메뉴 건너뛰기




Volumn 36, Issue 10, 2014, Pages 2047-2060

Kernelized Bayesian Matrix Factorization

Author keywords

Automatic relevance determination; biological interaction networks; large margin learning; matrix factorization; multilabel classification; multiple kernel learning; multiple output regression; variational approximation

Indexed keywords

BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); FACTORIZATION; REGRESSION ANALYSIS;

EID: 84948569682     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2014.2313125     Document Type: Article
Times cited : (45)

References (51)
  • 1
    • 26944457949 scopus 로고    scopus 로고
    • Ph.D. dissertation Massachusetts Inst. Tech., Cambridge, MA, USA
    • N. Srebro, "Learning with matrix factorizations," Ph.D. dissertation, Massachusetts Inst. Tech., Cambridge, MA, USA, 2004.
    • (2004) Learning with Matrix Factorizations
    • Srebro, N.1
  • 3
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • R. Salakhutdinov and A. Mnih, "Bayesian probabilistic matrix factorization using Markov chain Monte Carlo," in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 880-887.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 6
    • 79951750366 scopus 로고    scopus 로고
    • Generalized probabilistic matrix factorizations for collaborative filtering
    • H. Shan and A. Banerjee, "Generalized probabilistic matrix factorizations for collaborative filtering," in Proc. IEEE Int. Conf. Data Mining, 2010, pp. 1025-1030.
    • (2010) Proc. IEEE Int. Conf. Data Mining , pp. 1025-1030
    • Shan, H.1    Banerjee, A.2
  • 15
    • 84858727863 scopus 로고    scopus 로고
    • Variational Gaussian-process factor analysis for modeling spatio-temporal data
    • J. Luttinen and A. Ilin, "Variational Gaussian-process factor analysis for modeling spatio-temporal data," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1177-1185.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , pp. 1177-1185
    • Luttinen, J.1    Ilin, A.2
  • 16
    • 47649119838 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with Gaussian process priors
    • M. N. Schmidt and H. Laurberg, "Nonnegative matrix factorization with Gaussian process priors," Comput. Intell. Neurosci., vol. 2008, pp. 1-10, 2008.
    • (2008) Comput. Intell. Neurosci. , vol.2008 , pp. 1-10
    • Schmidt, M.N.1    Laurberg, H.2
  • 17
    • 71149094259 scopus 로고    scopus 로고
    • Function factorization using warped Gaussian processes
    • M. N. Schmidt, "Function factorization using warped Gaussian processes," in Proc. 26th Int. Conf. Mach. Learn., 2009, pp. 921-928.
    • (2009) Proc. 26th Int. Conf. Mach. Learn. , pp. 921-928
    • Schmidt, M.N.1
  • 18
  • 20
    • 84880250677 scopus 로고    scopus 로고
    • Kernelized probabilistic matrix factorization: Exploiting graphs and side information
    • T. Zhou, H. Shan, A. Banerjee, G. Sapiro, "Kernelized probabilistic matrix factorization: Exploiting graphs and side information," in Proc. SIAM Int. Conf. Data Mining, 2012, pp. 403-414.
    • (2012) Proc. SIAM Int. Conf. Data Mining , pp. 403-414
    • Zhou, T.1    Shan, H.2    Banerjee, A.3    Sapiro, G.4
  • 22
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • A. Ben-Hur and W. S. Noble, "Kernel methods for predicting protein-protein interactions," Bioinformatics, vol. 21, no. suppl. 1, pp. i38-i46, 2005.
    • (2005) Bioinformatics , vol.21 , pp. i38-i46
    • Ben-Hur, A.1    Noble, W.S.2
  • 23
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kaneisha, "Prediction of drug-target interaction networks from the integration of chemical and genomic spaces," Bioinformatics, vol. 24, pp. i232-i240, 2008.
    • (2008) Bioinformatics , vol.24 , pp. i232-i240
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3    Honda, W.4    Kaneisha, M.5
  • 24
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Y. Yamanishi, M. Kotera, M. Kanesiha, S. Goto, "Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework," Bioinformatics, vol. 26, pp. i246-i254, 2010.
    • (2010) Bioinformatics , vol.26 , pp. i246-i254
    • Yamanishi, Y.1    Kotera, M.2    Kanesiha, M.3    Goto, S.4
  • 26
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • M. Gonen and E. Alpayd n, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gonen, M.1    Alpaydn, E.2
  • 29
    • 84866459051 scopus 로고    scopus 로고
    • Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
    • M. Gonen, "Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization," Bioinformatics, vol. 28, no. 18, pp. 2304-2310, 2012.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 2304-2310
    • Gonen, M.1
  • 30
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • J. H. Albert and S. Chib, "Bayesian analysis of binary and polychotomous response data," J. Amer. Statist. Assoc., vol. 88, no. 422, pp. 669-679, 1993.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , Issue.422 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 32
