메뉴 건너뛰기




Volumn 138, Issue , 2015, Pages 6-17

The identification of cis-regulatory elements: A review from a machine learning perspective

Author keywords

Cis regulatory elements; Data integration; Deep learning; Enhancers; Ensemble learning; Gene regulation; Machine learning; Promoters

Indexed keywords

TRANSCRIPTION FACTOR;

EID: 84959350566     PISSN: 03032647     EISSN: 18728324     Source Type: Journal    
DOI: 10.1016/j.biosystems.2015.10.002     Document Type: Review
Times cited : (42)

References (104)
  • 2
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanhi B., Delong A., Weirauch M., Frey B. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 2015, 33(8):831-838.
    • (2015) Nat. Biotechnol. , vol.33 , Issue.8 , pp. 831-838
    • Alipanhi, B.1    Delong, A.2    Weirauch, M.3    Frey, B.4
  • 4
    • 84925684704 scopus 로고    scopus 로고
    • Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model
    • Andersson R. Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. Bioessays 2015, 37:314-323.
    • (2015) Bioessays , vol.37 , pp. 314-323
    • Andersson, R.1
  • 6
    • 84874381107 scopus 로고    scopus 로고
    • Genome-wise quantitative enhancer activity maps identified by STARR-seq
    • Arnold C., Gerlach D., Stelzer C., Boryn L., Rath M., Stark A. Genome-wise quantitative enhancer activity maps identified by STARR-seq. Science 2013, 339:1074-1077.
    • (2013) Science , vol.339 , pp. 1074-1077
    • Arnold, C.1    Gerlach, D.2    Stelzer, C.3    Boryn, L.4    Rath, M.5    Stark, A.6
  • 7
    • 0000342467 scopus 로고
    • Statistical inference for probabilistic functions of finite state Markov chains
    • Baum L., Petrie T. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 1966, 37(6):1554-1563.
    • (1966) Ann. Math. Stat. , vol.37 , Issue.6 , pp. 1554-1563
    • Baum, L.1    Petrie, T.2
  • 8
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 12
    • 85194587171 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y., Simard P., Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 505:146-148.
    • (1994) IEEE Trans. Neural Netw. , vol.505 , pp. 146-148
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 13
    • 84896710720 scopus 로고    scopus 로고
    • A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos
    • Bhatia S., Monahan J., Ravi V., Gautier P., Murdoch E., Brenner S., van Heyningen V., Venkatesh B., Kleinjan D. A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos. Dev. Biol. 2014, 387(2):214-228.
    • (2014) Dev. Biol. , vol.387 , Issue.2 , pp. 214-228
    • Bhatia, S.1    Monahan, J.2    Ravi, V.3    Gautier, P.4    Murdoch, E.5    Brenner, S.6    van Heyningen, V.7    Venkatesh, B.8    Kleinjan, D.9
  • 14
    • 84884294269 scopus 로고    scopus 로고
    • The spatial organization of the human genome
    • Bickmore W. The spatial organization of the human genome. Ann. Rev. Genom. Hum. Genet. 2013, 14:67-84.
    • (2013) Ann. Rev. Genom. Hum. Genet. , vol.14 , pp. 67-84
    • Bickmore, W.1
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(3):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.3 , pp. 123-140
    • Breiman, L.1
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 20
    • 84862163181 scopus 로고    scopus 로고
    • Enhancer identification in mouse embryonic stem cell using integrative modeling of chromatin and genomic features
    • Chen C., Morris Q., Mitchell J. Enhancer identification in mouse embryonic stem cell using integrative modeling of chromatin and genomic features. BMC Genom. 2012, 13:152.
    • (2012) BMC Genom. , vol.13 , pp. 152
    • Chen, C.1    Morris, Q.2    Mitchell, J.3
  • 23
    • 84927559450 scopus 로고    scopus 로고
    • Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
    • Core L., Martins A., Danko C., Waters C., Siepel A., Lis J. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet. 2014, 46(12):1311-1320.
