-
1
-
-
26944457949
-
-
Ph.D. dissertation Massachusetts Inst. Tech., Cambridge, MA, USA
-
N. Srebro, "Learning with matrix factorizations," Ph.D. dissertation, Massachusetts Inst. Tech., Cambridge, MA, USA, 2004.
-
(2004)
Learning with Matrix Factorizations
-
-
Srebro, N.1
-
3
-
-
56449131205
-
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
-
R. Salakhutdinov and A. Mnih, "Bayesian probabilistic matrix factorization using Markov chain Monte Carlo," in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 880-887.
-
(2008)
Proc. 25th Int. Conf. Mach. Learn.
, pp. 880-887
-
-
Salakhutdinov, R.1
Mnih, A.2
-
4
-
-
70349257904
-
SoRec: Social recommendation using probabilistic matrix factorization
-
H. Ma, H. Yang, M. R. Lyu, I. King, "SoRec: Social recommendation using probabilistic matrix factorization," in Proc. 17th ACM Conf. Inf. Knowl. Manage., 2008, pp. 931-940.
-
(2008)
Proc. 17th ACM Conf. Inf. Knowl. Manage.
, pp. 931-940
-
-
Ma, H.1
Yang, H.2
Lyu, M.R.3
King, I.4
-
6
-
-
79951750366
-
Generalized probabilistic matrix factorizations for collaborative filtering
-
H. Shan and A. Banerjee, "Generalized probabilistic matrix factorizations for collaborative filtering," in Proc. IEEE Int. Conf. Data Mining, 2010, pp. 1025-1030.
-
(2010)
Proc. IEEE Int. Conf. Data Mining
, pp. 1025-1030
-
-
Shan, H.1
Banerjee, A.2
-
10
-
-
84896061714
-
Hierarchical Bayesian matrix factorization with side information
-
S. Park, Y.-D. Kim, S. Choi, "Hierarchical Bayesian matrix factorization with side information," in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013, pp. 1593-1599.
-
(2013)
Proc. 23rd Int. Joint Conf. Artif. Intell.
, pp. 1593-1599
-
-
Park, S.1
Kim, Y.-D.2
Choi, S.3
-
11
-
-
79951739147
-
Nonparametric latent feature models for link prediction
-
K. T. Miller, T. L. Griffiths, M. I. Jordan, "Nonparametric latent feature models for link prediction," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1276-1284.
-
(2009)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1276-1284
-
-
Miller, K.T.1
Griffiths, T.L.2
Jordan, M.I.3
-
13
-
-
82555181744
-
Generalizing matrix factorization through flexible regression priors
-
L. Zhang, D. Agarwal, B.-C. Chen, "Generalizing matrix factorization through flexible regression priors," in Proc. 5th ACM Conf. Recommender Syst., 2011, pp. 13-20.
-
(2011)
Proc. 5th ACM Conf. Recommender Syst.
, pp. 13-20
-
-
Zhang, L.1
Agarwal, D.2
Chen, B.-C.3
-
14
-
-
70049099898
-
Relational learning with Gaussian processes
-
W. Chu, V. Sindhwani, Z. Ghahramani, S. S. Keerthi, "Relational learning with Gaussian processes," in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 289-296.
-
(2007)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 289-296
-
-
Chu, W.1
Sindhwani, V.2
Ghahramani, Z.3
Keerthi, S.S.4
-
15
-
-
84858727863
-
Variational Gaussian-process factor analysis for modeling spatio-temporal data
-
J. Luttinen and A. Ilin, "Variational Gaussian-process factor analysis for modeling spatio-temporal data," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1177-1185.
-
(2009)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1177-1185
-
-
Luttinen, J.1
Ilin, A.2
-
16
-
-
47649119838
-
Nonnegative matrix factorization with Gaussian process priors
-
M. N. Schmidt and H. Laurberg, "Nonnegative matrix factorization with Gaussian process priors," Comput. Intell. Neurosci., vol. 2008, pp. 1-10, 2008.
-
(2008)
Comput. Intell. Neurosci.
, vol.2008
, pp. 1-10
-
-
Schmidt, M.N.1
Laurberg, H.2
-
17
-
-
71149094259
-
Function factorization using warped Gaussian processes
-
M. N. Schmidt, "Function factorization using warped Gaussian processes," in Proc. 26th Int. Conf. Mach. Learn., 2009, pp. 921-928.
-
(2009)
Proc. 26th Int. Conf. Mach. Learn.
, pp. 921-928
-
-
Schmidt, M.N.1
-
19
-
-
80052416079
-
Incorporating side information in probabilistic matrix factorization with Gaussian processes
-
R. Adams, G. Dahl, I. Murray, "Incorporating side information in probabilistic matrix factorization with Gaussian processes," in Proc. 26th Conf. Annu Conf. Uncertainity Artif. Intell., 2010, pp. 1-9.
-
(2010)
Proc. 26th Conf. Annu Conf. Uncertainity Artif. Intell.
