메뉴 건너뛰기




Volumn , Issue , 2013, Pages 7398-7402

An investigation of deep neural networks for noise robust speech recognition

Author keywords

adaptive training; Aurora 4; deep neural network; noise robustness

Indexed keywords

ADAPTIVE TRAINING; AURORA 4; DECODING COMPLEXITY; DEEP NEURAL NETWORKS; NOISE ROBUST SPEECH RECOGNITION; NOISE ROBUSTNESS; STATE-OF-THE-ART PERFORMANCE; TRAINING TECHNIQUES;

EID: 84890492030     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2013.6639100     Document Type: Conference Paper
Times cited : (658)

References (26)
  • 2
    • 51449089990 scopus 로고    scopus 로고
    • A Minimum-mean-square-error noise reduction algorithm on mel-frequency cepstra for robust speech recognition
    • Las Vegas, NV
    • D. Yu, L. Deng, J. Droppo, J. Wu, Y. Gong, and A. Acero, "A Minimum-mean-square-error noise reduction algorithm on mel-frequency cepstra for robust speech recognition," in Proc. of ICASSP, Las Vegas, NV, 2008.
    • (2008) Proc. of ICASSP
    • Yu, D.1    Deng, L.2    Droppo, J.3    Wu, J.4    Gong, Y.5    Acero, A.6
  • 3
    • 44849125798 scopus 로고    scopus 로고
    • High-performance HMM adaptation with joint compensation of ad-ditive and convolutive distortions via Vector Taylor Series
    • Kyoto, Japan
    • J. Li, L. Deng, D. Yu, Y. Gong, and A. Acero, "High-performance HMM adaptation with joint compensation of ad-ditive and convolutive distortions via Vector Taylor Series," in Proc. of ASRU, Kyoto, Japan, 2007.
    • (2007) Proc. of ASRU
    • Li, J.1    Deng, L.2    Yu, D.3    Gong, Y.4    Acero, A.5
  • 4
    • 77249100743 scopus 로고    scopus 로고
    • An HMM compensation approach us-ing unscented transformation for noisy speech recognition
    • Y. Hu and Q. Huo, "An HMM compensation approach us-ing unscented transformation for noisy speech recognition," in Proc. ISCSLP, 2006, pp. 346-357.
    • (2006) Proc. ISCSLP , pp. 346-357
    • Hu, Y.1    Huo, Q.2
  • 5
    • 78049355732 scopus 로고    scopus 로고
    • Acoustic model adaptation via linear spline interpolation for robust speech recognition
    • Dallas, TX
    • M. L. Seltzer, K. Kalgaonkar, and A. Acero, "Acoustic model adaptation via linear spline interpolation for robust speech recognition," in Proc. of ICASSP, Dallas, TX, 2010.
    • (2010) Proc. of ICASSP
    • Seltzer, M.L.1    Kalgaonkar, K.2    Acero, A.3
  • 8
    • 34547528168 scopus 로고    scopus 로고
    • Adaptive training with joint uncer-tainty decoding for robust recognition of noisy data
    • Honolulu, Hawaii
    • H. Liao and M. J. F. Gales, "Adaptive training with joint uncer-tainty decoding for robust recognition of noisy data," in Proc. of ICASSP, Honolulu, Hawaii, 2007.
    • (2007) Proc. of ICASSP
    • Liao, H.1    Gales, M.J.F.2
  • 11
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcrip-tion using context-dependent deep neural networks
    • F. Seide, G. Li, and D. Yu, "Conversational speech transcrip-tion using context-dependent deep neural networks," in Proc. Interspeech, 2011.
    • (2011) Proc. Interspeech
    • Seide, F.1    Li, G.2    Yu, D.3
  • 12
    • 84878379108 scopus 로고    scopus 로고
    • Scalable mini-mum bayes risk training of deep neural network acoustic mod-els using distributed hessian-free optimization
    • B. Kingsbury, T. N. Sainath, and H. Soltau, "Scalable mini-mum bayes risk training of deep neural network acoustic mod-els using distributed hessian-free optimization," in Proc. Inter-speech, 2012.
    • (2012) Proc. Inter-speech
    • Kingsbury, B.1    Sainath, T.N.2    Soltau, H.3
  • 13
    • 80051644173 scopus 로고    scopus 로고
    • Comparing multilayer perceptron to deep belief network tandem features for robust asr
    • may
    • O. Vinyals and S.V. Ravuri, "Comparing multilayer perceptron to deep belief network tandem features for robust asr," in Proc. ICASSP, may 2011, pp. 4596-4599.
    • (2011) Proc. ICASSP , pp. 4596-4599
    • Vinyals, O.1    Ravuri, S.V.2
  • 14
    • 0033692739 scopus 로고    scopus 로고
    • Feature extraction using non-linear transformation for robust speech recognition on the aurora database
    • S. Sharma, D. Ellis, S. Kajarekar, P. Jain, and H. Hermansky, "Feature extraction using non-linear transformation for robust speech recognition on the aurora database," in Proc. ICASSP, 2000, vol. 2, pp. II1117-II1120 vol.2.
    • (2000) Proc. ICASSP , vol.2
    • Sharma, S.1    Ellis, D.2    Kajarekar, S.3    Jain, P.4    Hermansky, H.5
  • 15
    • 0023739472 scopus 로고
    • Noise reduction using connectionist models
    • S. Tamura and A.Waibel, "Noise reduction using connectionist models," in Proc. ICASSP, apr 1988, pp. 553-556 vol.1.
    • (1988) Proc. ICASSP, Apr , pp. 553-556
    • Tamura, S.1    Waibel, A.2
  • 20
    • 85009070292 scopus 로고    scopus 로고
    • Large-vocabulary speech recognition under adverse acoustic environments
    • October
    • Li Deng, A. Acero, Mike Plumpe, and Huang Xuedong, "Large-vocabulary speech recognition under adverse acoustic environments," ICSLP 2000, vol. 3, pp. 806-809, October 2000.
    • (2000) ICSLP 2000 , vol.3 , pp. 806-809
    • Deng, L.1    Acero, A.2    Plumpe, M.3    Xuedong, H.4
  • 21
    • 0021892216 scopus 로고
    • Speech enhancement using a minimum mean square error log-spectral amplitude estimator
    • Apr
    • Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean square error log-spectral amplitude estimator," IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-33, no. 2, pp. 443-445, Apr. 1985.
    • (1985) IEEE Trans. on Acoust., Speech, Signal Processing , vol.ASSP-33 , Issue.2 , pp. 443-445
    • Ephraim, Y.1    Malah, D.2
  • 22
    • 85009113852 scopus 로고    scopus 로고
    • HMM adaptation using vector taylor series for noisy speech recognition
    • A. Acero, L. Deng, T. Kristjansson, and J. Zhang, "HMM Adaptation Using Vector Taylor Series for Noisy Speech Recognition," in Proc. of ICSLP, 2000.
    • (2000) Proc. of ICSLP
    • Acero, A.1    Deng, L.2    Kristjansson, T.3    Zhang, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.