메뉴 건너뛰기




Volumn 26, Issue 9, 2015, Pages 2136-2147

Group Factor Analysis

Author keywords

Factor analysis (FA); multiview learning; probabilistic algorithms; structured sparsity.

Indexed keywords

ACTIVATION ANALYSIS; CLUSTERING ALGORITHMS; MULTIVARIANT ANALYSIS;

EID: 85027929051     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2376974     Document Type: Article
Times cited : (96)

References (40)
  • 1
    • 0000296415 scopus 로고
    • Multiple factor analysis
    • L. L. Thurstone, "Multiple factor analysis," Psychological Rev., vol. 38, no. 5, pp. 406-427, 1931.
    • (1931) Psychological Rev. , vol.38 , Issue.5 , pp. 406-427
    • Thurstone, L.L.1
  • 4
    • 0011590274 scopus 로고
    • Three common factor models for groups of variables
    • R. P. McDonald, "Three common factor models for groups of variables," Psychometrika, vol. 35, no. 1, pp. 111-128, 1970.
    • (1970) Psychometrika , vol.35 , Issue.1 , pp. 111-128
    • McDonald, R.P.1
  • 5
    • 85004795431 scopus 로고
    • Factor analysis of multiple batteries by maximum likelihood
    • M. W. Browne, "Factor analysis of multiple batteries by maximum likelihood," Brit. J. Math. Statist. Psychol., vol. 33, no. 2, pp. 184-199, 1980.
    • (1980) Brit. J. Math. Statist. Psychol. , vol.33 , Issue.2 , pp. 184-199
    • Browne, M.W.1
  • 6
    • 0000503256 scopus 로고
    • An inter-battery method of factor analysis
    • L. R. Tucker, "An inter-battery method of factor analysis," Psychometrika, vol. 23, no. 2, pp. 111-136, 1958.
    • (1958) Psychometrika , vol.23 , Issue.2 , pp. 111-136
    • Tucker, L.R.1
  • 7
    • 85004775272 scopus 로고
    • The maximum-likelihood solution in inter-battery factor analysis
    • M.W. Browne, "The maximum-likelihood solution in inter-battery factor analysis," Brit. J. Math. Statist. Psychol., vol. 32, no. 1, pp. 75-86, 1979.
    • (1979) Brit. J. Math. Statist. Psychol. , vol.32 , Issue.1 , pp. 75-86
    • Browne, M.W.1
  • 8
    • 85162037528 scopus 로고    scopus 로고
    • Factorized latent spaces with structured sparsity
    • Red Hook, NY, USA: Curran & Associates Inc.
    • Y. Jia, M. Salzmann, and T. Darrell, "Factorized latent spaces with structured sparsity," in Advances in Neural Information Processing Systems, vol. 23. Red Hook, NY, USA: Curran & Associates Inc., 2010, pp. 982-990.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 982-990
    • Jia, Y.1    Salzmann, M.2    Darrell, T.3
  • 10
    • 79957932816 scopus 로고    scopus 로고
    • A Bayesian framework for learning shared and individual subspaces from multiple data sources
    • Berlin, Germany: Springer-Verlag
    • S. K. Gupta, D. Phung, B. Adams, and S. Venkatesh, "A Bayesian framework for learning shared and individual subspaces from multiple data sources," in Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer-Verlag, 2011, pp. 136-147.
    • (2011) Advances in Knowledge Discovery and Data Mining , pp. 136-147
    • Gupta, S.K.1    Phung, D.2    Adams, B.3    Venkatesh, S.4
  • 11
    • 84880225245 scopus 로고    scopus 로고
    • A Bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources
    • S. K. Gupta, D. Q. Phung, and S. Venkatesh, "A Bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources," in Proc. 12th SIAM Int. Conf. Data Mining, 2012, pp. 200-211.
    • (2012) Proc. 12th SIAM Int. Conf. Data Mining , pp. 200-211
    • Gupta, S.K.1    Phung, D.Q.2    Venkatesh, S.3
  • 13
    • 84877621868 scopus 로고    scopus 로고
    • Bayesian canonical correlation analysis
    • A. Klami, S. Virtanen, and S. Kaski, "Bayesian canonical correlation analysis," J. Mach. Learn. Res., vol. 14, no. 1, pp. 899-937, 2013.
    • (2013) J. Mach. Learn. Res. , vol.14 , Issue.1 , pp. 899-937
    • Klami, A.1    Virtanen, S.2    Kaski, S.3
  • 14
    • 55949104732 scopus 로고    scopus 로고
    • Probabilistic approach to detecting dependencies between data sets
    • A. Klami and S. Kaski, "Probabilistic approach to detecting dependencies between data sets," Neurocomputing, vol. 72, nos. 1-3, pp. 39-46, 2008.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 39-46
