-
1
-
-
33749241695
-
Regulation of gene expression in the mammalian eye and its relevance to eye disease
-
Scheetz T, Kim K, Swiderski R, et al. Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proc Natl Acad Sci 2006;103:14429-34.
-
(2006)
Proc Natl Acad Sci
, vol.103
, pp. 14429-14434
-
-
Scheetz, T.1
Kim, K.2
Swiderski, R.3
-
2
-
-
77955057877
-
L1-penalization for mixture regression models
-
Städler N, Bühlmann P, van de Geer S. L1-penalization for mixture regression models. Test 2010;19:209-56.
-
(2010)
Test
, vol.19
, pp. 209-256
-
-
Städler, N.1
Bühlmann, P.2
van de Geer, S.3
-
3
-
-
53849089038
-
High dimensional classification using features annealed independence rules
-
Fan J, Fan Y. High dimensional classification using features annealed independence rules. Ann Statist 2008;36:2605-73.
-
(2008)
Ann Statist
, vol.36
, pp. 2605-2673
-
-
Fan, J.1
Fan, Y.2
-
4
-
-
77949352853
-
A selective review of variable selection in high dimensional feature space
-
Fan JQ, Lv J. A selective review of variable selection in high dimensional feature space. Statist Sin 2010;20:104-48.
-
(2010)
Statist Sin
, vol.20
, pp. 104-148
-
-
Fan, J.Q.1
Lv, J.2
-
5
-
-
84881235959
-
A tutorial on rank-based coefficient estimation for censored data in smalland large-scale problems
-
Chung M, Long Q, Johnson B. A tutorial on rank-based coefficient estimation for censored data in smalland large-scale problems. Stat Comput 2013;23:601-14.
-
(2013)
Stat Comput
, vol.23
, pp. 601-614
-
-
Chung, M.1
Long, Q.2
Johnson, B.3
-
6
-
-
41949088050
-
L1-norm quantile regression
-
Li Y, Zhu J. L1-norm quantile regression. J Comput Graph Statist 2008;17:163-85.
-
(2008)
J Comput Graph Statist
, vol.17
, pp. 163-185
-
-
Li, Y.1
Zhu, J.2
-
7
-
-
68149091660
-
Variable selection in quantile regression
-
Wu Y, Liu Y. Variable selection in quantile regression. Statist Sin 2009;37:801-17.
-
(2009)
Statist Sin
, vol.37
, pp. 801-817
-
-
Wu, Y.1
Liu, Y.2
-
8
-
-
79551613968
-
L1 penalized quantile regression in high dimensional sparse models
-
Belloni A, Chernozhukov V. L1 penalized quantile regression in high dimensional sparse models. Ann Statist 2011;39:82-130.
-
(2011)
Ann Statist
, vol.39
, pp. 82-130
-
-
Belloni, A.1
Chernozhukov, V.2
-
9
-
-
84862902634
-
Quantile regression for analyzing heterogeneity in ultrahigh dimension
-
Wang L, Wu Y, Li R. Quantile regression for analyzing heterogeneity in ultrahigh dimension. J Am Stat Assoc 2012;107:214-22.
-
(2012)
J Am Stat Assoc
, vol.107
, pp. 214-222
-
-
Wang, L.1
Wu, Y.2
Li, R.3
-
10
-
-
84941776513
-
An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression
-
(In Press)
-
Peng B, Wang L. An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression. J Comput Graph Statist 2014. DOI:10.1080/10618600.2014.913516 (In Press).
-
(2014)
J Comput Graph Statist
-
-
Peng, B.1
Wang, L.2
-
11
-
-
84987950402
-
Adaptive robust variable selection
-
Fan Y, Fan J, Barut E. Adaptive robust variable selection. Ann Statist 2014;42:324-51.
-
(2014)
Ann Statist
, vol.42
, pp. 324-351
-
-
Fan, Y.1
Fan, J.2
Barut, E.3
-
12
-
-
47749088574
-
Regularized simultaneous model selection in multiple quantiles regression
-
Zou H, Yuan M. Regularized simultaneous model selection in multiple quantiles regression. Comput Stat Data An 2008;52:5296-304.
-
(2008)
Comput Stat Data An
, vol.52
, pp. 5296-5304
-
-
Zou, H.1
Yuan, M.2
-
13
-
-
51049119407
-
Composite quantile regression and the oracle model selection theory
-
Zou H, Yuan M. Composite quantile regression and the oracle model selection theory. Ann Statist 2008;36:1108-26.
-
(2008)
Ann Statist
, vol.36
, pp. 1108-1126
-
-
Zou, H.1
Yuan, M.2
-
14
-
-
79955022769
-
Penalized composite quasi-likelihood for ultrahigh-dimensional variable selection
-
Bradic J, Fan J, Wang W. Penalized composite quasi-likelihood for ultrahigh-dimensional variable selection. J R Statist Soc Ser B 2011;73:325-49.