, pp. 1-9
-
-
Adams, R.1
Dahl, G.2
Murray, I.3
-
20
-
-
84880250677
-
Kernelized probabilistic matrix factorization: Exploiting graphs and side information
-
T. Zhou, H. Shan, A. Banerjee, G. Sapiro, "Kernelized probabilistic matrix factorization: Exploiting graphs and side information," in Proc. SIAM Int. Conf. Data Mining, 2012, pp. 403-414.
-
(2012)
Proc. SIAM Int. Conf. Data Mining
, pp. 403-414
-
-
Zhou, T.1
Shan, H.2
Banerjee, A.3
Sapiro, G.4
-
22
-
-
24744435534
-
Kernel methods for predicting protein-protein interactions
-
A. Ben-Hur and W. S. Noble, "Kernel methods for predicting protein-protein interactions," Bioinformatics, vol. 21, no. suppl. 1, pp. i38-i46, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. i38-i46
-
-
Ben-Hur, A.1
Noble, W.S.2
-
23
-
-
46249090791
-
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
-
Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kaneisha, "Prediction of drug-target interaction networks from the integration of chemical and genomic spaces," Bioinformatics, vol. 24, pp. i232-i240, 2008.
-
(2008)
Bioinformatics
, vol.24
, pp. i232-i240
-
-
Yamanishi, Y.1
Araki, M.2
Gutteridge, A.3
Honda, W.4
Kaneisha, M.5
-
24
-
-
77954230951
-
Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
-
Y. Yamanishi, M. Kotera, M. Kanesiha, S. Goto, "Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework," Bioinformatics, vol. 26, pp. i246-i254, 2010.
-
(2010)
Bioinformatics
, vol.26
, pp. i246-i254
-
-
Yamanishi, Y.1
Kotera, M.2
Kanesiha, M.3
Goto, S.4
-
25
-
-
4444292685
-
-
Cambridge, MA, USA: MIT Press
-
Kernel Methods in Computational Biology, B. Scholkopf, K. Tsuda, J.-P. Vert, eds., Cambridge, MA, USA: MIT Press, 2004.
-
(2004)
Kernel Methods in Computational Biology
-
-
Scholkopf, B.1
Tsuda, K.2
Vert, J.-P.3
-
26
-
-
80052213499
-
Multiple kernel learning algorithms
-
M. Gonen and E. Alpayd n, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gonen, M.1
Alpaydn, E.2
-
27
-
-
84897531872
-
Kernelized Bayesian matrix factorization
-
M. Gonen, S. A. Khan, S. Kaski, "Kernelized Bayesian matrix factorization," in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 864-872.
-
(2013)
Proc. 30th Int. Conf. Mach. Learn.
, pp. 864-872
-
-
Gonen, M.1
Khan, S.A.2
Kaski, S.3
-
28
-
-
0003408420
-
-
Cambridge, MA, USA: MIT Press
-
B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, Beyond. Cambridge, MA, USA: MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
29
-
-
84866459051
-
Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
-
M. Gonen, "Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization," Bioinformatics, vol. 28, no. 18, pp. 2304-2310, 2012.
-
(2012)
Bioinformatics
, vol.28
, Issue.18
, pp. 2304-2310
-
-
Gonen, M.1
-
30
-
-
84916537550
-
Bayesian analysis of binary and polychotomous response data
-
J. H. Albert and S. Chib, "Bayesian analysis of binary and polychotomous response data," J. Amer. Statist. Assoc., vol. 88, no. 422, pp. 669-679, 1993.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, Issue.422
, pp. 669-679
-
-
Albert, J.H.1
Chib, S.2
-
32
-
-
3543081155
-
-
Ph.D. dissertation The Gatsby Comput. Neurosci. Unit, Univ. College London, London, U.K
-
M. J. Beal, "Variational algorithms for approximate Bayesian inference," Ph.D. dissertation, The Gatsby Comput. Neurosci. Unit, Univ. College London, London, U.K., 2003.
-
(2003)
Variational Algorithms for Approximate Bayesian Inference
-
-
Beal, M.J.1
-
33
-
-
84867129730
-
Bayesian efficient multiple kernel learning
-
M. Gonen, "Bayesian efficient multiple kernel learning," in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 1-8.
-
(2012)
Proc. 29th Int. Conf. Mach. Learn.
, pp. 1-8
-
-
Gonen, M.1
-
35
-
-
43349094032
-
Probabilistic multi-class multikernel learning: On protein fold recognition and remote homology detection
-
T. Damoulas and M. A. Girolami, "Probabilistic multi-class multikernel learning: On protein fold recognition and remote homology detection," Bioinformatics, vol. 24, no. 10, pp. 1264-1270, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.10
, pp. 1264-1270
-
-
Damoulas, T.1
Girolami, M.A.2
-
37
-
-
85162070336
-
Slice sampling covariance hyperparameters of latent Gaussian models
-
I. Murray and R. P. Adams, "Slice sampling covariance hyperparameters of latent Gaussian models," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1732-1740.