    • (2014) Nat. Genet. , vol.46 , Issue.12 , pp. 1311-1320
    • Core, L.1    Martins, A.2    Danko, C.3    Waters, C.4    Siepel, A.5    Lis, J.6
  • 24
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core L., Waterfall J., Lis J. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008, 322:1845-1848.
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.1    Waterfall, J.2    Lis, J.3
  • 25
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., Vapnik V. Support vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon J., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.1    Selvaraj, S.2    Yue, F.3    Kim, A.4    Li, Y.5    Shen, Y.6    Hu, M.7    Liu, J.8    Ren, B.9
  • 31
    • 0036081355 scopus 로고    scopus 로고
    • Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    • Edgar R., Domrachev M., Lash A. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl. Acids Res. 2002, 30(1):207-210.
    • (2002) Nucl. Acids Res. , vol.30 , Issue.1 , pp. 207-210
    • Edgar, R.1    Domrachev, M.2    Lash, A.3
  • 32
    • 78650747491 scopus 로고    scopus 로고
    • Discovery and characterization of chromatin states for systematic annotation of the human genome
    • Ernst J., Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 2010, 28(8):817-825.
    • (2010) Nat. Biotechnol. , vol.28 , Issue.8 , pp. 817-825
    • Ernst, J.1    Kellis, M.2
  • 33
    • 84857707318 scopus 로고    scopus 로고
    • ChromHMM: automating chromatin-state discovery and characterization
    • Ernst J., Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 2012, 9(3):215-216.
    • (2012) Nat. Methods , vol.9 , Issue.3 , pp. 215-216
    • Ernst, J.1    Kellis, M.2
  • 38
    • 34250369627 scopus 로고    scopus 로고
    • FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin
    • Giresi P., Kim J., McDaniell R., Iyer V., Lieb J. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007, 17(6):877-885.
    • (2007) Genome Res. , vol.17 , Issue.6 , pp. 877-885
    • Giresi, P.1    Kim, J.2    McDaniell, R.3    Iyer, V.4    Lieb, J.5
  • 39
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gonen M., Alpaydin E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011 July, 12:2211-2268.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gonen, M.1    Alpaydin, E.2
  • 42
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models - a review
    • Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: Data integration in dynamic models - a review. BioSystems 2009, 96:86-103.
    • (2009) BioSystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 43
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D., Geiger D., Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 1995, 20:197-243.
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 44
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G., Osindero S., Teh Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18:1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 45
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G., Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006, 313:504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 46
    • 84888015137 scopus 로고    scopus 로고
    • Master transcription factors and mediator establish super-enhancers at key cell identity genes
    • Hnisz D., Abraham B., Lee T., Lau A., Saint-Andre V., Sigova A., Hoke H., Young R. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 155:934-947.
    • (2013) Cell , vol.155 , pp. 934-947
    • Hnisz, D.1    Abraham, B.2    Lee, T.3    Lau, A.4    Saint-Andre, V.5    Sigova, A.6    Hoke, H.7    Young, R.8
  • 47
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hocheriter S., Jürgen Long short-term memory. Neural Comput. 1997, 9(8):1735-1788.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1788
    • Hocheriter, S.J.1
  • 48
    • 84862785201 scopus 로고    scopus 로고
    • Unsupervised pattern discovery in human chromatin structure through genomic segmentation
    • Hoffman M., Buske O., Wang J., Weng Z., Bilmes J., Nobel W. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 2012, 9(5):473-476.
    • (2012) Nat. Methods , vol.9 , Issue.5 , pp. 473-476
    • Hoffman, M.1    Buske, O.2    Wang, J.3    Weng, Z.4    Bilmes, J.5    Nobel, W.6
  • 50
    • 77649177097 scopus 로고    scopus 로고
    • Predictive chromatin signatures in the mammalian genome
    • Hon G., Hawkins R., Ren B. Predictive chromatin signatures in the mammalian genome. Hum. Mol. Genet. 2009, 18(R2):R195-R201.
