메뉴 건너뛰기




Volumn 70, Issue 1, 2008, Pages 53-71

The group lasso for logistic regression

Author keywords

Categorical data; Co ordinate descent algorithm; DNA splice site; Group variable selection; High dimensional generalized linear model; Penalized likelihood

Indexed keywords


EID: 37849035696     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2007.00627.x     Document Type: Article
Times cited : (1325)

References (28)
  • 1
    • 0442312210 scopus 로고    scopus 로고
    • Regularization of wavelet approximations (with discussion)
    • Antoniadis, A. Fan, J. (2001) Regularization of wavelet approximations (with discussion). J. Am. Statist. Ass., 96, 939 967.
    • (2001) J. Am. Statist. Ass. , vol.96 , pp. 939-967
    • Antoniadis, A.1    Fan, J.2
  • 3
    • 37849007807 scopus 로고    scopus 로고
    • Algorithms for sparse linear classifiers in the massive data setting
    • Rutgers University, Piscataway. (Available from.). Belmont: Athena Scientific.
    • Balakrishnan, S. Madigan, D. (2006) Algorithms for sparse linear classifiers in the massive data setting. Rutgers University, Piscataway. (Available from http://www.stat.rutgers.edu/∼madigan/PAPERS/.) 2003) Nonlinear Programming. Belmont: Athena Scientific.
    • (2006) Nonlinear Programming.
    • Balakrishnan, S.1    Madigan, D.2
  • 4
    • 61649085735 scopus 로고    scopus 로고
    • Modeling dependencies in pre-mrna splicing signals
    • In. eds. S. Salzberg, D. Searls. S. Kasif.), ch. 8, pp. New York: Elsevier Science.
    • Burge, C 1998) Modeling dependencies in pre-mrna splicing signals. In Computational Methods in Molecular Biology (eds S. Salzberg, D. Searls S. Kasif), ch. 8, pp. 129 164. New York : Elsevier Science.
    • (1998) Computational Methods in Molecular Biology , pp. 129-164
    • Burge, C.1
  • 5
    • 0031586003 scopus 로고    scopus 로고
    • Prediction of complete gene structures in human genomic DNA
    • Burge, C. Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Molec. Biol., 268, 78 94.
    • (1997) J. Molec. Biol. , vol.268 , pp. 78-94
    • Burge, C.1    Karlin, S.2
  • 6
    • 33644553976 scopus 로고    scopus 로고
    • Discussion of ''Regularization of wavelet approximations'' (by A. Antoniadis and J. Fan)
    • Cai, T. T. (2001) Discussion of ''Regularization of wavelet approximations'' (by A. Antoniadis and J. Fan). J. Am. Statist. Ass., 96, 960 962.
    • (2001) J. Am. Statist. Ass. , vol.96 , pp. 960-962
    • Cai, T.T.1
  • 8
    • 23744510605 scopus 로고    scopus 로고
    • Adaptive quantile regression
    • In. eds. M. Akritas. D. Politis. pp. New York: Elsevier.
    • van de Geer, S. (2003) Adaptive quantile regression. In Recent Advances and Trends in Nonparametric Statistics (eds M. Akritas D. Politis pp. 235 250. New York : Elsevier.
    • (2003) Recent Advances and Trends in Nonparametric Statistics , pp. 235-250
    • Van De Geer, S.1
  • 9
    • 37849009257 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • to be published.
    • van de Geer, S 2007) High-dimensional generalized linear models and the lasso. Ann. Statist., to be published.
    • (2007) Ann. Statist.
    • Van De Geer, S.1
  • 11
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Kim, Y., Kim, J. Kim, Y. (2006) Blockwise sparse regression. Statist. Sin., 16, 375 390.
    • (2006) Statist. Sin. , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 12
    • 4544259831 scopus 로고    scopus 로고
    • Logistic regression in rare events data
    • King, G. Zeng, L. (2001) Logistic regression in rare events data. Polit. Anal., 9, 137 163.
    • (2001) Polit. Anal. , vol.9 , pp. 137-163
    • King, G.1    Zeng, L.2
  • 16
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne, M., Presnell, B. Turlach, B. (2000) A new approach to variable selection in least squares problems. IMA J. Numer. Anal., 20, 389 403.
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 17
    • 34547849507 scopus 로고    scopus 로고
    • 1-regularization path algorithm for generalized linear models
    • Stanford University, Stanford. (Available from
    • 1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69, 659 677.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 659-677
    • Park, M.-Y.1    Hastie, T.2    Hastie, T.3
  • 18
    • 84898950954 scopus 로고    scopus 로고
    • Following curved regularized optimization solution paths
    • In. vol. 17 (eds. L. K. Saul, Y. Weiss. L. Bottou. pp. Cambridge: MIT Press.
    • Rosset, S 2005) Following curved regularized optimization solution paths. In Advances in Neural Information Processing Systems, vol. 17 (eds L. K. Saul, Y. Weiss L. Bottou pp. 1153 1160. Cambridge : MIT Press.
    • (2005) Advances in Neural Information Processing Systems , pp. 1153-1160
    • Rosset, S.1
  • 19
    • 1242263806 scopus 로고    scopus 로고
    • The generalized lasso
    • Roth, V. (2004) The generalized lasso. IEEE Trans. Neur. Netwrks, 15, 16 28.
    • (2004) IEEE Trans. Neur. Netwrks , vol.15 , pp. 16-28
    • Roth, V.1
  • 20
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade, S. Keerthi, S. (2003) A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19, 2246 2253.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.1    Keerthi, S.2
  • 22
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267 288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 23
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • Tibshirani, R. (1997) The lasso method for variable selection in the cox model. Statist. Med., 16, 385 395.
    • (1997) Statist. Med. , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 24
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • Tseng, P. (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optimizn Theory Appl., 109, 475 494.
    • (2001) J. Optimizn Theory Appl. , vol.109 , pp. 475-494
    • Tseng, P.1
  • 25
    • 37849006319 scopus 로고    scopus 로고
    • B, to be published.
    • Tseng, P Yun, S 2007) A coordinate gradient descent method for nonsmooth separable minimization. Math. Programmng B, to be published.
    • (2007) Math. Programmng
    • Tseng, P.1    Yun, S.2
  • 26
    • 2442441507 scopus 로고    scopus 로고
    • Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals
    • Yeo, G. W. Burge, C. B. (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Computnl Biol., 11, 475 494.
    • (2004) J. Computnl Biol. , vol.11 , pp. 475-494
    • Yeo, G.W.1    Burge, C.B.2
  • 27
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Statist. Soc. B, 68, 49 67.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.