-
(2011)
J R Statist Soc Ser B
, vol.73
, pp. 325-349
-
-
Bradic, J.1
Fan, J.2
Wang, W.3
-
16
-
-
84883721624
-
Variable selection for censored quantile regression
-
Wang H, Zhou J, Li Y. Variable selection for censored quantile regression. Stat Sinica 2013;23:145-67.
-
(2013)
Stat Sinica
, vol.23
, pp. 145-167
-
-
Wang, H.1
Zhou, J.2
Li, Y.3
-
17
-
-
34547164089
-
Robust regression shrinkage and consistent variable selection through the lad-LASSO
-
Wang H, Li G, Jiang G. Robust regression shrinkage and consistent variable selection through the lad-LASSO. J Bus Econ Stat 2007;25:347-55.
-
(2007)
J Bus Econ Stat
, vol.25
, pp. 347-355
-
-
Wang, H.1
Li, G.2
Jiang, G.3
-
18
-
-
78349267906
-
Asymptotic analysis of high-dimensional LAD regression with LASSO
-
Gao X, Huang J. Asymptotic analysis of high-dimensional LAD regression with LASSO. Stat Sinica 2010;20:1485-506.
-
(2010)
Stat Sinica
, vol.20
, pp. 1485-1506
-
-
Gao, X.1
Huang, J.2
-
19
-
-
84879165356
-
The L1 penalized LAD estimator for high dimensional linear regression
-
Wang L. The L1 penalized LAD estimator for high dimensional linear regression. J Multivar Anal 2013;120:135-51.
-
(2013)
J Multivar Anal
, vol.120
, pp. 135-151
-
-
Wang, L.1
-
20
-
-
84859863552
-
Robust regression through the Hubers criterion and adaptive LASSO penalty
-
Lambert-Lacroix S, Zwald L. Robust regression through the Hubers criterion and adaptive LASSO penalty. Electron J Stat 2011;16:1015-53.
-
(2011)
Electron J Stat
, vol.16
, pp. 1015-1053
-
-
Lambert-lacroix, S.1
Zwald, L.2
-
22
-
-
0001577150
-
Estimating regression coefficients by minimizing the dispersion of residuals
-
Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of residuals. Ann Math Stat 1972;43:1449-58.
-
(1972)
Ann Math Stat
, vol.43
, pp. 1449-1458
-
-
Jaeckel, L.A.1
-
23
-
-
45849125768
-
Rank-based variable selection
-
Johnson B, Peng L. Rank-based variable selection. J Nonparametr Stat 2008;20:241-52.
-
(2008)
J Nonparametr Stat
, vol.20
, pp. 241-252
-
-
Johnson, B.1
Peng, L.2
-
24
-
-
66949149744
-
Wighted Wilcoxon-type smoothly clipped absolute deviation method
-
Wang L, Li R. Wighted Wilcoxon-type smoothly clipped absolute deviation method. Biometrics 2009;65:564-71.
-
(2009)
Biometrics
, vol.65
, pp. 564-571
-
-
Wang, L.1
Li, R.2
-
25
-
-
66949149020
-
Regularized estimation for the accelerated failure time model
-
Cai T, Huang J, Tian L. Regularized estimation for the accelerated failure time model. Biometrics 2009;65:394-404.
-
(2009)
Biometrics
, vol.65
, pp. 394-404
-
-
Cai, T.1
Huang, J.2
Tian, L.3
-
26
-
-
77953326454
-
Rank-based variable selection with censored data
-
Xu J, Leng C, Ying Z. Rank-based variable selection with censored data. Stat Comput 2010;20:165-76.
-
(2010)
Stat Comput
, vol.20
, pp. 165-176
-
-
Xu, J.1
Leng, C.2
Ying, Z.3
-
27
-
-
74349131495
-
Rank-based estimation in the L1-regularized partly linear model for censored outcomes with application to integrated analyses of clinical predictors and gene expression data
-
Johnson B. Rank-based estimation in the L1-regularized partly linear model for censored outcomes with application to integrated analyses of clinical predictors and gene expression data. Biostatistics 2009;10:659-66.
-
(2009)
Biostatistics
, vol.10
, pp. 659-666
-
-
Johnson, B.1
-
28
-
-
84895920054
-
A penalized robust method for identifying gene-environment interactions
-
Shi X, Liu J, Huang J, et al. A penalized robust method for identifying gene-environment interactions. Genet Epidemiol 2014;38:220-30.
-
(2014)
Genet Epidemiol
, vol.38
, pp. 220-230
-
-
Shi, X.1
Liu, J.2
Huang, J.3
-
29
-
-
84883313972
-
Robust variable selection with exponential squared loss
-
Wang X, Jiang Y, Huang M, et al. Robust variable selection with exponential squared loss. J Am Stat Assoc 2013;108:632-43.