    • (2009) Hum. Mol. Genet. , vol.18 , Issue.R2 , pp. R195-R201
    • Hon, G.1    Hawkins, R.2    Ren, B.3
  • 51
    • 84863414476 scopus 로고    scopus 로고
    • A spectral algorithm for learning hidden Markov models
    • Hsu D., Kakade S., Zhang T. A spectral algorithm for learning hidden Markov models. J. Comput. Syst. Sci. 2012, 78(5):1460-1480.
    • (2012) J. Comput. Syst. Sci. , vol.78 , Issue.5 , pp. 1460-1480
    • Hsu, D.1    Kakade, S.2    Zhang, T.3
  • 52
    • 34250159524 scopus 로고    scopus 로고
    • Genome-wide mapping of in vivo protein-DNA interactions
    • Johnson D., Mortazavi A., Myers R., Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007, 316(5830):447-455.
    • (2007) Science , vol.316 , Issue.5830 , pp. 447-455
    • Johnson, D.1    Mortazavi, A.2    Myers, R.3    Wold, B.4
  • 54
    • 84943143082 scopus 로고    scopus 로고
    • DEEP: a general compuational framework for predicting enhancers
    • Kleftogiannis D., Kalnis P., Bajic V. DEEP: a general compuational framework for predicting enhancers. Nucl. Acids Res. 2015, 43(1):e6.
    • (2015) Nucl. Acids Res. , vol.43 , Issue.1 , pp. e6
    • Kleftogiannis, D.1    Kalnis, P.2    Bajic, V.3
  • 56
    • 84893046921 scopus 로고    scopus 로고
    • Enhancer RNAs: the new molecules of transcription
    • Lai F., Shiekhattar R. Enhancer RNAs: the new molecules of transcription. Curr. Opin. Genet. Dev. 2014, 25:38-42.
    • (2014) Curr. Opin. Genet. Dev. , vol.25 , pp. 38-42
    • Lai, F.1    Shiekhattar, R.2
  • 57
    • 84897446230 scopus 로고    scopus 로고
    • Enhancer RNAs and regulated transcriptional programs
    • Lam M., Li W., Rosenfeld M., Glass C. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 2014, 39(4):170-182.
    • (2014) Trends Biochem. Sci. , vol.39 , Issue.4 , pp. 170-182
    • Lam, M.1    Li, W.2    Rosenfeld, M.3    Glass, C.4
  • 59
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86(11):2278-2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 60
    • 84858440747 scopus 로고    scopus 로고
    • Metazoan promoters: emerging characteristics and insights into transcriptional regulation
    • Lenhard B., Sandelin A., Carninci P. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 2015, 13:233-245.
    • (2015) Nat. Rev. Genet. , vol.13 , pp. 233-245
    • Lenhard, B.1    Sandelin, A.2    Carninci, P.3
  • 61
    • 84933509598 scopus 로고    scopus 로고
    • School of Computer Science, University of Windsor, Windsor, Ontario, Canada, (Ph.D. thesis)
    • Li Y. Sparse machine learning models in bioinformatics 2013, School of Computer Science, University of Windsor, Windsor, Ontario, Canada, (Ph.D. thesis).
    • (2013) Sparse machine learning models in bioinformatics
    • Li, Y.1
  • 62
    • 84959400381 scopus 로고    scopus 로고
    • Deep feature selection: theory and application to identify enhancers and promoters
    • in press (RECOMB 2015 Special Issue)
    • Li Y., Chen C., Wasserman W. Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol. 2015, in press (RECOMB 2015 Special Issue).
    • (2015) J. Comput. Biol.
    • Li, Y.1    Chen, C.2    Wasserman, W.3
  • 64
    • 84880712800 scopus 로고    scopus 로고
    • Sparse representation approaches for the classification of high-dimensional biological data
    • Li Y., Ngom A. Sparse representation approaches for the classification of high-dimensional biological data. BMC Syst. Biol. 2013, 7(Suppl. 4):S6.
    • (2013) BMC Syst. Biol. , vol.7 , pp. S6
    • Li, Y.1    Ngom, A.2
  • 66
    • 84943348158 scopus 로고    scopus 로고
    • Structure, function and evolution of topologically associating domains (TADs) at HOX loci
    • Lonfat N., Duboule D. Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett. 2015, 10.1016/j.febslet.2015.04.024.
