-
1
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
D. Fisher and H. J. Lenz, editors, Springer-Verlag, New York
-
D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H. J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121-130. Springer-Verlag, New York, 1996a.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics V
, pp. 121-130
-
-
Chickering, D.M.1
-
2
-
-
0002332440
-
Learning equivalence classes of Bayesian network structures
-
E. Horvitz and F. Jensen, editors, San Francisco, Morgan Kaufmann
-
D. M. Chickering. Learning equivalence classes of Bayesian network structures. In E. Horvitz and F. Jensen, editors, Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI '96), pages 150-157, San Francisco, 1996b. Morgan Kaufmann.
-
(1996)
Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI '96)
, pp. 150-157
-
-
Chickering, D.M.1
-
3
-
-
0031120321
-
Inducing features of random fields
-
S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(4):380-393, 1997.
-
(1997)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 380-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 39:1-39, 1977.
-
(1977)
Journal of the Royal Statistical Society, B
, vol.39
, pp. 1-39
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
6
-
-
33750192333
-
The information bottleneck EM algorithm
-
C. Meek and U. Kjærulff, editors, San Francisco, Morgan Kaufmann
-
G. Elidan and N. Friedman. The information bottleneck EM algorithm. In C. Meek and U. Kjærulff, editors, Proc. Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI '03), pages 200-208, San Francisco, 2003. Morgan Kaufmann.
-
(2003)
Proc. Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI '03)
, pp. 200-208
-
-
Elidan, G.1
Friedman, N.2
-
7
-
-
84898950733
-
Discovering hidden variables: A structure-based approach
-
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, Mass, MIT Press
-
G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-based approach. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 479-485, Cambridge, Mass., 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems 13
, pp. 479-485
-
-
Elidan, G.1
Lotner, N.2
Friedman, N.3
Koller, D.4
-
8
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
D. Fisher, editor, Morgan Kaufmann, San Francisco
-
N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In D. Fisher, editor, Proc. Fourteenth International Conference on Machine Learning, pages 125-133. Morgan Kaufmann, San Francisco, 1997.
-
(1997)
Proc. Fourteenth International Conference on Machine Learning
, pp. 125-133
-
-
Friedman, N.1
-
9
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using Bayesian networks to analyze expression data. Computational Biology, 7:601-620, 2000.
-
(2000)
Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
10
-
-
0002219642
-
Learning Bayesian network structure from massive data sets: The 'sparse candidate algorithm
-
K. Laskey and H. Prade, editors, San Francisco
-
N. Friedman, I. Nachman, and D. Pe'er. Learning Bayesian network structure from massive data sets: The 'sparse candidate" algorithm. In K. Laskey and H. Prade, editors, Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI '99), page 206-215, San Francisco, 1999.
-
(1999)
Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI '99)
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Pe'er, D.3
-
11
-
-
0033637153
-
Genomic expression program in the response of yeast cells to environmental changes
-
A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown. Genomic expression program in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11:4241-4257, 2000.
-
(2000)
Molecular Biology of the Cell
, vol.11
, pp. 4241-4257
-
-
Gasch, A.P.1
Spellman, P.T.2
Kao, C.M.3
Carmel-Harel, O.4
Eisen, M.B.5
Storz, G.6
Botstein, D.7
Brown, P.O.8
-
12
-
-
0000034390
-
Learning Gaussian networks
-
R. López de Mantarás and D. Poole, editors, San Francisco, Morgan Kaufmann
-
D. Geiger and D. Heckerman. Learning Gaussian networks. In R. López de Mantarás and D. Poole, editors, Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI '94), pages 235-243, San Francisco, 1994. Morgan Kaufmann.
-
(1994)
Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI '94)
, pp. 235-243
-
-
Geiger, D.1
Heckerman, D.2
-
13
-
-
0002654456
-
Tabu search
-
C. Reeves, editor, Oxford, England, Blackwell Scientific Publishing
-
F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic Techniques for Combinatorial Problems, Oxford, England, 1993. Blackwell Scientific Publishing.
-
(1993)
Modern Heuristic Techniques for Combinatorial Problems
-
-
Glover, F.1
Laguna, M.2
-
14
-
-
0000935895
-
An introduction to variational approximations methods for graphical models
-
M. I. Jordan, editor, Kluwer, Dordrecht, Netherlands
-
M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational approximations methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.
