메뉴 건너뛰기




Volumn 32, Issue 1, 2016, Pages 1-8

A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA;

EID: 84959866210     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv544     Document Type: Article
Times cited : (218)

References (43)
  • 1
    • 26244461684 scopus 로고    scopus 로고
    • Clustering with Bregman divergences
    • Banerjee, A. et al. (2005) Clustering with Bregman divergences. J. Mach. Learn. Res., 6, 1705-1749.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1705-1749
    • Banerjee, A.1
  • 2
    • 79959838081 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • Bell, D. et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609-615.
    • (2011) Nature , vol.474 , pp. 609-615
    • Bell, D.1
  • 3
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • Berry, M. W. et al. (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal., 52, 155-173.
    • (2007) Comput. Stat. Data Anal. , vol.52 , pp. 155-173
    • Berry, M.W.1
  • 4
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet, J. P. et al. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA, 101, 4164-4169.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 4164-4169
    • Brunet, J.P.1
  • 5
    • 66149141021 scopus 로고    scopus 로고
    • PTEN and the PI3-kinase pathway in cancer
    • Chalhoub, N. and Baker, S. J. (2009) PTEN and the PI3-kinase pathway in cancer. Annu. Rev. Pathol., 4, 127-150.
    • (2009) Annu. Rev. Pathol. , vol.4 , pp. 127-150
    • Chalhoub, N.1    Baker, S.J.2
  • 6
    • 38449101120 scopus 로고    scopus 로고
    • Integration of biological networks and gene expression data using cytoscape
    • Cline, M. S. et al. (2007) Integration of biological networks and gene expression data using cytoscape. Nat. Protoc., 2, 2366-2382.
    • (2007) Nat. Protoc. , vol.2 , pp. 2366-2382
    • Cline, M.S.1
  • 7
    • 84859090208 scopus 로고    scopus 로고
    • Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma
    • Creighton, C. J. et al. (2012) Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma. PLoS One, 7, e34546.
    • (2012) PLoS One , vol.7 , pp. e34546
    • Creighton, C.J.1
  • 8
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • Devarajan, K. (2008) Nonnegative matrix factorization: An analytical and interpretive tool in computational biology. PLoS Comput. Biol., 4, e1000029.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000029
    • Devarajan, K.1
  • 9
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao, Y. and Church, G. (2005) Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21, 3970-3975.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 10
    • 77649252269 scopus 로고    scopus 로고
    • Visualization of omics data for systems biology
    • Gehlenborg, N. et al. (2010) Visualization of omics data for systems biology. Nature, 7, S56-S68.
    • (2010) Nature , vol.7 , pp. S56-S68
    • Gehlenborg, N.1
  • 11
    • 33748047128 scopus 로고    scopus 로고
    • RB and cell cycle progression
    • Giacinti, C. and Giordano, A. (2006) RB and cell cycle progression. Oncogene, 25, 5220-5227.
    • (2006) Oncogene , vol.25 , pp. 5220-5227
    • Giacinti, C.1    Giordano, A.2
  • 13
    • 84887084951 scopus 로고    scopus 로고
    • Network-based stratification of tumor mutations
    • Hofree, M. et al. (2013) Network-based stratification of tumor mutations. Nat. Methods, 10, 1108-1115.
    • (2013) Nat. Methods , vol.10 , pp. 1108-1115
    • Hofree, M.1
  • 14
    • 33747892114 scopus 로고    scopus 로고
    • A concise review of DNA damage checkpoints and repair in mammalian cells
    • Houtgraaf, J. H. et al. (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc. Revasc. Med., 7, 165-172.
    • (2006) Cardiovasc. Revasc. Med. , vol.7 , pp. 165-172
    • Houtgraaf, J.H.1
  • 15
    • 84862333922 scopus 로고    scopus 로고
    • Integrated proteomic, transcriptomic, and biological network analysis of breast carcinoma revealsmolecular features of tumorigenesis and clinical relapse
    • Imielinski, M. et al. (2012) Integrated proteomic, transcriptomic, and biological network analysis of breast carcinoma revealsmolecular features of tumorigenesis and clinical relapse. Mol. Cell. Proteomics, 11, M111. 014910.