    • (2015) FEBS Lett.
    • Lonfat, N.1    Duboule, D.2
  • 71
    • 84921859918 scopus 로고    scopus 로고
    • Identification of altered cis-regulatory elements in human disease
    • Mathelier A., Shi W., Wasserman W. Identification of altered cis-regulatory elements in human disease. Trends Genet. 2015, 31(2):67-76.
    • (2015) Trends Genet. , vol.31 , Issue.2 , pp. 67-76
    • Mathelier, A.1    Shi, W.2    Wasserman, W.3
  • 74
    • 84901004299 scopus 로고    scopus 로고
    • The rise of regulatory RNA
    • Morris K., Mattick J. The rise of regulatory RNA. Nat. Rev. Genet. 2014, 15:423-437.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 423-437
    • Morris, K.1    Mattick, J.2
  • 76
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • The MIT Press, (Chapter 3), B. Scholkopf, K. Tsuda, J.-P. Vert (Eds.)
    • Nobel W. Support vector machine applications in computational biology. Kernel Methods in Computational Biology 2004, 71-92. The MIT Press, (Chapter 3). B. Scholkopf, K. Tsuda, J.-P. Vert (Eds.).
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Nobel, W.1
  • 78
    • 79952901680 scopus 로고    scopus 로고
    • Enhancer function: new insights into the regulation of tissue-specific gene expression
    • Ong C., Corces V. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 2011, 12:283-293.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 283-293
    • Ong, C.1    Corces, V.2
  • 79
    • 84860443136 scopus 로고    scopus 로고
    • Enhancers: emerging roles in cell fate specification
    • Ong C., Corces V. Enhancers: emerging roles in cell fate specification. EMBO Rep. 2012, 13(5):423-430.
    • (2012) EMBO Rep. , vol.13 , Issue.5 , pp. 423-430
    • Ong, C.1    Corces, V.2
  • 80
    • 34547373354 scopus 로고    scopus 로고
    • Advances in the discovery of cis-regulatory elements
    • Pan Y. Advances in the discovery of cis-regulatory elements. Curr. Bioinform. 2006, 1(3):321-336.
    • (2006) Curr. Bioinform. , vol.1 , Issue.3 , pp. 321-336
    • Pan, Y.1
  • 82
    • 79952266465 scopus 로고    scopus 로고
    • Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
    • Pique-Regi R., Degner J., Pai A., Gaffney D., Gilad Y., Pritchard J. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 2011, 21:447-455.
    • (2011) Genome Res. , vol.21 , pp. 447-455
    • Pique-Regi, R.1    Degner, J.2    Pai, A.3    Gaffney, D.4    Gilad, Y.5    Pritchard, J.6
  • 83
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J. Induction of decision trees. Mach. Learn. 1986, 1:81-106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 84
    • 77952563619 scopus 로고    scopus 로고
    • Insulators and promoters: closer than we think
    • Raab J., Kamakaka R. Insulators and promoters: closer than we think. Nat. Rev. Genet. 2010, 11:1-23.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 1-23
    • Raab, J.1    Kamakaka, R.2
  • 86
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype-phenotype interactions
    • Ritchie M., Holzinger E., Li R., Pendergrass S., Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 2015, 15:85-97.
    • (2015) Nat. Rev. Genet. , vol.15 , pp. 85-97
    • Ritchie, M.1    Holzinger, E.2    Li, R.3    Pendergrass, S.4    Kim, D.5
  • 87
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium, Kundaje A., Meuleman W., et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518:317-330.
    • (2015) Nature , vol.518 , pp. 317-330
    • Roadmap Epigenomics, Consortium1    Kundaje, A.2    Meuleman, W.3
  • 88
    • 0031268931 scopus 로고    scopus 로고
    • Bidirectional recurrent neural networks
    • Schuster M., Paliwal K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45(11):2673-2681.