    • Klami, A.1    Kaski, S.2
  • 16
    • 0001218562 scopus 로고
    • The statistical analysis of compositional data
    • J. Aitchison, "The statistical analysis of compositional data," J. Roy. Statist. Soc., Ser. B (Methodological), vol. 44, no. 2, pp. 139-177, 1982.
    • (1982) J. Roy. Statist. Soc., Ser. B (Methodological) , vol.44 , Issue.2 , pp. 139-177
    • Aitchison, J.1
  • 17
    • 77956916974 scopus 로고    scopus 로고
    • Practical approaches to principal component analysis in the presence of missing values
    • Mar.
    • A. Ilin and T. Raiko, "Practical approaches to principal component analysis in the presence of missing values," J. Mach. Learn. Res., vol. 11, pp. 1957-2000, Mar. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1957-2000
    • Ilin, A.1    Raiko, T.2
  • 18
    • 85162555612 scopus 로고    scopus 로고
    • Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation
    • Red Hook, NY, USA: Curran & Associates Inc.
    • O. Dikmen and C. Févotte, "Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation," in Advances in Neural Information Processing Systems, vol. 24. Red Hook, NY, USA: Curran & Associates Inc., 2011, pp. 2267-2275.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 2267-2275
    • Dikmen, O.1    Févotte, C.2
  • 20
    • 79953045889 scopus 로고    scopus 로고
    • Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis
    • F. Deleus and M. M. Van Hulle, "Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis," J. Neurosci. Methods, vol. 197, no. 1, pp. 143-157, 2011.
    • (2011) J. Neurosci. Methods , vol.197 , Issue.1 , pp. 143-157
    • Deleus, F.1    Van Hulle, M.M.2
  • 21
    • 83055186907 scopus 로고    scopus 로고
    • Sparse structured probabilistic projections for factorized latent spaces
    • X. Qu and X. Chen, "Sparse structured probabilistic projections for factorized latent spaces," in Proc. 20th ACM Int. Conf. Inf. Knowl. Manage., 2011, pp. 1389-1394.
    • (2011) Proc. 20th ACM Int. Conf. Inf. Knowl. Manage. , pp. 1389-1394
    • Qu, X.1    Chen, X.2
  • 22
    • 84876058478 scopus 로고    scopus 로고
    • Joint and individual variation explained (JIVE) for integrated analysis of multiple datatypes
    • E. F. Lock, K. A. Hoadley, J. S. Marron, and A. B. Nobel, "Joint and individual variation explained (JIVE) for integrated analysis of multiple datatypes," Ann. Appl. Statist., vol. 7, no. 1, pp. 523-542, 2013.
    • (2013) Ann. Appl. Statist. , vol.7 , Issue.1 , pp. 523-542
    • Lock, E.F.1    Hoadley, K.A.2    Marron, J.S.3    Nobel, A.B.4
  • 23
    • 84900827183 scopus 로고    scopus 로고
    • Bayesian joint analysis of heterogeneous genomics data
    • P. Ray, L. Zheng, J. Lucas, and L. Carin, "Bayesian joint analysis of heterogeneous genomics data," Bioinformat., vol. 30, no. 10, pp. 1370-1376, 2014.
    • (2014) Bioinformat. , vol.30 , Issue.10 , pp. 1370-1376
    • Ray, P.1    Zheng, L.2    Lucas, J.3    Carin, L.4
  • 24
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the 'large p, small n' paradigm
    • M. West, "Bayesian factor regression models in the 'large p, small n' paradigm," in Bayesian Statistics 7: Proc. 7th Valencia Int. Meeting., vol. 7, pp. 733-742, 2003.
    • (2003) Bayesian Statistics 7: Proc. 7th Valencia Int. Meeting. , vol.7 , pp. 733-742
    • West, M.1
  • 25
    • 85161973444 scopus 로고    scopus 로고
    • Predictive subspace learning for multiview data: A large margin approach
    • Red Hook, NY, USA: Curran & Associates Inc.
    • N. Chen, J. Zun, and E. P. Xing, "Predictive subspace learning for multiview data: A large margin approach," in Advances in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates Inc., 2010, pp. 361-369.
    • (2010) Advances in Neural Information Processing Systems , pp. 361-369
    • Chen, N.1    Zun, J.2    Xing, E.P.3
  • 26
    • 77953559148 scopus 로고    scopus 로고
    • The infinite hierarchical factor regression model
    • Red Hook, NY, USA: Curran & Associates Inc.
