메뉴 건너뛰기




Volumn 5, Issue 4, 2012, Pages 287-364

Metric learning: A survey

Author keywords

[No Author keywords available]

Indexed keywords

DISTANCE FUNCTIONS; HIGH-DIMENSIONAL FEATURE SPACE; LEARNING METHODS; MAHALANOBIS DISTANCES; NEAREST NEIGHBOR METHOD; NUMBER OF DATUM; PROGRAM ANALYSIS; RECENT PROGRESS;

EID: 84887890691     PISSN: 19358237     EISSN: 19358245     Source Type: Journal    
DOI: 10.1561/2200000019     Document Type: Review
Times cited : (934)

References (84)
  • 1
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle, "Mirror descent and nonlinear projected subgradient methods for convex optimization", Operations Research Letters, vol. 31, pp. 167-175, 2003.
    • (2003) Operations Research Letters , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 5
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • D. Saad, ed., Cambridge University Press
    • L. Bottou, "Online algorithms and stochastic approximations", in Online Learning and Neural Networks, (D. Saad, ed.), Cambridge University Press, 1998.
    • (1998) Online Learning and Neural Networks
    • Bottou, L.1
  • 7
    • 0002436271 scopus 로고
    • A method for finding projections onto the intersection of convex sets in Hilbert spaces
    • J. P. Boyle and R. L. Dykstra, "A method for finding projections onto the intersection of convex sets in Hilbert spaces", Lecture Notes in Statistics, vol. 37, pp. 28-47, 1986.
    • (1986) Lecture Notes in Statistics , vol.37 , pp. 28-47
    • Boyle, J.P.1    Dykstra, R.L.2
  • 8
    • 49949144765 scopus 로고
    • The relxation method of finding the common points of convex sets and its application to the solutionof problems in convex programming
    • L. M. Bregman, "The relxation method of finding the common points of convex sets and its application to the solutionof problems in convex programming", USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 3, pp. 200-217, 1967.
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , Issue.3 , pp. 200-217
    • Bregman, L.M.1
  • 11
    • 77952550960 scopus 로고    scopus 로고
    • A new kernelization framework for Mahalanobis distance learning algorithms
    • R. Chatpatanasiri, T. Korsrilabutr, P. Tangchanachaianan, and B. Kijsirikul, "A new kernelization framework for Mahalanobis distance learning algorithms", Neurocomputing, vol. 73, no. 10-12, pp. 1570-1579, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1570-1579
    • Chatpatanasiri, R.1    Korsrilabutr, T.2    Tangchanachaianan, P.3    Kijsirikul, B.4
  • 16
    • 5044227712 scopus 로고    scopus 로고
    • 3D texture recognition using bidirectional feature histograms
    • O. G. Cula and K. J. Dana, "3D texture recognition using bidirectional feature histograms", International Journal of Computer Vision (IJCV), vol. 59, no. 1, pp. 33-60, 2004.
    • (2004) International Journal of Computer Vision (IJCV) , vol.59 , Issue.1 , pp. 33-60
    • Cula, O.G.1    Dana, K.J.2
  • 17
    • 0344960572 scopus 로고    scopus 로고
    • Curious Labs, Inc., Santa Cruz, CA
    • Curious Labs, Inc., Poser 5 - Reference Manual. Santa Cruz, CA, 2002.
    • (2002) Poser 5 - Reference Manual
  • 21
    • 84964316606 scopus 로고
    • A new variational result for quasi-Newton formulae
    • R. Fletcher, "A new variational result for quasi-Newton formulae", SIAM Journal on Optimization, vol. 1, no. 1, 1991.
    • (1991) SIAM Journal on Optimization , vol.1 , Issue.1
    • Fletcher, R.1
  • 22
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • J. Friedman, J. Bentley, and A. Finkel, "An algorithm for finding best matches in logarithmic expected time", ACM Transactions on Mathematics Software, vol. 3, no. 3, pp. 209-226, 1977.
    • (1977) ACM Transactions on Mathematics Software , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.1    Bentley, J.2    Finkel, A.3
  • 24
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • T. Gaertner, "A survey of kernels for structured data", ACM SIGKDD Explorations Newsletter, vol. 5, no. 1, 2003.
    • (2003) ACM SIGKDD Explorations Newsletter , vol.5 , Issue.1
    • Gaertner, T.1
  • 29
    • 34247576789 scopus 로고    scopus 로고
    • The pyramid match kernel: Efficient learning with sets of features
    • K. Grauman and T. Darrell, "The pyramid match kernel: Efficient learning with sets of features", Journal of Machine Learning Research, vol. 8, pp. 725-760, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 725-760
    • Grauman, K.1    Darrell, T.2
  • 46
  • 60
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schoelkopf, A. Smola, and K.-R. Mueller, "Nonlinear component analysis as a kernel eigenvalue problem", Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schoelkopf, B.1    Smola, A.2    Mueller, K.-R.3
  • 74
    • 0026256261 scopus 로고
    • Satisfying general proximity/similarity queries with metric trees
    • J. Uhlmann, "Satisfying general proximity/similarity queries with metric trees", Information Processing Letters, vol. 40, pp. 175-179, 1991.
    • (1991) Information Processing Letters , vol.40 , pp. 175-179
    • Uhlmann, J.1
  • 75
    • 70349850950 scopus 로고    scopus 로고
    • A statistical approach to material classification using image patch exemplars
    • M. Varma and A. Zisserman, "A statistical approach to material classification using image patch exemplars", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 2032-2047, 2009.
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , Issue.11 , pp. 2032-2047
    • Varma, M.1    Zisserman, A.2
  • 78
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul, "Distance metric learning for large margin nearest neighbor classification", Journal of Machine Learning Research, vol. 10, pp. 207-244, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 81
    • 33746131974 scopus 로고    scopus 로고
    • Kernel-based distance metric learning for microarray data classification
    • H. Xiong and X. Chen, "Kernel-based distance metric learning for microarray data classification", BMC Bioinformatics, vol. 7, p. 299, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 299
    • Xiong, H.1    Chen, X.2
  • 83
    • 84857513492 scopus 로고    scopus 로고
    • Distance metric learning with eigenvalue optimization
    • Y. Ying and P. Li, "Distance metric learning with eigenvalue optimization", Journal of Machine Learning Research, vol. 13, pp. 1-26, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 1-26
    • Ying, Y.1    Li, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.