메뉴 건너뛰기




Volumn 31, Issue 12, 2015, Pages i230-i239

Gene network inference by fusing data from diverse distributions

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BREAST TUMOR; FEMALE; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETICS; HIGH THROUGHPUT SEQUENCING; HUMAN; POISSON DISTRIBUTION; PROBABILITY; PROCEDURES; SEQUENCE ANALYSIS;

EID: 84931037666     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv258     Document Type: Conference Paper
Times cited : (32)

References (44)
  • 1
    • 74049137968 scopus 로고    scopus 로고
    • Expression of foxa1 and gata3 in breast cancer: The prognostic significance in hormone receptor-negative tumours
    • Albergaria A., et al. (2009). Expression of FOXA1 and GATA3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res., 11, R40
    • (2009) Breast Cancer Res , vol.11 , pp. R40
    • Albergaria, A.1
  • 2
    • 84883418430 scopus 로고    scopus 로고
    • A local poisson graphical model for inferring networks from sequencing data
    • Allen G.I. and Liu Z. (2013). A local poisson graphical model for inferring networks from sequencing data. IEEE Trans. NanoBiosci., 12, 189-198
    • (2013) IEEE Trans NanoBiosci , vol.12 , pp. 189-198
    • Allen, G.I.1    Liu, Z.2
  • 3
    • 70449368364 scopus 로고    scopus 로고
    • A boosting approach to structure learning of graphs with and without prior knowledge
    • Anjum S., et al. (2009). A boosting approach to structure learning of graphs with and without prior knowledge. Bioinformatics, 25, 2929-2936
    • (2009) Bioinformatics , vol.25 , pp. 2929-2936
    • Anjum, S.1
  • 4
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • Ashburner M., et al. (2000). Gene Ontology: tool for the unification of biology. Nat. Genet., 25, 25-29
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 5
    • 84877797788 scopus 로고    scopus 로고
    • Utilizing RNA-seq data for cancer network inference
    • Pal R. and Ressom H. (eds IEEE, Piscataway, NJ, USA
    • Cai Y., et al. (2012). Utilizing RNA-seq data for cancer network inference. In: Pal R. and Ressom H. (eds) , IEEE GENSIPS. IEEE, Piscataway, NJ, USA, pp. 46-49
    • (2012) Ieee Gensips , pp. 46-49
    • Cai, Y.1
  • 6
    • 84907572339 scopus 로고    scopus 로고
    • Santa: Quantifying the functional content of molecular networks
    • Cornish A.J. and Markowetz F. (2014). SANTA: quantifying the functional content of molecular networks. PLoS Comput. Biol., 10, e1003808
    • (2014) Plos Comput. Biol , vol.10 , pp. e1003808
    • Cornish, A.J.1    Markowetz, F.2
  • 7
    • 75649111192 scopus 로고    scopus 로고
    • The genetic landscape of a cell
    • Costanzo M., et al. (2010). The genetic landscape of a cell. Science, 327, 425-431
    • (2010) Science , vol.327 , pp. 425-431
    • Costanzo, M.1
  • 9
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the lasso
    • Friedman J., et al. (2007). Sparse inverse covariance estimation with the lasso. Biostatistics, 9, 432-441
    • (2007) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1
  • 10
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J., et al. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1
  • 11
    • 84885831752 scopus 로고    scopus 로고
    • A hierarchical Poisson log-normal model for network inference from RNA sequencing data
    • Gallopin M., et al. (2013). A hierarchical Poisson log-normal model for network inference from RNA sequencing data. PLoS One, 8, e77503
    • (2013) Plos One , vol.8 , pp. e77503
    • Gallopin, M.1
  • 12
    • 77951115122 scopus 로고    scopus 로고
    • International network of cancer genome projects
    • Hudson T.J., et al. (2010). International network of cancer genome projects. Nature, 464, 993-998
    • (2010) Nature , vol.464 , pp. 993-998
    • Hudson, T.J.1
  • 13
    • 84897891549 scopus 로고    scopus 로고
    • Bayesian network prior: Network analysis of biological data using external knowledge
    • Isci S., et al. (2014). Bayesian network prior: network analysis of biological data using external knowledge. Bioinformatics, 30, 860-867