-
(2013)
J Am Stat Assoc
, vol.108
, pp. 632-643
-
-
Wang, X.1
Jiang, Y.2
Huang, M.3
-
30
-
-
35348854001
-
Variable selection in finite mixture of regression models
-
Khalili A, Chen J. Variable selection in finite mixture of regression models. J Am Stat Assoc 2007;102:1025-38.
-
(2007)
J Am Stat Assoc
, vol.102
, pp. 1025-1038
-
-
Khalili, A.1
Chen, J.2
-
31
-
-
84865455033
-
On the robustness of the adaptive LASSO to model misspecification
-
Lu W, Goldberg Y, Fine J. On the robustness of the adaptive LASSO to model misspecification. Biometrika 2012;99:717-31.
-
(2012)
Biometrika
, vol.99
, pp. 717-731
-
-
Lu, W.1
Goldberg, Y.2
Fine, J.3
-
32
-
-
0003684449
-
-
2nd edn. New York, NY: Springer
-
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. New York, NY: Springer, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
33
-
-
69249230467
-
A review of Bayesian variable selection methods: What, how and which
-
O'Hara RB, Sillanpää MJ. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal 2009;4:85-118.
-
(2009)
Bayesian Anal
, vol.4
, pp. 85-118
-
-
O'Hara, R.B.1
Sillanpää, M.J.2
-
34
-
-
77958487535
-
Stability selection (with discussion)
-
Meinshausen M, Buhlmann P. Stability selection (with discussion). J R Stat Soc B 2010;72:417-73.
-
(2010)
J R Stat Soc B
, vol.72
, pp. 417-473
-
-
Meinshausen, M.1
Buhlmann, P.2
-
35
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
Tibshirani R. Regression shrinkage and selection via the LASSO. J R Stat Soc B 1996;58:267-88.
-
(1996)
J R Stat Soc B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
36
-
-
33846114377
-
The adaptive LASSO and its oracle property
-
Zou H. The adaptive LASSO and its oracle property. J Am Stat Assoc 2006;101:1418-29.
-
(2006)
J Am Stat Assoc
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
37
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001;96:1348-60.
-
(2001)
J Am Stat Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
38
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
Zhang C. Nearly unbiased variable selection under minimax concave penalty. Ann Statist 2010;38:894-942.
-
(2010)
Ann Statist
, vol.38
, pp. 894-942
-
-
Zhang, C.1
-
40
-
-
37249032736
-
Spatial smoothing and hot spot detection for CGH data using the fused lasso
-
Tibshirani R, Wang P. Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics 2008;9:18-29.
-
(2008)
Biostatistics
, vol.9
, pp. 18-29
-
-
Tibshirani, R.1
Wang, P.2
-
41
-
-
84883715312
-
Interquantile shrinkage and variable selection in quantile regression
-
Jiang L, Bondell H, Wang H. Interquantile shrinkage and variable selection in quantile regression. Comp Stat Data Anal 2014;69:208-19.
-
(2014)
Comp Stat Data Anal
, vol.69
, pp. 208-219
-
-
Jiang, L.1
Bondell, H.2
Wang, H.3
-
42
-
-
0034712586
-
Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy
-
Redfern C, Degtyarev M, Kwa A, et al. Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc Natl Acad Sci USA 2000;97:4826-31.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 4826-4831
-
-
Redfern, C.1
Degtyarev, M.2
Kwa, A.3
-
43
-
-
0742321914
-
Regression approaches for microarray data analysis
-
Segal M, Kam D, Bruce C. Regression approaches for microarray data analysis. J Comput Biol 2003;10:961-80.
-
(2003)
J Comput Biol
, vol.10
, pp. 961-980
-
-
Segal, M.1
Kam, D.2
Bruce, C.3
-
44
-
-
79959524146
-
A haplotype map of the human genome
-
The International HapMap Consortium. A haplotype map of the human genome. Nature 2005;437:1299-320.
-
(2005)
Nature
, vol.437
, pp. 1299-1320
-
-
-
45
-
-
77956929713
-
A robust penalized method for the analysis of noisy DNA copy number data
-
Gao XL, Huang J. A robust penalized method for the analysis of noisy DNA copy number data. BMC Genomics 2010;11:517.
-
(2010)
BMC Genomics
, vol.11
, pp. 517
-
-
Gao, X.L.1
Huang, J.2
-
47
-
-
84876013845
-
Robust variable selection through MAVE
-
Yao W, Wang Q. Robust variable selection through MAVE. Comput Statist Data Anal 2013;63:42-9.
-
(2013)
Comput Statist Data Anal
, vol.63
, pp. 42-49
-
-
Yao, W.1
Wang, Q.2
|