-
3
-
-
84858766876
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
Bach, F. R. (2008). Exploring large feature spaces with hierarchical multiple kernel learning. Advances in Neural Information Processing Systems (pp. 105-112).
-
(2008)
Advances in Neural Information Processing Systems
, pp. 105-112
-
-
Bach, F.R.1
-
4
-
-
23244467688
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I. (2004). Multiple kernel learning, conic duality, and the SMO algorithm. Proceedings of the International Conference on Machine Learning (pp. 6-13).
-
(2004)
Proceedings of the International Conference on Machine Learning
, pp. 6-13
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
6
-
-
12244300139
-
Column-generation boosting methods for mixture of kernels
-
Bi, J., Zhang, T., & Bennet, K. P. (2004). Column-generation boosting methods for mixture of kernels. Proc. SIGKDD (pp. 521-526).
-
(2004)
Proc. SIGKDD
, pp. 521-526
-
-
Bi, J.1
Zhang, T.2
Bennet, K.P.3
-
8
-
-
0036161011
-
Choosing multiple parameters for Support Vector Machines
-
Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for Support Vector Machines. Machine Learning, 46, 131-159.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
10
-
-
0041995195
-
-
On kernel-target alignment, pp. 367-373
-
Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, J. (2001). On kernel-target alignment. Advances in Neural Information Processing Systems (pp. 367-373).
-
(2001)
Advances in Neural Information Processing Systems
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Elisseeff, A.3
Kandola, J.4
-
12
-
-
3142615000
-
A feature selection newton method for support vector machine classification
-
02-03, Univ. of Wisconsin
-
Fung, G., & Mangasarian, O. L. (2002). A feature selection newton method for support vector machine classification (Technical Report 02-03). Univ. of Wisconsin.
-
(2002)
Technical Report
-
-
Fung, G.1
Mangasarian, O.L.2
-
13
-
-
77956332691
-
Non-sparse Multiple Kernel Learning
-
Kloft, M., Brefeld, U., Laskov, P., & Sonnenburg, S. (2008). Non-sparse Multiple Kernel Learning. NIPS Workshop on Kernel Learning.
-
(2008)
NIPS Workshop on Kernel Learning
-
-
Kloft, M.1
Brefeld, U.2
Laskov, P.3
Sonnenburg, S.4
-
14
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., & Jordan, M. I. (2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27-72.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
16
-
-
21844468979
-
Learning the kernel with hyperkernels
-
Ong, C. S., Smola, A. J., & Williamson, R. C. (2005). Learning the kernel with hyperkernels. Journal of Machine Learning Research, 6, 1043-1071.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1043-1071
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
17
-
-
57249084590
-
Simplemkl
-
Rakotomamonjy, A., Bach, F., Grandvalet, Y., & Canu, S. (2008). Simplemkl. Journal of Machine Learning Research, 9, 2491-2521.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Grandvalet, Y.3
Canu, S.4
-
18
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
Song, L., Smola, A., Gretton, A., Borgwardt, K., & Bedo, J. (2007). Supervised feature selection via dependence estimation. Proceedings of the International Conference on Machine Learning (pp. 823-830).
-
(2007)
Proceedings of the International Conference on Machine Learning
, pp. 823-830
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.4
Bedo, J.5
-
19
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg, S., Raetsch, G., Schaefer, C., & Schoelkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research, 7, 1531-1565.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Raetsch, G.2
Schaefer, C.3
Schoelkopf, B.4
|