    • (2014) Bioinformatics , vol.30 , pp. 860-867
    • Isci, S.1
  • 14
    • 84862290493 scopus 로고    scopus 로고
    • On learning discrete graphical models using groupsparse regularization
    • Dudík, M. (ed. MLR, Boston, MA, USA
    • Jalali A., et al. (2011). On learning discrete graphical models using groupsparse regularization. In: Dudík, M. (ed.) , AISTATS. MLR, Boston, MA, USA, pp. 378-387
    • (2011) Aistats , pp. 378-387
    • Jalali, A.1
  • 15
    • 84864451906 scopus 로고    scopus 로고
    • Genies: Gene network inference engine based on supervised analysis
    • Kotera M., et al. (2012). GENIES: gene network inference engine based on supervised analysis. Nucleic Acids Res., 40, W162-W167
    • (2012) Nucleic Acids Res , vol.40 , pp. W162-W167
    • Kotera, M.1
  • 16
    • 21244437589 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression: Fast algorithms and generalization bounds
    • Krishnapuram B., et al. (2005). Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE TPAMI, 27, 957-968
    • (2005) IEEE TPAMI , vol.27 , pp. 957-968
    • Krishnapuram, B.1
  • 17
    • 84875151494 scopus 로고    scopus 로고
    • High-dimensional semiparametric Gaussian copula graphical models
    • Liu H., et al. (2012). High-dimensional semiparametric Gaussian copula graphical models. Ann. Stat., 40, 2293-2326
    • (2012) Ann. Stat , vol.40 , pp. 2293-2326
    • Liu, H.1
  • 18
    • 70450277253 scopus 로고    scopus 로고
    • The nonparanormal: Semiparametric estimation of high dimensional undirected graphs
    • Liu H., et al. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. JMLR, 10, 2295-2328
    • (2009) JMLR , vol.10 , pp. 2295-2328
    • Liu, H.1
  • 19
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach D., et al. (2012). Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796-804
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 20
    • 37849035696 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • Meier L., et al. (2008). The group lasso for logistic regression. J. R. Stat. Soc., 70, 53-71
    • (2008) J. R. Stat. Soc , vol.70 , pp. 53-71
    • Meier, L.1
  • 21
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen N. and Bühlmann P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Stat., 34, 1436-1462
    • (2006) Ann. Stat , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 22
    • 84885662673 scopus 로고    scopus 로고
    • A Markov random field model for term dependencies
    • Marchionini G., et al. (eds ACM, New York, NY, USA
    • Metzler D. and Croft W.B. (2005). A Markov random field model for term dependencies. In: Marchionini G., et al. (eds) , ACM SIGIR. ACM, New York, NY, USA, pp. 472-479
    • (2005) ACM Sigir , pp. 472-479
    • Metzler, D.1    Croft, W.B.2
  • 23
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • Mukherjee S. and Speed T.P. (2008). Network inference using informative priors. Proc. Natl. Acad. Sci. USA, 105, 14313-14318
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 14313-14318
    • Mukherjee, S.1    Speed, T.P.2
  • 25
    • 84890089590 scopus 로고    scopus 로고
    • Bayesian Gaussian copula factor models for mixed data
    • Murray J.S., et al. (2013). Bayesian Gaussian copula factor models for mixed data. J. Am. Stat. Assoc., 108, 656-665
    • (2013) J. Am. Stat. Assoc , vol.108 , pp. 656-665
    • Murray, J.S.1
  • 27
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional ising model selection using '1- regularized logistic regression
    • Ravikumar P., et al. (2010). High-dimensional ising model selection using '1- regularized logistic regression. Ann. Stat., 38, 1287-1319
    • (2010) Ann. Stat , vol.38 , pp. 1287-1319
    • Ravikumar, P.1
  • 28
    • 84911474471 scopus 로고    scopus 로고
    • A proteome-scale map of the human interactome network
    • Rolland T., et al. (2014). A proteome-scale map of the human interactome network. Cell, 159, 1212-1226
    • (2014) Cell , vol.159 , pp. 1212-1226
    • Rolland, T.1
  • 30
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer J. and Strimmer K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754-764
