메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages 965-1003

Bayesian canonical correlation analysis

Author keywords

Bayesian modeling; Canonical correlation analysis; Group wise sparsity; Inter battery factor analysis; Variational Bayesian approximation

Indexed keywords

BAYESIAN MODELING; CANONICAL CORRELATION ANALYSIS; COMPUTATIONAL FORMULATIONS; GROUP-WISE SPARSITY; MACHINE LEARNING COMMUNITIES; MULTIVARIATE DATA SETS; STATISTICAL DEPENDENCIES; VARIATIONAL BAYESIAN;

EID: 84877621868     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (175)

References (67)
  • 2
    • 68749121819 scopus 로고    scopus 로고
    • Sparse probabilistic projections
    • Cédric Archambeau and Francis Bach. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, MIT Press
    • Cédric Archambeau and Francis Bach. Sparse probabilistic projections. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 73-80. MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 73-80
  • 5
    • 33745859053 scopus 로고    scopus 로고
    • A probabilistic interpretation of canonical correlation analysis
    • Department of Statistics, University of California, Berkeley
    • Francis R. Bach and Michael I. Jordan. A probabilistic interpretation of canonical correlation analysis. Technical Report 688, Department of Statistics, University of California, Berkeley, 2005.
    • (2005) Technical Report 688
    • Bach Francis, R.1    Jordan Michael, I.2
  • 11
    • 79953045889 scopus 로고    scopus 로고
    • Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis
    • Filip Deleus and Marc M. Van Hulle. Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis. Journal of Neuroscience methods, 197(1): 143-157, 2011.
    • (2011) Journal of Neuroscience Methods , vol.197 , Issue.1 , pp. 143-157
    • Deleus, F.1    Van Hulle, M.M.2
  • 13
    • 78649661036 scopus 로고    scopus 로고
    • Estimating image bases for visual image reconstruction from human brain activity
    • In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta
    • Yusuke Fujiwara, Yoichi Miyawaki, and Yukiyasu Kamitani. Estimating image bases for visual image reconstruction from human brain activity. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 576-584, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 576-584
    • Fujiwara, Y.1    Miyawaki, Y.2    Kamitani, Y.3
  • 14
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analyzers
    • In S.A. Solla, T.K. Leen, and K-R. Müller, editors, MIT Press
    • Zoubin Ghahramani and Matthew J. Beal. Variational inference for Bayesian mixtures of factor analyzers. In S.A. Solla, T.K. Leen, and K-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 449-455. MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 449-455
    • Ghahramani, Z.1    Beal Matthew, J.2
  • 18
    • 78049347742 scopus 로고    scopus 로고
    • Learning bilingual lexicons from monolingual corpora
    • Columbus, Ohio, June. Association for Computational Linguistics
    • Aria Haghighi, Percy Liang, Taylor Berh-Kirkpatrick, and Dan Klein. Learning bilingual lexicons from monolingual corpora. In Proceedings of ACL-08: HLT, pages 771-779, Columbus, Ohio, June 2008. Association for Computational Linguistics.
    • (2008) Proceedings of ACL-08: HLT , pp. 771-779
    • Haghighi, A.1    Liang, P.2    Berh-Kirkpatrick, T.3    Klein, D.4
  • 19
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon David, R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 20
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Harold Hotelling. Relations between two sets of variates. Biometrika, 28:321-377, 1936.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 21
    • 0034551784 scopus 로고    scopus 로고
    • Nonlinear canonical correlation analysis by neural networks
    • William W. Hsieh. Nonlinear canonical correlation analysis by neural networks. Neural Networks, 13:1095-1105, 2000.
    • (2000) Neural Networks , vol.13 , pp. 1095-1105
    • Hsieh William, W.1
  • 24
    • 77956916974 scopus 로고    scopus 로고
    • Practical approaches to principal component analysis in the presence of missing data
    • Alexander Ilin and Tapani Raiko. Practical approaches to principal component analysis in the presence of missing data. Journal of Machine Learning Research, 11:1957-2000, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1957-2000
    • Ilin, A.1    Raiko, T.2
  • 26
    • 85162037528 scopus 로고    scopus 로고
    • Factorized latent spaces with structured sparsity
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, MIT Press
    • Yangqing Jia, Mathieu Salzmann, and Trevor Darrell. Factorized latent spaces with structured sparsity. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 982-990. MIT Press, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 982-990
    • Jia, Y.1    Salzmann, M.2    Darrell, T.3
  • 27
