha, T.A. Steitz & P.B. Moore 2009. Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit ofHaloarcula marismortui. Antimicrob. Agents Chemother. 53: 5010-5014.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 5010-5014
    • Gurel, G.1    Blaha, G.2    Steitz, T.A.3    Moore, P.B.4
  • 59
    • 0035160878 scopus 로고    scopus 로고
    • Macrolide resistance conferred by base substitutions in 23S rRNA
    • Vester, B. & S. Douthwaite 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45: 1-12.
    • (2001) Antimicrob. Agents Chemother. , vol.45 , pp. 1-12
    • Vester, B.1    Douthwaite, S.2
  • 60
    • 0012633768 scopus 로고    scopus 로고
    • Macrolide resistance by ribosomal mutation in clinical isolates ofStreptococcus pneumoniaefrom the PROTEKT 1999-2000 study
    • Farrell, D.J., S. Douthwaite, I. Morrissey, et al 2003. Macrolide resistance by ribosomal mutation in clinical isolates ofStreptococcus pneumoniaefrom the PROTEKT 1999-2000 study. Antimicrob. Agents Chemother. 47: 1777-1783.
    • (2003) Antimicrob. Agents Chemother. , vol.47 , pp. 1777-1783
    • Farrell, D.J.1    Douthwaite, S.2    Morrissey, I.3
  • 61
    • 17044425907 scopus 로고    scopus 로고
    • 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A->G
    • Pfister, P., N. Corti & S. Hobbie 2005. 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A->G. Proc. Natl. Acad. Sci. USA 102: 5180-5185.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5180-5185
    • Pfister, P.1    Corti, N.2    Hobbie, S.3
  • 63
    • 0031683997 scopus 로고    scopus 로고
    • Explaining the bias in the 23S rRNA gene mutations associated with clarithromycin resistance in clinical isolates ofHelicobacter pylori
    • Debets-Ossenkopp, Y.J., A.B. Brinkman, E.J. Kuipers, et al 1998. Explaining the bias in the 23S rRNA gene mutations associated with clarithromycin resistance in clinical isolates ofHelicobacter pylori. Antimicrob. Agents Chemother. 42: 2749-2751.
    • (1998) Antimicrob. Agents Chemother. , vol.42 , pp. 2749-2751
    • Debets-Ossenkopp, Y.J.1    Brinkman, A.B.2    Kuipers, E.J.3
  • 64
    • 0030834006 scopus 로고    scopus 로고
    • Macrolide resistance inHelicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes
    • Occhialini, A., M. Urdaci, F. Doucet-Populaire, et al 1997. Macrolide resistance inHelicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob. Agents Chemother. 41: 2724-2728.
    • (1997) Antimicrob. Agents Chemother. , vol.41 , pp. 2724-2728
    • Occhialini, A.1    Urdaci, M.2    Doucet-Populaire, F.3
  • 65
    • 0021760461 scopus 로고
    • Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes ofEscherichia coli
    • Sigmund, C.D., M. Ettayebi & E.A. Morgan 1984. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes ofEscherichia coli. Nucl. Acids Res. 12: 4653-4663.
    • (1984) Nucl. Acids Res. , vol.12 , pp. 4653-4663
    • Sigmund, C.D.1    Ettayebi, M.2    Morgan, E.A.3
  • 68
    • 0033516555 scopus 로고    scopus 로고
    • Functional effect of deletion and mutation of theEscherichia coliribosomal RNA and tRNA pseudouridine synthase RluA
    • Raychaudhuri, S., L. Niu, J. Conrad, et al 1999. Functional effect of deletion and mutation of theEscherichia coliribosomal RNA and tRNA pseudouridine synthase RluA. J. Biol. Chem. 274: 18880-18886.
    • (1999) J. Biol. Chem. , vol.274 , pp. 18880-18886
    • Raychaudhuri, S.1    Niu, L.2    Conrad, J.3
  • 69
    • 33746821849 scopus 로고    scopus 로고
    • Modifications inThermus thermophilus23 S ribosomal RNA are centered in regions of RNA-RNA contact
    • Mengel-Jorgensen, J., S.S. Jensen, A. Rasmussen, et al 2006. Modifications inThermus thermophilus23 S ribosomal RNA are centered in regions of RNA-RNA contact. J. Biol. Chem. 281: 22108-22117.
    • (2006) J. Biol. Chem. , vol.281 , pp. 22108-22117
    • Mengel-Jorgensen, J.1    Jensen, S.S.2    Rasmussen, A.3
  • 70
    • 1842471295 scopus 로고    scopus 로고
    • The tylosin-resistance methyltransferase RlmA(II) (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748
    • Douthwaite, S., P.F. Crain, M. Liu & J. Poehlsgaard 2004. The tylosin-resistance methyltransferase RlmA(II) (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748. J. Mol. Biol. 337: 1073-1077.
    • (2004) J. Mol. Biol. , vol.337 , pp. 1073-1077
    • Douthwaite, S.1    Crain, P.F.2    Liu, M.3    Poehlsgaard, J.4
  • 71
    • 0033014076 scopus 로고    scopus 로고
    • Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23S ribosomal RNA
    • Gregory, S.T. & A.E. Dahlberg 1999. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23S ribosomal RNA. J. Mol. Biol. 289: 827-834.
    • (1999) J. Mol. Biol. , vol.289 , pp. 827-834
    • Gregory, S.T.1    Dahlberg, A.E.2
  • 72
    • 45649083395 scopus 로고    scopus 로고
    • An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors
    • Toh, S.M. & A.S. Mankin 2008. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J. Mol. Biol. 380: 593-597.
    • (2008) J. Mol. Biol. , vol.380 , pp. 593-597
    • Toh, S.M.1    Mankin, A.S.2
  • 73
    • 79251557798 scopus 로고    scopus 로고
    • Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center
    • Ramu, H., N. Vazquez-Laslop, D. Klepacki, et al 2011. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Mol. Cell 41: 321-330.
    • (2011) Mol. Cell , vol.41 , pp. 321-330
    • Ramu, H.1    Vazquez-Laslop, N.2    Klepacki, D.3
  • 74
    • 79954997529 scopus 로고    scopus 로고
    • Picky nascent peptides do not talk to foreign ribosomes
    • Vazquez-Laslop, N. & A.S. Mankin 2011. Picky nascent peptides do not talk to foreign ribosomes. Proc. Natl. Acad. Sci. USA 108: 5931-5932.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 5931-5932
    • Vazquez-Laslop, N.1    Mankin, A.S.2
  • 75
    • 33644610182 scopus 로고    scopus 로고
    • Structure-based drug design meets the ribosome
    • Franceschi, F. & E.M. Duffy 2006. Structure-based drug design meets the ribosome. Biochem. Pharmacol. 71: 1016-1025.
    • (2006) Biochem. Pharmacol. , vol.71 , pp. 1016-1025
    • Franceschi, F.1    Duffy, E.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.