-
(2010)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1732-1740
-
-
Murray, I.1
Adams, R.P.2
-
38
-
-
84882250763
-
A comparative evaluation of stochastic-based inference methods for Gaussian process models
-
M. Filippone, M. Zhong, M. Girolami, "A comparative evaluation of stochastic-based inference methods for Gaussian process models," Mach. Learn., vol. 93, no. 1, pp. 93-114, 2013.
-
(2013)
Mach. Learn.
, vol.93
, Issue.1
, pp. 93-114
-
-
Filippone, M.1
Zhong, M.2
Girolami, M.3
-
40
-
-
84878158173
-
Automatic relevance determination in nonnegative matrix factorization with the b-divergence
-
Jul.
-
V. Y. F. Tan and C. F-evotte, "Automatic relevance determination in nonnegative matrix factorization with the b-divergence," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1592-1605, Jul. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.7
, pp. 1592-1605
-
-
Tan, V.Y.F.1
Fevotte, C.2
-
41
-
-
84861545549
-
Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs
-
S. A. Khan, A. Faisal, J. P. Mpindi, J. A. Parkkinen, T. Kalliokoski, A. Poso, O. P. Kallioniemi, K. Wennerberg, S. Kaski, "Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs," BMC Bioinformat., vol. 13, p. 112, 2012.
-
(2012)
BMC Bioinformat.
, vol.13
, pp. 112
-
-
Khan, S.A.1
Faisal, A.2
Mpindi, J.P.3
Parkkinen, J.A.4
Kalliokoski, T.5
Poso, A.6
Kallioniemi, O.P.7
Wennerberg, K.8
Kaski, S.9
-
42
-
-
54249093364
-
Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields
-
A. Duran, G. C. Martinez, M. Pastor, "Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields," J. Chem. Inf. Model., vol. 48, no. 9, pp. 1813-1823, 2008.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.9
, pp. 1813-1823
-
-
Duran, A.1
Martinez, G.C.2
Pastor, M.3
-
43
-
-
0033800498
-
VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
-
G. Cruciani, M. Pastor, W. Guba, "VolSurf: A new tool for the pharmacokinetic optimization of lead compounds," Eur. J. Pharmaceutical Sci., vol. 11, no. suppl. 2, pp. S29-S39, 2000.
-
(2000)
Eur. J. Pharmaceutical Sci.
, vol.11
, pp. S29-S39
-
-
Cruciani, G.1
Pastor, M.2
Guba, W.3
-
45
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recog., vol. 40, no. 7, pp. 2038-2048, 2007.
-
(2007)
Pattern Recog.
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
46
-
-
78751693089
-
On multiple kernel learning with multiple labels
-
L. Tang, J. Chen, J. Ye, "On multiple kernel learning with multiple labels," in Proc. 19th Int. Joint Conf. Artif. Intell., 2009, pp. 1255-1260.
-
(2009)
Proc. 19th Int. Joint Conf. Artif. Intell.
, pp. 1255-1260
-
-
Tang, L.1
Chen, J.2
Ye, J.3
-
48
-
-
84881063565
-
Multikernel multi-label learning with max-margin concept network
-
W. Zhang, X. Xue, J. Fan, X. Huang, B. Wu, M. Liu, "Multikernel multi-label learning with max-margin concept network," in Proc. 22nd Int. Joint Conf. Artif. Intell., 2012, pp. 1615-1620.
-
(2012)
Proc. 22nd Int. Joint Conf. Artif. Intell.
, pp. 1615-1620
-
-
Zhang, W.1
Xue, X.2
Fan, J.3
Huang, X.4
Wu, B.5
Liu, M.6
-
49
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botsein, B. Futcher, "Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization," Mol. Biol. Cell, vol. 9, no. 12, pp. 3273-3297, 1998.
-
(1998)
Mol. Biol. Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botsein, D.8
Futcher, B.9
-
50
-
-
0037174671
-
Transcriptional regulatory networks in Saccharomyces cerevisiae
-
T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, R.A. Young, "Transcriptional regulatory networks in Saccharomyces cerevisiae," Science, vol. 298, no. 5594, pp. 799-804, 2002.
-
(2002)
Science
, vol.298
, Issue.5594
, pp. 799-804
-
-
Lee, T.I.1
Rinaldi, N.J.2
Robert, F.3
Odom, D.T.4
Bar-Joseph, Z.5
Gerber, G.K.6
Hannett, N.M.7
Harbison, C.T.8
Thompson, C.M.9
Simon, I.10
Zeitlinger, J.11
Jennings, E.G.12
Murray, H.L.13
Gordon, D.B.14
Ren, B.15
Wyrick, J.J.16
Tagne, J.B.17
Volkert, T.L.18
Fraenkel, E.19
Gifford, D.K.20
Young, R.A.21
more..
-
51
-
-
74049093630
-
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
-
H. Chun and S. Kelęs , "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," J. Royal Statist. Soc.: Ser. B (Statist. Methodol.), vol. 72, pp. 3-25, 2010.
-
(2010)
J. Royal Statist. Soc.: Ser. B (Statist. Methodol.)
, vol.72
, pp. 3-25
-
-
Chun, H.1
Kelęs, S.2
|