    • 84867124801 scopus 로고    scopus 로고
    • Residual component analysis: Generalising PCA for more flexible inference in linear-gaussian models
    • J. Langford and J. Pineau, editors, Omnipress
    • Alfredo A. Kalaitzis and Neil D. Lawrence. Residual Component Analysis: Generalising PCA for more flexible inference in linear-Gaussian models. In J. Langford and J. Pineau, editors, Proceedings of the 29th International Conference on Machine Learning, pages 209-216. Omnipress, 2012.
    • (2012) Proceedings of the 29th International Conference on Machine Learning , pp. 209-216
    • Kalaitzis Alfredo, A.1    Lawrence Neil, D.2
  • 28
    • 84876849094 scopus 로고    scopus 로고
    • Variational Bayesian matching
    • In S. C. H. Hoi and W. Buntine, editors, JMLR:C&WP
    • Arto Klami. Variational Bayesian matching. In S. C. H. Hoi and W. Buntine, editors, Proceedings of the 4th Asian Conference on Machine Learning (ACML), Volume 25 of JMLR:C&WP, pages 205-220, 2012.
    • (2012) Proceedings of the 4th Asian Conference on Machine Learning (ACML) , vol.25 , pp. 205-220
    • Klami, A.1
  • 31
    • 55949104732 scopus 로고    scopus 로고
    • Probabilistic approach to detecting dependencies between data sets
    • Arto Klami and Samuel Kaski. Probabilistic approach to detecting dependencies between data sets. Neurocomputing, 72:39-46, 2008.
    • (2008) Neurocomputing , vol.72 , pp. 39-46
    • Klami, A.1    Kaski, S.2
  • 33
    • 84857233123 scopus 로고    scopus 로고
    • Nonparametric Bayesian sparse factor models with application to gene expression modeling
    • David Knowles and Zoubin Ghahramani. Nonparametric Bayesian sparse factor models with application to gene expression modeling. Annals of Applied Statistics, 5:B 1534-1552, 2011.
    • (2011) Annals of Applied Statistics , vol.5 , pp. 1534-1552
    • Knowles, D.1    Ghahramani, Z.2
  • 36
    • 84877620828 scopus 로고    scopus 로고
    • Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: A comparative review
    • March
    • Leo Lahti, Martin Schäfer, Hans-Ulrich Klein, Silvio Bicciato, and Martin Dugas. Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: a comparative review. Briefings in Bioinformatics, March 2012.
    • (2012) Briefings in Bioinformatics
    • Lahti, L.1    Martin, S.2    Klein, H.-U.3    Bicciato, S.4    Dugas, M.5
  • 37
    • 0034304404 scopus 로고    scopus 로고
    • Kernel and nonlinear canonical correlation analysis
    • Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation analysis. International Journal of Neural Systems, 10(5):365-377, 2000.
    • (2000) International Journal of Neural Systems , vol.10 , Issue.5 , pp. 365-377
    • Ling Lai, P.1    Fyfe, C.2
  • 39
    • 77649235651 scopus 로고    scopus 로고
    • Transformations in variational Bayesian factor analysis to speed up learning
    • Jaakko Luttinen and Alexander Ilin. Transformations in variational Bayesian factor analysis to speed up learning. Neurocomputing, 73:1093-1102, 2010.
    • (2010) Neurocomputing , vol.73 , pp. 1093-1102
    • Luttinen, J.1    Ilin, A.2
  • 40
    • 84958984418 scopus 로고    scopus 로고
    • Nonlinear feature extraction using generalized canonical correlation analysis
    • Springer
    • Thomas Melzer, Michael Reiter, and Horst Bischof. Nonlinear feature extraction using generalized canonical correlation analysis. In Artificial Neural Networks - ICANN 2001, pages 353-360. Springer, 2001.
    • (2001) Artificial Neural Networks - ICANN 2001 , pp. 353-360
    • Melzer, T.1    Reiter, M.2    Bischof, H.3
  • 44
    • 85162000125 scopus 로고    scopus 로고
    • Reverse multi-label learning
    • In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, MIT Press
    • James Petterson and Tiberio Caetano. Reverse multi-label learning. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1912-1920. MIT Press, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1912-1920
    • Petterson, J.1    Caetano, T.2
  • 45
    • 84864056575 scopus 로고    scopus 로고
    • Parameter expanded variational Bayesian methods
    • In B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press
    • Yuan Qi and Tommi S. Jaakkola. Parameter expanded variational Bayesian methods. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1097-1104. MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1097-1104
    • Qi, Y.1    Jaakkola Tommi, S.2
  • 46
    • 77958600377 scopus 로고    scopus 로고
    • Multi-label prediction via sparse infinite CCA
    • In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, MIT Press
    • Piyush Rai and Hal Daumé III. Multi-label prediction via sparse infinite CCA. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1518-1526. MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1518-1526
    • Rai, P.1    Daumé III, H.2
  • 48
    • 79958175783 scopus 로고    scopus 로고
    • Infinite factorization of multiple non-parametric views