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. M111014910
    • Imielinski, M.1
  • 16
    • 84866418066 scopus 로고    scopus 로고
    • Transcriptional and metabolic data integration and modeling for identification of active pathways
    • Jauhiainen, A. et al. (2012) Transcriptional and metabolic data integration and modeling for identification of active pathways. Biostatistics, 13, 748-761.
    • (2012) Biostatistics , vol.13 , pp. 748-761
    • Jauhiainen, A.1
  • 17
    • 46949103774 scopus 로고    scopus 로고
    • Bayesian variable selection and data integration for biological regulatory networks
    • Jensen, S. T. et al. (2007) Bayesian variable selection and data integration for biological regulatory networks. Ann. Appl. Stat., 1, 612-633.
    • (2007) Ann. Appl. Stat. , vol.1 , pp. 612-633
    • Jensen, S.T.1
  • 18
    • 84922216394 scopus 로고    scopus 로고
    • A computational approach to identifying genemicroRNA modules in cancer
    • Jin, D. and Lee, H. (2015) A computational approach to identifying genemicroRNA modules in cancer. PLoS Comput. Biol., 11, e1004042.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004042
    • Jin, D.1    Lee, H.2
  • 19
    • 79955562657 scopus 로고    scopus 로고
    • Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
    • Jörnsten, R. et al. (2011) Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Mol. Syst. Biol., 7.
    • (2011) Mol. Syst. Biol. , vol.7
    • Jörnsten, R.1
  • 20
    • 84861123691 scopus 로고    scopus 로고
    • Ten years of pathway analysis: Current approaches and outstanding challenges
    • Khatri, P. et al. (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol., 8, e1002375.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002375
    • Khatri, P.1
  • 21
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim, H. and Park, H. (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23, 1495-1502.
    • (2007) Bioinformatics , vol.23 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 23
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D. D. and Seung, H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 24
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee, D. D. and Seung, H. S. (2001) Algorithms for non-negative matrix factorization. Adv. Neural Inform. Proc. Syst., 13, 556-562.
    • (2001) Adv. Neural Inform. Proc. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 25
    • 84867283138 scopus 로고    scopus 로고
    • Identifying multi-layer gene regulatory modules from multi-dimensional genomic data
    • Li, W. et al. (2012) Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics, 28, 2458-2466.
    • (2012) Bioinformatics , vol.28 , pp. 2458-2466
    • Li, W.1
  • 26
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li, C. and Li, H. (2008) Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 24, 1175-1182.
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 27
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • Lin, C. J. (2007) On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Netw., 18, 1589-1596.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , pp. 1589-1596
    • Lin, C.J.1
  • 28
    • 84885617335 scopus 로고    scopus 로고
    • Bayesian consensus clustering
    • Lock, E. F. and Dunson, D. B. (2013) Bayesian consensus clustering. Bioinformatics, 29, 2610-2616.
    • (2013) Bioinformatics , vol.29 , pp. 2610-2616
    • Lock, E.F.1    Dunson, D.B.2
  • 29
    • 84876058478 scopus 로고    scopus 로고
    • Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
    • Lock, E. F. et al. (2013) Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann. Appl. Stat., 7, 523-542.
    • (2013) Ann. Appl. Stat. , vol.7 , pp. 523-542
    • Lock, E.F.1
  • 30
    • 84886706287 scopus 로고    scopus 로고
    • Structural and functional discovery in dynamic networks with non-negative matrix factorization
    • Mankad, S. and Michailidis, G. (2013) Structural and functional discovery in dynamic networks with non-negative matrix factorization. Phys. Rev. E, 88, 042812.
    • (2013) Phys. Rev. e , vol.88 , pp. 042812
    • Mankad, S.1    Michailidis, G.2
  • 31
    • 84893009656 scopus 로고    scopus 로고
    • Methods and approaches in the topology-based analysis of biological pathways
    • Mitrea, C. et al. (2013) Methods and approaches in the topology-based analysis of biological pathways. Front. Physiol., 4, 278.