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 31
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • Segal E., et al. (2003). Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19, i264-i272
    • (2003) Bioinformatics , vol.19 , pp. i264-i272
    • Segal, E.1
  • 32
    • 79951528449 scopus 로고    scopus 로고
    • Variable selection for discriminant analysis with markov random field priors for the analysis of microarray data
    • Stingo F. C. and Vannucci M. (2011). Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Bioinformatics, 27, 495-501
    • (2011) Bioinformatics , vol.27 , pp. 495-501
    • Stingo, F.C.1    Vannucci, M.2
  • 33
    • 84871995408 scopus 로고    scopus 로고
    • Gata3 acts upstream of foxa1 in mediating esr1 binding by shaping enhancer accessibility
    • Theodorou V., et al. (2013). GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res., 23, 12-22
    • (2013) Genome Res , vol.23 , pp. 12-22
    • Theodorou, V.1
  • 34
    • 84863011189 scopus 로고    scopus 로고
    • Gene-gene interactions in breast cancer susceptibility
    • Turnbull C., et al. (2012). Gene-gene interactions in breast cancer susceptibility. Hum. Mol. Genet., 21, 958-962
    • (2012) Hum. Mol. Genet , vol.21 , pp. 958-962
    • Turnbull, C.1
  • 35
    • 84889679014 scopus 로고    scopus 로고
    • Discovering disease-disease associations by fusing systems- level molecular data
    • Zitnik M., et al. (2013). Discovering disease-disease associations by fusing systems- level molecular data. Sci. Rep., 3, e3202
    • (2013) Sci. Rep , vol.3 , pp. e3202
    • Zitnik, M.1
  • 36
    • 84946046702 scopus 로고    scopus 로고
    • Matrix factorization-based data fusion for drug-induced liver injury prediction
    • Zitnik M. and Zupan B. (2014). Matrix factorization-based data fusion for drug-induced liver injury prediction. Syst. Biomed., 2, e28527
    • (2014) Syst. Biomed , vol.2 , pp. e28527
    • Zitnik, M.1    Zupan, B.2
  • 37
    • 84916887227 scopus 로고    scopus 로고
    • Data fusion by matrix factorization
    • Zitnik M. And Zupan B. (2015). Data Fusion by Matrix Factorization. IEEE TPAMI, 37, 41-53
    • (2015) IEEE TPAMI , vol.37 , pp. 41-53
    • Zitnik, M.1    Zupan, B.2
  • 38
    • 84885382627 scopus 로고    scopus 로고
    • Markov random field modeling, inference & learning in computer vision & image understanding: A survey
    • Wang C., et al. (2013). Markov random field modeling, inference & learning in computer vision & image understanding: a survey. Comput. Vis. Image Underst., 117, 1610-1627
    • (2013) Comput. Vis. Image Underst , vol.117 , pp. 1610-1627
    • Wang, C.1
  • 39
    • 84923360343 scopus 로고    scopus 로고
    • Widespread genetic epistasis among cancer genes
    • Wang X., et al. (2014). Widespread genetic epistasis among cancer genes. Nat. Commun., 5, 4828
    • (2014) Nat. Commun , vol.5 , pp. 4828
    • Wang, X.1
  • 40
    • 57749195712 scopus 로고    scopus 로고
    • Rna-seq: A revolutionary tool for transcriptomics
    • Wang Z., et al. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57-63
    • (2009) Nat. Rev. Genet , vol.10 , pp. 57-63
    • Wang, Z.1
  • 42
    • 85093775215 scopus 로고    scopus 로고
    • On Poisson graphical models
    • Welling M. and Ghahramani Z. (eds
    • Yang E., et al. (2013). On Poisson graphical models. In: Welling M. and Ghahramani Z. (eds) , NIPS, pp. 1718-1726
    • (2013) Nips , pp. 1718-1726
    • Yang, E.1
  • 43
    • 84874046468 scopus 로고    scopus 로고
    • Defining and evaluating network communities based on ground-truth
    • Tang J., et al. (eds ACM, New York, NY, USA
    • Yang J. and Leskovec J. (2012). Defining and evaluating network communities based on ground-truth. In: Tang J., et al. (eds) , ACM MDS. ACM, New York, NY, USA
    • (2012) ACM MDS
    • Yang, J.1    Leskovec, J.2
  • 44
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H. and Hastie T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. B, 67, 301-320
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.