메뉴 건너뛰기




Volumn , Issue , 2013, Pages 252-260

Multi-view clustering via joint nonnegative matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; DATA MINING; FACTORIZATION; HUMAN COMPUTER INTERACTION; MATRIX ALGEBRA;

EID: 84886433522     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972832.28     Document Type: Conference Paper
Times cited : (892)

References (22)
  • 1
    • 84864118833 scopus 로고    scopus 로고
    • Non-negative matrix factorization in multimodality data for segmentation and label prediction
    • Z. Akata, C. Thurau, and C. Bauckhage. Non-negative Matrix Factorization in Multimodality Data for Segmentation and Label Prediction. In 16th Computer Vision Winter Workshop, pages 1-8, 2011.
    • (2011) 16th Computer Vision Winter Workshop , pp. 1-8
    • Akata, Z.1    Thurau, C.2    Bauckhage, C.3
  • 2
    • 80052204125 scopus 로고    scopus 로고
    • Learning from multiple partially observed views - An application to multilingual text categorization
    • M. Amini, N. Usunier, and C. Goutte. Learning from multiple partially observed views - an application to multilingual text categorization. In NIPS, pages 28-36, 2009.
    • (2009) NIPS , pp. 28-36
    • Amini, M.1    Usunier, N.2    Goutte, C.3
  • 3
    • 19544371182 scopus 로고    scopus 로고
    • Multi-view clustering
    • S. Bickel and T. Scheffer. Multi-view clustering. In ICDM, pages 19-26, 2004.
    • (2004) ICDM , pp. 19-26
    • Bickel, S.1    Scheffer, T.2
  • 4
    • 51949086515 scopus 로고    scopus 로고
    • Correlational spectral clustering
    • M. Blaschko and C. Lampert. Correlational spectral clustering. In CVPR, pages 1 -8, 2008.
    • (2008) CVPR , pp. 1-8
    • Blaschko, M.1    Lampert, C.2
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
    • (1998) COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 6
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • J. Brunet, P. Tamayo, T. Golub, and J. Mesirov. Metagenes and molecular pattern discovery using matrix factorization. PNAS, 101(12):4164-4169, 2004.
    • (2004) PNAS , vol.101 , Issue.12 , pp. 4164-4169
    • Brunet, J.1    Tamayo, P.2    Golub, T.3    Mesirov, J.4
  • 7
    • 72449145346 scopus 로고    scopus 로고
    • Multiview clustering: A late fusion approach using latent models
    • E. Bruno and S. Marchand-Maillet. Multiview clustering: a late fusion approach using latent models. In SIGIR, pages 736-737, 2009.
    • (2009) SIGIR , pp. 736-737
    • Bruno, E.1    Marchand-Maillet, S.2
  • 8
    • 71149099083 scopus 로고    scopus 로고
    • Multi-view clustering via canonical correlation analysis
    • K. Chaudhuri, S. Kakade, K. Livescu, and K. Sridharan. Multi-view clustering via canonical correlation analysis. In ICML, pages 129-136, 2009.
    • (2009) ICML , pp. 129-136
    • Chaudhuri, K.1    Kakade, S.2    Livescu, K.3    Sridharan, K.4
  • 9
    • 41249089920 scopus 로고    scopus 로고
    • On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing
    • C. Ding, T. Li, and W. Peng. On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing. Computational Statistics Data Analysis, 52:3913-3927, 2008.
    • (2008) Computational Statistics Data Analysis , vol.52 , pp. 3913-3927
    • Ding, C.1    Li, T.2    Peng, W.3
  • 10
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In KDD, pages 126-135, 2006.
    • (2006) KDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 11
    • 84885621082 scopus 로고    scopus 로고
    • Relation between PLSA and NMF and implications
    • E. Gaussier and C. Goutte. Relation between PLSA and NMF and implications. In SIGIR, pages 601-602, 2005.
    • (2005) SIGIR , pp. 601-602
    • Gaussier, E.1    Goutte, C.2
  • 12
    • 78149269890 scopus 로고    scopus 로고
    • Coclustering multiple heterogeneous domains: Linear combinations and agreements
    • G. Greco, A. Guzzo, and L. Pontieri. Coclustering multiple heterogeneous domains: Linear combinations and agreements. TKDE, 22:1649-1663, 2010.
    • (2010) TKDE , vol.22 , pp. 1649-1663
    • Greco, G.1    Guzzo, A.2    Pontieri, L.3
  • 13
    • 71049164704 scopus 로고    scopus 로고
    • A matrix factorization approach for integrating multiple data views
    • D. Greene and P. Cunningham. A matrix factorization approach for integrating multiple data views. In ECML PKDD, pages 423-438, 2009.
    • (2009) ECML PKDD , pp. 423-438
    • Greene, D.1    Cunningham, P.2
  • 14
    • 84880711286 scopus 로고    scopus 로고
    • On trivial solution and scale transfer problems in graph regularized nmf
    • Q. Gu, C. Ding, and J. Han. On trivial solution and scale transfer problems in graph regularized nmf. In AAAI, pages 1288-1293, 2011.
    • (2011) AAAI , pp. 1288-1293
    • Gu, Q.1    Ding, C.2    Han, J.3
  • 15
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50-57, 1999.
    • (1999) SIGIR , pp. 50-57
    • Hofmann, T.1
  • 16
    • 80053441153 scopus 로고    scopus 로고
    • A co-training approach for multi-view spectral clustering
    • A. Kumar and H. Daumé III. A co-training approach for multi-view spectral clustering. In ICML, pages 393-400, 2011.
    • (2011) ICML , pp. 393-400
    • Kumar, A.1    Daumé, H.2
  • 17
    • 85162436778 scopus 로고    scopus 로고
    • Co-regularized multi-view spectral clustering
    • A. Kumar, P. Rai, and H. Daumé III. Co-regularized multi-view spectral clustering. In NIPS, pages 1413-1421. 2011.
    • (2011) NIPS , pp. 1413-1421
    • Kumar, A.1    Rai, P.2    Daumé, H.3
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, S.2
  • 19
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • A. Singh and G. Gordon. Relational learning via collective matrix factorization. In KDD, pages 650-658, 2008.
    • (2008) KDD , pp. 650-658
    • Singh, A.1    Gordon, G.2
  • 20
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. SIGIR, pages 267-273, 2003.
    • (2003) SIGIR , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 21
    • 51949105131 scopus 로고    scopus 로고
    • Nonnegative graph embedding
    • june
    • J. Yang, S. Yang, Y. Fu, X. Li, and T. Huang. Nonnegative graph embedding. In CVPR, pages 1 -8, june 2008.
    • (2008) CVPR , pp. 1-8
    • Yang, J.1    Yang, S.2    Fu, Y.3    Li, X.4    Huang, T.5
  • 22
    • 34547970997 scopus 로고    scopus 로고
    • Spectral clustering and transductive learning with multiple views
    • D. Zhou and C. Burges. Spectral clustering and transductive learning with multiple views. ICML, pages 1159-1166, 2007.
    • (2007) ICML , pp. 1159-1166
    • Zhou, D.1    Burges, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.