    • 3543081155 scopus 로고    scopus 로고
    • Ph.D. dissertation The Gatsby Comput. Neurosci. Unit, Univ. College London, London, U.K
    • M. J. Beal, "Variational algorithms for approximate Bayesian inference," Ph.D. dissertation, The Gatsby Comput. Neurosci. Unit, Univ. College London, London, U.K., 2003.
    • (2003) Variational Algorithms for Approximate Bayesian Inference
    • Beal, M.J.1
  • 33
    • 84867129730 scopus 로고    scopus 로고
    • Bayesian efficient multiple kernel learning
    • M. Gonen, "Bayesian efficient multiple kernel learning," in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 1-8.
    • (2012) Proc. 29th Int. Conf. Mach. Learn. , pp. 1-8
    • Gonen, M.1
  • 35
    • 43349094032 scopus 로고    scopus 로고
    • Probabilistic multi-class multikernel learning: On protein fold recognition and remote homology detection
    • T. Damoulas and M. A. Girolami, "Probabilistic multi-class multikernel learning: On protein fold recognition and remote homology detection," Bioinformatics, vol. 24, no. 10, pp. 1264-1270, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1264-1270
    • Damoulas, T.1    Girolami, M.A.2
  • 37
    • 85162070336 scopus 로고    scopus 로고
    • Slice sampling covariance hyperparameters of latent Gaussian models
    • I. Murray and R. P. Adams, "Slice sampling covariance hyperparameters of latent Gaussian models," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1732-1740.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 1732-1740
    • Murray, I.1    Adams, R.P.2
  • 38
    • 84882250763 scopus 로고    scopus 로고
    • A comparative evaluation of stochastic-based inference methods for Gaussian process models
    • M. Filippone, M. Zhong, M. Girolami, "A comparative evaluation of stochastic-based inference methods for Gaussian process models," Mach. Learn., vol. 93, no. 1, pp. 93-114, 2013.
    • (2013) Mach. Learn. , vol.93 , Issue.1 , pp. 93-114
    • Filippone, M.1    Zhong, M.2    Girolami, M.3
  • 40
    • 84878158173 scopus 로고    scopus 로고
    • Automatic relevance determination in nonnegative matrix factorization with the b-divergence
    • Jul.
    • V. Y. F. Tan and C. F-evotte, "Automatic relevance determination in nonnegative matrix factorization with the b-divergence," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1592-1605, Jul. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.7 , pp. 1592-1605
    • Tan, V.Y.F.1    Fevotte, C.2
  • 41
    • 84861545549 scopus 로고    scopus 로고
    • Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs
    • S. A. Khan, A. Faisal, J. P. Mpindi, J. A. Parkkinen, T. Kalliokoski, A. Poso, O. P. Kallioniemi, K. Wennerberg, S. Kaski, "Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs," BMC Bioinformat., vol. 13, p. 112, 2012.
    • (2012) BMC Bioinformat. , vol.13 , pp. 112
    • Khan, S.A.1    Faisal, A.2    Mpindi, J.P.3    Parkkinen, J.A.4    Kalliokoski, T.5    Poso, A.6    Kallioniemi, O.P.7    Wennerberg, K.8    Kaski, S.9
  • 42
    • 54249093364 scopus 로고    scopus 로고
    • Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields
    • A. Duran, G. C. Martinez, M. Pastor, "Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields," J. Chem. Inf. Model., vol. 48, no. 9, pp. 1813-1823, 2008.
    • (2008) J. Chem. Inf. Model. , vol.48 , Issue.9 , pp. 1813-1823
    • Duran, A.1    Martinez, G.C.2    Pastor, M.3
  • 43
    • 0033800498 scopus 로고    scopus 로고
    • VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
    • G. Cruciani, M. Pastor, W. Guba, "VolSurf: A new tool for the pharmacokinetic optimization of lead compounds," Eur. J. Pharmaceutical Sci., vol. 11, no. suppl. 2, pp. S29-S39, 2000.
    • (2000) Eur. J. Pharmaceutical Sci. , vol.11 , pp. S29-S39
    • Cruciani, G.1    Pastor, M.2    Guba, W.3
  • 45
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recog., vol. 40, no. 7, pp. 2038-2048, 2007.
    • (2007) Pattern Recog. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 49
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botsein, B. Futcher, "Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization," Mol. Biol. Cell, vol. 9, no. 12, pp. 3273-3297, 1998.
    • (1998) Mol. Biol. Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botsein, D.8    Futcher, B.9
  • 51
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • H. Chun and S. Kelęs , "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," J. Royal Statist. Soc.: Ser. B (Statist. Methodol.), vol. 72, pp. 3-25, 2010.
    • (2010) J. Royal Statist. Soc.: Ser. B (Statist. Methodol.) , vol.72 , pp. 3-25
    • Chun, H.1    Kelęs, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.