-
(1998)
Learning in Graphical Models
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.K.4
-
15
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5:549-573, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
16
-
-
0002480085
-
Graphical models for associations between variables, some of which are qualitative and some quantitative
-
S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics, 17:31-57, 1989.
-
(1989)
Annals of Statistics
, vol.17
, pp. 31-57
-
-
Lauritzen, S.L.1
Wermuth, N.2
-
17
-
-
0004089936
-
Discrete factor analysis: Learning hidden variables in Bayesian networks
-
Technical report, Department of Computer Science, University of Pittsburgh
-
J. Martin and K. VanLehn. Discrete factor analysis: Learning hidden variables in Bayesian networks. Technical report, Department of Computer Science, University of Pittsburgh, 1995.
-
(1995)
-
-
Martin, J.1
VanLehn, K.2
-
19
-
-
1942452317
-
Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
-
T. Fawcett and N. Mishra, editors, Menlo Park, California
-
A. Moore and W. Wong. Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In T. Fawcett and N. Mishra, editors, Proceedings of the 20th International Conference on Machine Learning (ICML '03), pages 552-559, Menlo Park, California, 2003.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning (ICML '03)
, pp. 552-559
-
-
Moore, A.1
Wong, W.2
-
20
-
-
0002425879
-
Loopy belief propagation for approximate inference: An empirical study
-
K. Laskey and H. Prade, editors, San Francisco, Morgan Kaufmann
-
K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: An empirical study. In K. Laskey and H. Prade, editors, Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI '99), page 467-475, San Francisco, 1999. Morgan Kaufmann.
-
(1999)
Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI '99)
, pp. 467-475
-
-
Murphy, K.1
Weiss, Y.2
-
21
-
-
14844307159
-
Inferring quantitative models of regulatory networks from expression data
-
I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory networks from expression data. Bioinformatics, 20(Suppl 1):S1248-1256, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.SUPPL. 1
-
-
Nachman, I.1
Regev, A.2
Friedman, N.3
-
22
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
23
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms
-
M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P. Lehmann, and G.F. Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. Methods of Information in Medicine, 30:241-55, 1991.
-
(1991)
Methods of Information in Medicine
, vol.30
, pp. 241-255
-
-
Shwe, M.A.1
Middleton, B.2
Heckerman, D.E.3
Henrion, M.4
Horvitz, E.J.5
Lehmann, H.P.6
Cooper, G.F.7
-
24
-
-
80053201441
-
A simple approach for finding the globally optimal Bayesian network structure
-
Dechter and Richardson, editors, San Francisco, Morgan Kaufmann
-
T. Silander and P. Myllym. A simple approach for finding the globally optimal Bayesian network structure. In Dechter and Richardson, editors, Proc. Twenty Second Conference on Uncertainty in Artificial Intelligence (UAI '06), San Francisco, 2006. Morgan Kaufmann.
-
(2006)
Proc. Twenty Second Conference on Uncertainty in Artificial Intelligence (UAI '06)
-
-
Silander, T.1
Myllym, P.2
-
25
-
-
34548151699
-
Finding optimal Bayesian networks by dynamic programming
-
Technical report, Carnegie Mellon University
-
A. Singh and A. Moore. Finding optimal Bayesian networks by dynamic programming. Technical report, Carnegie Mellon University, 2005.
-
(2005)
-
-
Singh, A.1
Moore, A.2
-
26
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
-
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12): 3273-97, 1998.
-
(1998)
Molecular Biology of the Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
27
-
-
36348929435
-
Ordering-based search: A simple and effective algorithm for learning Bayesian networks
-
F. Bacchus and T. Jaakkola, editors, San Francisco, Morgan Kaufmann
-
M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning Bayesian networks. In F. Bacchus and T. Jaakkola, editors, Proc. Twenty First Conference on Uncertainty in Artificial Intelligence (UAI '05), pages 584-590, San Francisco, 2005. Morgan Kaufmann.
-
(2005)
Proc. Twenty First Conference on Uncertainty in Artificial Intelligence (UAI '05)
, pp. 584-590
-
-
Teyssier, M.1
Koller, D.2
-
30
-
-
21844479166
-
Hierarchical latent class models for cluster analysis
-
N.L. Zhang. Hierarchical latent class models for cluster analysis. Journal of Machine Learning Research, 5:697-723, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 697-723
-
-
Zhang, N.L.1
|