    • Simon Rogers, Arto Klami, Janne Sinkkonen, Mark Girolami, and Samuel Kaski. Infinite factorization of multiple non-parametric views. Machine Learning, 79(1-2):201-226, 2010.
    • (2010) Machine Learning , vol.79 , Issue.1-2 , pp. 201-226
    • Rogers, S.1    Klami, A.2    Sinkkonen, J.3    Girolami, M.4    Kaski, S.5
  • 50
    • 77950404059 scopus 로고    scopus 로고
    • Learning shared latent structure for image synthesis and robotic imitation
    • In Y. Weriss, B. Schölkopf, and J. Platt, editors, MIT Press
    • Aaron Shon, Keith Grochow, Aaron Hertzmann, and Rajesh Rao. Learning shared latent structure for image synthesis and robotic imitation. In Y. Weriss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1233-1240. MIT Press, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.18 , pp. 1233-1240
    • Shon, A.1    Grochow, K.2    Hertzmann, A.3    Rao, R.4
  • 52
    • 78649325096 scopus 로고    scopus 로고
    • Canonical correlation analysis for multilabel classification: A least-squares formulation, extension, and analysis
    • Liang Sun, Shuiwang Ji, and Jieping Ye. Canonical correlation analysis for multilabel classification: A least-squares formulation, extension, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):194-200, 2011.
    • (2011) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.33 , Issue.1 , pp. 194-200
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 57
    • 0000503256 scopus 로고
    • An inter-battery method of factor analysis
    • Ledyard R. Tucker. An inter-battery method of factor analysis. Psychometrika, 23:111-136, 1958.
    • (1958) Psychometrika , vol.23 , pp. 111-136
    • Tucker Ledyard, R.1
  • 58
    • 79957851337 scopus 로고    scopus 로고
    • Reduced rank regression models with latent variables in Bayesian functional data analysis
    • Angelika van der Linde. Reduced rank regression models with latent variables in Bayesian functional data analysis. Bayesian Analysis, 6(1):77-126, 2011.
    • (2011) Bayesian Analysis , vol.6 , Issue.1 , pp. 77-126
    • Van Der Linde, A.1
  • 59
    • 77958062608 scopus 로고    scopus 로고
    • Variational bayesian mixture of robust CCA models
    • In A. Gionis J. Luis Balcázar, F. Bonchi and M. Sebag, editors, Barcelona, Spain, September 20-24, 2010, Springer
    • Jaakko Viinikanoja, Arto Klami, and Samuel Kaski. Variational Bayesian mixture of robust CCA models. In A. Gionis J. Luis Balcázar, F. Bonchi and M. Sebag, editors, Machine Learning and Knowledge Discovery in Databases. Proceedings of European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, volume III, pages 370-385. Springer, 2010.
    • (2010) Machine Learning and Knowledge Discovery in Databases. Proceedings of European Conference, ECML PKDD 2010 , vol.III , pp. 370-385
    • Viinikanoja, J.1    Klami, A.2    Kaski, S.3
  • 60
    • 84873588359 scopus 로고    scopus 로고
    • Inferring a semantic representation of text via cross-language correlation analysis
    • In S. Thrun S. Becker and K. Obermayer, editors, MIT Press
    • Alexei Vinokourov, John Shawe-Taylor, and Nello Cristianini. Inferring a semantic representation of text via cross-language correlation analysis. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 1473-1480. MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 1473-1480
    • Vinokourov, A.1    Shawe-Taylor, J.2    Cristianini, N.3
  • 64
    • 34248630554 scopus 로고    scopus 로고
    • Variational Bayesian approach to canonical correlation analysis
    • Chong Wang. Variational Bayesian approach to canonical correlation analysis. IEEE Transactions on Neural Networks, 18:905-910, 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 905-910
    • Wang, C.1
  • 65
    • 85161974668 scopus 로고    scopus 로고
    • A new view on automatic relevance determination
    • In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press
    • David Wipf and Srikantan Nagarajan. A new view on automatic relevance determination. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1625-1632. MIT Press, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1625-1632
    • Wipf, D.1    Nagarajan, S.2
  • 66
    • 67949121767 scopus 로고    scopus 로고
    • Dependencies between stimuli and spatially independent fMRI sources: Towards brain correlates of natural stimuli
    • Jarkko Ylipaavalniemi, Eerika Savia, Sanna Malinen, Riitta Hari, Ricardo Vigário, and Samuel Kaski. Dependencies between stimuli and spatially independent fMRI sources: Towards brain correlates of natural stimuli. Neuro Image, 48:176-185, 2009.
    • (2009) Neuro Image , vol.48 , pp. 176-185
    • Ylipaavalniemi, J.1    Savia, E.2    Malinen, S.3    Hari, R.4    Vigário, R.5    Kaski, S.6
  • 67
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Min-Ling Zhang and Zhi-Hua Zhou. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.