-
1
-
-
80555141639
-
MLPy: High-performance python package for predictive modeling
-
D. Albanese, G. Merler, S. Jurman, and R. Visintainer. MLPy: high-performance python package for predictive modeling. In NIPS, MLOSS Workshop, 2008.
-
(2008)
NIPS, MLOSS Workshop
-
-
Albanese, D.1
Merler, G.2
Jurman, S.3
Visintainer, R.4
-
4
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: a library for large linear classification. The Journal of Machine Learning Research, 9:1871-1874, 2008.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
5
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1, 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
7
-
-
64049085419
-
PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data
-
M. Hanke, Y. O. Halchenko, P. B. Sederberg, S. J. Hanson, J. V. Haxby, and S. Pollmann. PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7(1):37-53, 2009.
-
(2009)
Neuroinformatics
, vol.7
, Issue.1
, pp. 37-53
-
-
Hanke, M.1
Halchenko, Y.O.2
Sederberg, P.B.3
Hanson, S.J.4
Haxby, J.V.5
Pollmann, S.6
-
9
-
-
80555158385
-
A supervised clustering approach for fMRI-based inference of brain states
-
page epub ahead of print, April, doi: 10.1016/j.patcog.2011.04.006
-
V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin, and B. Thirion. A supervised clustering approach for fMRI-based inference of brain states. Patt Rec, page epub ahead of print, April 2011. doi: 10.1016/j.patcog.2011.04.006.
-
(2011)
Patt Rec
-
-
Michel, V.1
Gramfort, A.2
Varoquaux, G.3
Eger, E.4
Keribin, C.5
Thirion, B.6
-
12
-
-
72449140504
-
A randomized algorithm for principal component analysis
-
V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100-1124, 2009.
-
(2009)
SIAM Journal on Matrix Analysis and Applications
, vol.31
, Issue.3
, pp. 1100-1124
-
-
Rokhlin, V.1
Szlam, A.2
Tygert, M.3
-
13
-
-
77949523247
-
PyBrain
-
T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and J. Schmidhuber. PyBrain. The Journal of Machine Learning Research, 11:743-746, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 743-746
-
-
Schaul, T.1
Bayer, J.2
Wierstra, D.3
Sun, Y.4
Felder, M.5
Sehnke, F.6
Rückstieß, T.7
Schmidhuber, J.8
-
14
-
-
77954666305
-
The SHOGUN machine learning toolbox
-
S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl, and V. Franc. The SHOGUN machine learning toolbox. Journal of Machine Learning Research, 11:1799-1802, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1799-1802
-
-
Sonnenburg, S.1
Rätsch, G.2
Henschel, S.3
Widmer, C.4
Behr, J.5
Zien, A.6
De Bona, F.7
Binder, A.8
Gehl, C.9
Franc, V.10
-
16
-
-
84890885963
-
Modular toolkit for data processing (MDP): A Python data processing framework
-
T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for data processing (MDP): A Python data processing framework. Frontiers in Neuroinformatics, 2, 2008.
-
(2008)
Frontiers in Neuroinformatics
, pp. 2
-
-
Zito, T.1
Wilbert, N.2
Wiskott, L.3
Berkes, P.4
|