    • (2013) Front. Physiol. , vol.4 , pp. 278
    • Mitrea, C.1
  • 32
    • 84875016233 scopus 로고    scopus 로고
    • Pattern discovery and cancer gene identification in integrated cancer genomic data
    • Mo, Q. et al. (2013) Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA, 110, 4245-4250.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 4245-4250
    • Mo, Q.1
  • 33
    • 84887283985 scopus 로고    scopus 로고
    • Integrated module and gene-specific regulatory inference implicates upstream signaling networks
    • Roy, S. et al. (2013) Integrated module and gene-specific regulatory inference implicates upstream signaling networks. PLoS Comput. Biol., 9, e1003252.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003252
    • Roy, S.1
  • 34
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • Sra, S. and Dhillon, I. S. (2005) Generalized nonnegative matrix approximations with Bregman divergences. J. Mach. Learn. Res., 18, 283-290.
    • (2005) J. Mach. Learn. Res. , vol.18 , pp. 283-290
    • Sra, S.1    Dhillon, I.S.2
  • 35
    • 84878889746 scopus 로고    scopus 로고
    • Systematic tracking of dysregulated modules identifies novel genes in cancer
    • Srihari, S. and Ragan, M. A. (2013) Systematic tracking of dysregulated modules identifies novel genes in cancer. Bioinformatics, 29, 1553-1561.
    • (2013) Bioinformatics , vol.29 , pp. 1553-1561
    • Srihari, S.1    Ragan, M.A.2
  • 36
    • 80053590625 scopus 로고    scopus 로고
    • Incorporating biological information into linear models: A Bayesian approach to the selection of pathways and genes
    • Stingo, F. C. et al. (2011) Incorporating biological information into linear models: A Bayesian approach to the selection of pathways and genes. Ann. Appl. Stat., 5, 1978-2002.
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 1978-2002
    • Stingo, F.C.1
  • 37
    • 34347219009 scopus 로고    scopus 로고
    • Metagene projection for cross-platform, cross-species characterization of global transcriptional states
    • Tamayo, P. et al. (2007) Metagene projection for cross-platform, cross-species characterization of global transcriptional states. Proc. Natl. Acad. Sci. USA, 104, 5959-5964.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 5959-5964
    • Tamayo, P.1
  • 38
    • 84873862912 scopus 로고    scopus 로고
    • Prognostically relevant gene signatures of highgrade serous ovarian carcinoma
    • Verhaak, R. G. W. et al. (2013) Prognostically relevant gene signatures of highgrade serous ovarian carcinoma. J. Clin. Invest., 123, 517-525.
    • (2013) J. Clin. Invest. , vol.123 , pp. 517-525
    • Verhaak, R.G.W.1
  • 39
    • 68249115586 scopus 로고    scopus 로고
    • Extensions of sparse canonical correlation analysis with applications to genomic data
    • Witten, D. M. et al. (2009) Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol., 8, 1-27.
    • (2009) Stat. Appl. Genet. Mol. Biol. , vol.8 , pp. 1-27
    • Witten, D.M.1
  • 40
    • 0034921007 scopus 로고    scopus 로고
    • Tumor suppressor PTEN: Modulator of cell signaling, growth, migration and apoptosis
    • Yamada, K. M. and Araki, M. (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J. Cell Sci., 114, 2375-2382.
    • (2001) J. Cell Sci. , vol.114 , pp. 2375-2382
    • Yamada, K.M.1    Araki, M.2
  • 41
    • 11044222422 scopus 로고    scopus 로고
    • Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage
    • Yoshida, K. and Miki, Y. (2004) Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci., 95, 866-871.
    • (2004) Cancer Sci. , vol.95 , pp. 866-871
    • Yoshida, K.1    Miki, Y.2
  • 42
    • 79959448071 scopus 로고    scopus 로고
    • A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
    • Zhang, S. et al. (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 27, i401-i409.
    • (2011) Bioinformatics , vol.27 , pp. i401-i409
    • Zhang, S.1
  • 43
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang, S. et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res., 40, 9379-9391.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9379-9391
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.