    • P. Rai, and H. Daumé, III, "The infinite hierarchical factor regression model," in Advances in Neural Information Processing Systems, vol. 21. Red Hook, NY, USA: Curran & Associates Inc., 2009, pp. 1321-1328.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1321-1328
    • Rai, P.1    Daumé, H.2
  • 27
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Li, "Model selection and estimation in regression with grouped variables," J. Roy. Statist. Soc., Ser. B (Statist. Methodol.), vol. 68, no. 1, pp. 49-67, 2006.
    • (2006) J. Roy. Statist. Soc., Ser. B (Statist. Methodol.) , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Li, Y.2
  • 28
    • 85016683004 scopus 로고    scopus 로고
    • Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors
    • New York, NY, USA: Springer-Verlag
    • P. Breheny and J. Huang, "Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors," in Statistics and Computing. New York, NY, USA: Springer-Verlag, 2013, pp. 1-15.
    • (2013) Statistics and Computing , pp. 1-15
    • Breheny, P.1    Huang, J.2
  • 29
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: A synthesis
    • K. J. Friston, "Functional and effective connectivity in neuroimaging: A synthesis," Human Brain Mapping, vol. 2, nos. 1-2, pp. 56-78, 1994.
    • (1994) Human Brain Mapping , vol.2 , Issue.1-2 , pp. 56-78
    • Friston, K.J.1
  • 30
    • 69149106062 scopus 로고    scopus 로고
    • Correspondence of the brain's functional architecture during activation and rest
    • S. M. Smith et al., "Correspondence of the brain's functional architecture during activation and rest," Proc. Nat. Acad. Sci. USA, vol. 106, no. 31, pp. 13040-13045, 2009.
    • (2009) Proc. Nat. Acad. Sci. USA , vol.106 , Issue.31 , pp. 13040-13045
    • Smith, S.M.1
  • 31
    • 0027441566 scopus 로고
    • Functional connectivity: The principal-component analysis of large (PET) data sets
    • K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. Frackowiak, "Functional connectivity: The principal-component analysis of large (PET) data sets," J. Cerebral Blood Flow Metabolism, vol. 13, no. 1, pp. 5-14, 1993.
    • (1993) J. Cerebral Blood Flow Metabolism , vol.13 , Issue.1 , pp. 5-14
    • Friston, K.J.1    Frith, C.D.2    Liddle, P.F.3    Frackowiak, R.S.4
  • 32
    • 84855181808 scopus 로고    scopus 로고
    • Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm
    • V. Alluri, P. Toiviainen, I. P. Jaäskelaïnen, E. Glerean, M. Sams, and E. Brattico, "Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm," NeuroImage, vol. 59, no. 4, pp. 3677-3689, 2012.
    • (2012) NeuroImage , vol.59 , Issue.4 , pp. 3677-3689
    • Alluri, V.1    Toiviainen, P.2    Jaäskelaïnen, I.P.3    Glerean, E.4    Sams, M.5    Brattico, E.6
  • 34
    • 33746932485 scopus 로고    scopus 로고
    • An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
    • R. S. Desikan et al., "An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest," NeuroImage, vol. 31, no. 3, pp. 968-980, 2006.
    • (2006) NeuroImage , vol.31 , Issue.3 , pp. 968-980
    • Desikan, R.S.1
  • 36
    • 85028228054 scopus 로고    scopus 로고
    • Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs
    • May
    • S. A. Khan et al., "Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs," BMC Bioinformat., vol. 13, no. 112, pp. 1-15, May 2012.
    • (2012) BMC Bioinformat. , vol.13 , Issue.112 , pp. 1-15
    • Khan, S.A.1
  • 37
    • 33749335282 scopus 로고    scopus 로고
    • The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease
    • J. Lamb et al., "The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease," Science, vol. 313, no. 5795, pp. 1929-1935, 2006.
    • (2006) Science , vol.313 , Issue.5795 , pp. 1929-1935
    • Lamb, J.1
  • 40
    • 84855890338 scopus 로고    scopus 로고
    • A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data
    • X. Chen, S. Chen, H. Xue, and X. Zhou, "A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data," Pattern Recognit., vol. 45, no. 5, pp. 2005-2018, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.5 , pp. 2005-2018
    • Chen, X.1    Chen, S.2    Xue, H.3    Zhou, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.