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.11 , pp. 2673-2681
    • Schuster, M.1    Paliwal, K.2
  • 89
    • 84899450857 scopus 로고    scopus 로고
    • Transcriptional enhancers: from properties to genome-wide predictions
    • Shlyueva D., Stampfel G., Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 2014, 15:272-286.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 272-286
    • Shlyueva, D.1    Stampfel, G.2    Stark, A.3
  • 91
    • 84939162929 scopus 로고    scopus 로고
    • Spectacle: fast chromatin state annotation using spectral learning
    • Song J., Chen K. Spectacle: fast chromatin state annotation using spectral learning. Genome Biol. 2015, 16:33.
    • (2015) Genome Biol. , vol.16 , pp. 33
    • Song, J.1    Chen, K.2
  • 93
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 94
    • 84897406127 scopus 로고    scopus 로고
    • A promoter-level mammalian expression atlas
    • The FANTOM Consortium, The RIKEN PMI, CLST (DGT) A promoter-level mammalian expression atlas. Nature 2014, 507:462-470.
    • (2014) Nature , vol.507 , pp. 462-470
  • 95
    • 84894345697 scopus 로고    scopus 로고
    • Reconstructing biological gene regulatory networks: where optimization meets big data
    • Thomas S., Jin Y. Reconstructing biological gene regulatory networks: where optimization meets big data. Evolutionary Intelligence 2014, 7:29-47.
    • (2014) Evolutionary Intelligence , vol.7 , pp. 29-47
    • Thomas, S.1    Jin, Y.2
  • 96
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58(1):267-288.
    • (1996) J. R. Stat. Soc. Ser. B (Methodol.) , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 97
    • 33846112470 scopus 로고    scopus 로고
    • VISTA enhancer browser - a database of tissue-specific human enhancers
    • Visel A., Minovitsky S., Dubchak I., Pennacchio L. VISTA enhancer browser - a database of tissue-specific human enhancers. Nucl. Acids Res. 2007, 35:D88-D92.
    • (2007) Nucl. Acids Res. , vol.35 , pp. D88-D92
    • Visel, A.1    Minovitsky, S.2    Dubchak, I.3    Pennacchio, L.4
  • 98
    • 84879783381 scopus 로고    scopus 로고
    • Computational identification of active enhancers in model organisms
    • Wang C., Zhang M., Zhang Z. Computational identification of active enhancers in model organisms. Genom. Proteom. Bioinform. 2013, 11:142-150.
    • (2013) Genom. Proteom. Bioinform. , vol.11 , pp. 142-150
    • Wang, C.1    Zhang, M.2    Zhang, Z.3
  • 99
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10:57-63.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 100
    • 1842584947 scopus 로고    scopus 로고
    • Applied bioinformatics for the identification of regulatory elements
    • Wasserman W., Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 2004, 5(4):276-287.
    • (2004) Nat. Rev. Genet. , vol.5 , Issue.4 , pp. 276-287
    • Wasserman, W.1    Sandelin, A.2
  • 101
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos P. Backpropagation through time: what it does and how to do it. Proc. IEEE 1990, 78(10):1550-1560.
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.1
  • 102
    • 84901804887 scopus 로고    scopus 로고
    • Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features
    • Yanez-Cuna J., Arnold C., Stampfel G., Boryn L., Gerlach D., Rath M., Stark A. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res. 2014, 24:1147-1156.
    • (2014) Genome Res. , vol.24 , pp. 1147-1156
    • Yanez-Cuna, J.1    Arnold, C.2    Stampfel, G.3    Boryn, L.4    Gerlach, D.5    Rath, M.6    Stark, A.7
  • 103
    • 84871693720 scopus 로고    scopus 로고
    • Deciphering the transcriptional cis-regulatory code
    • Yanez-Cuna J., Kvon E., Stark A. Deciphering the transcriptional cis-regulatory code. Trends Genet. 2013, 29(1):11-22.
    • (2013) Trends Genet. , vol.29 , Issue.1 , pp. 11-22
    • Yanez-Cuna, J.1    Kvon, E.2    Stark, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.